
Journal of American Science, 2011;7(8) http://www.americanscience.org

http://www.americanscience.org editor@americanscience.org 1

Automatic Generation of Extended ER Diagram Using Natural Language Processing

Dr. Muhammad Shahbaz 1, Dr. Syed Ahsan 2, Muhammad Shaheen 3, Rao Muhammad Adeel Nawab4
, Syed Athar Masood 5

1,2,3,4. University of Engineering & Technology Lahore, Punjab Pakistan
5Department of Engineering Management, NUST College of E&ME, Rawalpindi Pakistan

1 m.shahbaz@uet.edu.pk, 2 ahsancs@hotmail.com, 3 shaheen@uet.edu.pk, 5 atharmasood2000@hotmail.com

Abstract: Extended Entity Relationship Diagrams are an important step in information system design and software
engineering. In the early seventies Peter Chen developed an efficient database management system, the ERD. Later
on, ERD was enhanced to Extended ERD by adding new concepts like generalization and specialization. The
inspiration of EERD emerged from the common need to many organizations to have a unified methodology for file
structure and database design. To meet the demands of users, to interpret problem statements in English, applying all
the rules and generating an EERD. The structural approach is used to parse the sentences and tag them into different
parts of the speech. This is because a belief has been developed that semantics can be completely represented in
structures. The structural approach is used to map the tagged words into entities, attributes and relationships. [Dr.
Muhammad Shahbaz, Dr. Syed Ahsan, Muhammad Shaheen, Rao Muhammad Adeel Nawab, Syed Athar Masood.
Automatic Generation of Extended ER Diagram Using Natural Language Processing. Journal of American Science
2011;7(8):1-10]. (ISSN: 1545-1003). http://www.americanscience.org.

Keywords: Geographic Information System (GIS), Usability, Interactivity, Human-GIS Interaction, Positional
Accuracy, Hydrocarbon Exploration, Backpropogation Neural Network

1. Introduction

Databases today have become indispensable to
almost any business carried out by an organization.
So why not let Artificial Intelligence use its expert
systems to handle the entire progression of
construction - starting from a simple textual user
input to the generation to EERDs (Extended Entity
Relationship Diagram)? Application of structural
analysis for the generation of EERD is something
unprecedented in the history of Artificial Intelligence
and Database Designing. Research along similar lines
has been done previously but never ever has such a
project been implemented.

During the stream of this project we have
taken up the task of applying Structural Analysis
to create the EERDs that could be further used
to generate the tables in accordance with the
normalization rules and keeping the functional
dependencies intact. This would involve categorizing
the parsed input as nouns, verbs and adjectives - a
form that could be transformed and identified
specifically as entities, relationships and attributes
for the EERD. After the analysis and documentation
phase we plan to implement the project along the
following modules.

Module 1: Reading and parsing natural language
input text given by the user.

Module 2: Heuristically classifying the text, that
would serve as input to our next module.

Module 3: Generation of ERD and the final
output in the form of a graphical diagram.

The third module is however mostly
concerned with the generation of a text file that

contains all the information needed to generate the ER
diagram. This file would then be converted into a
format that can be imported to an external tool. In our
case the external tool is DeZign. In short the problem
statement is very simple. Input in English language
and the output is the desired ERD.

What is Conceptual Modeling
Conceptual modeling is a very important and
powerful step in relational database design. It
overcomes several restrictions of the relational
model. The orientation of current relational
technology has led to several problems of database
modeling and design. For instance, the following
restrictions and problems can be solved if
conceptual modeling approaches are used:
Normalization is mainly an optimization of structures.
Given a set of integrity constraints,
the enforcement or maintenance of these constraints has
to be programmed. For instance,
functional dependencies cannot be represented by
constraints defined in relational
DBMS. Such constraints are also the reason for
anomalous behavior of update functions.
Normalization aims now in restructuring database
relations through decomposition in
such a way that the only constraints, which have to be
added to the structure, are those
which are based on the DBMS. However,
normalization does not take into account the
behavior of the database itself. For instance, if
operations, which are used often in the
application, require the consideration of several

Journal of American Science, 2011;7(8) http://www.americanscience.org

http://www.americanscience.org editor@americanscience.org 2

relations and for this reason the
performance of the DBMS for such operations is too
low, then the solution is to compose
those relations again into one relation. This process is
called ‘denormalization’.
‘Denormalization’ can also be required after
restructuring or extending the database.
Since the normalization process is an optimization
process independent of the DBMS and
since the process is supported by algorithms, the
normalization of conceptual models ofthe reality can
be incorporated into the translation process.
From the other side, normalization can be
performed already on the conceptual level.
Therefore, structural optimization and behavioral
optimization can be treated consistently during
conceptual modeling if a powerful proof method is
used during optimization. Conceptual modeling has
been understood for a long period as modeling of
structures and static integrity constraints. Because
some powerful structural constructs have been
developed and used in practice, a belief has been
developed in the community that semantics can
be completely represented by structures. Based on
this belief it has been assumed that application
programming can do the rest and that triggers can be
used without problems. Later, it has been
discovered that triggering is only safe under
certain hierarchy conditions. Therefore, the current
thinking is that conceptual modeling should integrate
modeling of structures and behavior at the same time.
The same application can be modeled by different
models. These models can be
equivalent. Since the ER model has a powerful theory
behind it, we can consider different
models at the same time for different user groups
and map these models to each other.
The other model can be considered to be a view of the
first. The same observation can be
made for multidimensional databases and OLAP
applications. The star and the snowflake
schemata (used in data warehousing and
workflow applications) are views on the
conceptual schema. Whether views are materialized
as it is the case in multidimensional
databases depends on the application and on the
complexity of the view generation. Refer to [7].
Relationship b/w Natural Language & Conceptual
Modeling
It is now understood that that conceptual models
have their root in the phrasal form of
natural languages. The observation has been made
for the sentence construction of the
English language as well as for the more complex
constructions used in other languages
such as German It has been shown that the basic

primitives in the sentence construction
and the grammar of the English language are very
similar to the primitives in ER diagram
technique. Because of this similarity, it is conjectured
that conceptual modeling could be
as powerful as natural languages as a tool for
modeling the reality. Current research
shows that approaches such as ellipses, ambiguity,
changes in semantic meaning can be
expressed through constructs developed for
conceptual modeling. As a result of this type
of research activities, conceptual models now can
describe the reality more formally and
with well-defined semantics specifications made
on the basis of natural languages.
Linguists treat semiotics as consisting of three parts:
syntax, semantics and pragmatics.
Syntax defines the rules for forming sentences.
Semantics is concerned with the meaning
of words and sentences. Pragmatics deals with
practical results, reasons and values.
Computer scientists are often mainly concerned
with syntax, only partially concerned
with semantics and very seldom concerned with
pragmatics. Conceptual modeling is
based on a certain syntax, which has to have a well-
specified meaning. It also has to deal
with pragmatics. For this reason, a well-founded
theory of conceptual modeling has been
extended by methodologies for modeling [7].
[12] develops a dialogue tool with in a big project i.e.
RADD (Rapid Application Development). The
dialogue tool takes the input from the user in natural
language, sample data is used to find out the semantic
constraints on the database to be built. This work
focuses on implementing the semantic constraints as
it is the prerequisite for the normalization and
denormalization or any other restructuring approach.
Semantic constraints are important because they are
necessary for the efficient and effective working of
the database.
Some new heuristics were proposed by [13]that assist
the semi-automated generation of Entity-Relationship
(ER) diagrams for database modeling from a natural
language description. The work done by [13] revises
the correspondences between the English structure
and extended entity relationship diagram. Some new
features have also been added as the [8] woek only
discusses the basic ER diagram constructs.
Differences between Data Modeling and Database
Design
It is worth while to distinguish between Data
Modeling and Database Design before discussing
the various tools that are available in the market -
on the internet - for the former. The differences
between the two activities are highlighted as

Journal of American Science, 2011;7(8) http://www.americanscience.org

http://www.americanscience.org editor@americanscience.org 3

follows:
For data modeling, the question being asked is:
“What does the world being modeled look like?”
In particular, one is looking for similarities between
things. Then one identifies a 'supertype' of some thing
which may have sub-types. For example:
• Customers (‘super-type’) will have Corporate
Customers and Personal Customers (‘sub-types’).
• If supplier contacts are conceptually different things
from customer contacts,
then the answer is that they should be modeled
separately. On the other hand,
if they are merely ‘sub-sets’ of the same thing, then
model them together.
On the other hand, for database design, a different
question is being answered, altogether:
“How can one efficiently design a database that will
support the functions of proposed application, Web
Site etc.?”
The key task here is to identify similarities between
entities so that one can integrate them into the same
table, usually with a 'Type' indicator.
For example:
• A Customer table, which combines all attributes
of both Corporate and Personal Customers.
As a result, it is possible to spend a great deal of time,
breaking things out when creating a Data Model, and
then collapsing them back together when designing the
corresponding database.
Some of the most common Data Modeling techniques
used today in the fields of Object
Oriented Design (OOD) and Software Engineering
(SE) are the System Sequence
Diagrams (SSDs), Data Flow Diagrams (DFDs), Use
Case Diagrams (UCDs) and UML Diagrams, to name
a few.
Entity Relationship Diagram (ERD) is just another
representation of Data Modeling
employed for designing databases. Various tools and
software are available that assist in
the drawing and diagrammatic illustration of ERDs.
These tools are not responsible for
automated generation of ERDs, but rather provide a
platform for the user to graphically
represent the information using various symbols.
Some of these tools go as far ahead as
to correct the mistakes that the user may have made in
the course of drawing. Moreover,
it is also possible to import the ERDs drawn
further, to soft-wares that design the
database from the respective ERDs. It should be
noted here that there can be many
representations of ERDs of the same problem
statement. Similarly the database generated
or designed can also vary from software to software for
the same specific scenario. Hence

one problem statement may lead to several different
databases (i.e. different structures of
databases) depending on the number of choices that one
has in the intermediary steps.

Entities
The basic object that the ER model represents is an
entity, which is a thing in the real
world with an independent existence. An entity
may be an object with a physical
existence - a particular person, car house pr
employee - or it may be an object with a
conceptual existence - a company, a job or a university
course. Each entity has attributes
- the particular properties that describe it. For
example an employee entity may be
described by the employee’s name, age, address,
salary and job. A particular entity will
have a value for each of its attributes. The attributes
values that describe each entity
become a major part of the data stored in the database.
Several types of attributes occur in
the ER model: simple versus composite (composite
attributes can form a hierarchy),
single-valued versus multi-valued; and stored versus
derived (some attributes values can
be derived from related entities). There is also a null
value of an attribute. An entity type
defines a collection (or set) of entities that have the
same attributes. Each entity type in
the database is described by its name and
attributes. An entity type usually has an
attribute whose values are distinct for each individual
entity in the collection. Such an
attribute is called a key attribute. Some entities have
more than one key attribute [1, pp-41-111].

Relationships
Whenever an attribute of one entity type refers to
another entity type, some relationship
exists. A relationship type R among n entity types
defines a set of associations - or a
relationship set - among entities of these types. As
for entity types and entity sets, a
relationship type and its corresponding relationship set
are customarily referred to by the
same name R. In formally, each relationship instance
is an association of entities, where
the association includes exactly one entity from each
participating entity type. Each such
relationship instance represents the fact that’s the
participating entities are related in
someway in the corresponding mini-world situation.
In ER diagrams, relationship types
are displayed as diamond shaped boxes, which are
connected by straight lines to the

Journal of American Science, 2011;7(8) http://www.americanscience.org

http://www.americanscience.org editor@americanscience.org 4

rectangular boxes representing the participating entity
types. The relationship name is
displayed in the diamond-shaped box [1, pp-41-111].

Cardinalities
The cardinality ratio for a binary relationship
specifies the number of relationship instances that
an entity can participate in. the possible cardinality
ratios for binary relationship types are 1: 1, 1: N, N:
1 and M: N. Cardinality ratios are displayed on ER
diagrams by displaying 1, M, and N on the diamonds
that represent the relationship type[1, pp-41-111].

Analysis and Design
The analysis and design of our project is the very
next step that is followed after a
thorough understanding of the nature of the problem
is achieved. This is the process of
establishing the services the system provides and the
constraints under which it must
operate to the optimal level of performance. Firstly, it is
the identification and description
of the use cases. The interaction of these use cases is
depicted in the use case diagram.
Then for each use case, a system sequence diagram
is drawn. This shows the user -
system interaction. The responses by the system and
the user to each other’s events are
illustrated here. System sequence diagram contracts
are written to further elaborate the
complex functions operating in the system sequence
diagram. Similarly, collaboration
diagrams are drawn for each system sequence
diagram demonstrating the interaction
between the classes through appropriate functions.
Next all the concepts are identified
followed by their attributes. This leads to the
conceptual model. Secondly the functions
within each concept are recognized which leads to the
design class diagram.

Secondary Goal

The primary objective of this system is primarily
defined in the overview statement i.e.
the automated generation of an Extended Entity
Relationship Diagram (EERD) through Structural
Analysis. However secondary goals that could be
achieved from this tool are as follows:

 The ERD generated would be exported
to an external tool for further
modification and correction.

 The backend tagging of the parsed words to
different parts of speech could be
used for similar purposes that require
classification of words.

Implementation Details
In many information systems projects, requirements
are primarily documented in English,
and then database designers convert these English
descriptions into database schemas in
terms of ERDs. During the course of this project we
have proposed a number of rules to
generate an ERD diagram from English sentence
structure. The basics constructs of
English such as noun, verb, adjective, and adverb
are found to have counterparts in the
ERD. Finally and example is used to demonstrate
the applicability of these rules in
database design.

User Interface -Input Problem Statement
The program begins with the user interface as shown
in Figure 2. User enters information and information is
processed to generate an ERD using structural analysis
approach. The front end input screen consists of six
buttons each of which has a specific task which has
been explained below.

Clear Text
When the user clicks on this button any previously
written problem statement in the text field is erased.
This is done so that the user can write a new problem
statement.

Format Input
The user types the text in the input field shown as the
white text field. The text entered by the user in the text
field is formatted so that it can be send to the backend
to be processed and finally generate an ERD. A
space is put between full-stops and commas. Each
sentence ends with a full stop.
Import:
The user has two options, he can either input problem
statement directly into the text field by clicking on the
button ‘enter text’, or he can import a previously
stored problem statement from any directory in the
computer.
When the user clicks on import the text field
appears on the screen, this is where the imported
file is displayed. To import a file it is essential
for the user to give the destination of the file. One
constraint to this is that the file has to be in either .txt
or .rtf format to be imported.

Submit
Each sentence ends with a full stop. These sentences are
sent to the back end one by one to be processed. The
sentence is tagged using Brill’s tagger, assigning each
word to a
particular part of speech. Using this information, rules

Journal of American Science, 2011;7(8) http://www.americanscience.org

http://www.americanscience.org editor@americanscience.org 5

are applied and relevant
information consisting of which words are entities,
attributes, relationships and
cardinalities are stored in text files. These text files are
then used to generate an ERD
using the DeZign tool.
The submit button remains disabled when the user has
not entered text, once the user types text into the text
field this button is enabled and the user can now
submit the problem statement for processing to
generate an ERD.

Save:
The problem statement typed in the text field can be
stored by the user for further use or reference using this
option. The problem statement is saved as either a .txt or
.rtf file in the directory in the computer whose location is
given by the user.

Exit

To exit the program, the user clicks on this
button and the program closes.

Figure 4.1 - User Interface

Input Assumptions/Constraints

Sentences are entered by the user either directly in the
text field or the user has the option to import the
problem statement from a text file. A number of
limitations have to be put on the user when he types
the description. These have been stated below:

1. User input should conform to all rules of
English grammar.

2. It is recommended that user should input text
in subject-verb-object format.

3. The software does not cater the first
person. E.g. we assign a particular id to a
department.

4. The words ‘we’, ‘they’, ‘them’, ‘I’, ‘he’,
‘she’ etc. are not allowed. First, second and
third person is not allowed.

5. User cannot enter words like number of
hours or phone number. These words

Journal of American Science, 2011;7(8) http://www.americanscience.org

http://www.americanscience.org editor@americanscience.org 6

 should be of the form
number_of_hours or phone_number.
Words should be entered together
as one noun.

6. Questions are not allowed in a scenario
7. Past tense not allowed.
8. Allow the word ‘and’ only when it

terminates a list of attributes. E.g. the
 department consists of name, id and
phone_number. Do not use ‘and’ otherwise in
 these sentences break the sentence
into two.

9. Cannot use sentences like, e.g. usually each
patient.

10. Cannot use semicolons, and other special
characters. Commas and full stops are
 allowed. The system puts a space
between the commas and full-stops on its
own before running the rules algorithm.

 Tagging
“Many corpora are, in addition to structural and
bibliographic information, annotated
with linguistic knowledge. The most basic and
common form this annotation takes is
marking up the running words in the corpus with
their part of speech tags. This adds
value to the corpus because, for example, searches
can be performed not only on the
word-forms as strings but also on whether they
belong to a certain linguistic category.
Such tags are typically taken to be atomic labels
attached to words, denoting the part of
speech of the word, together with shallow morph
syntactic information, e.g. they specify the word as a
proper singular noun, or a plural comparative
adjective. For English and
other Western European languages, for which most
such annotated corpora have been
produced, the tag-set size ranges from about forty to
several hundred distinct categories.
To label the words in the corpus with their PoS, we
fist need a lexicon or morphological
analyzer that gives all the possible tags of a given
word-form. Part-of-speech taggers then
take as their input all these possible morphosyntactic
interpretations of the word-form and
output the correct interpretation, given the context in
which the word-form appears.
There has recently been an increased interest in
statistically based part-of-speech taggers, which use the
local context of a word form for morphosyntactic
disambiguation. Such taggers have the advantage of
being fast and can be automatically trained on a pre-
tagged corpus. Their success rate depends on many

factors, but is usually, for tag-sets of about 100 tags
and for Western European languages, at or below 96%.
The best known is Brill's rule based tagger. In the
training phase, this tagger makes an
initial hypothesis about the correct tags. In an
iterative fashion it then betters its
performance with regard to the training corpus by
postulating context dependent tag
rewrite rules. The advantage of Brill's tagger in
comparison with HMM taggers is that the
rule-set it generates is more perspicuous than the
transition-weight tables of the HMM
taggers. Namely, it often turns out to be
advantageous to manually correct the
automatically induced knowledge of the tagger and
it is simpler and more obvious how to change
explicit tag rewriting rules than it is changing tables
of numbers. Brill's tagger is written in C, with source
code and documentation available.
In Brill a trainable rule based tagger is described that
achieves performance comparable to that of
stochastic taggers. Training this tagger is fully
automated but unlike trainable stochastic taggers
linguistic information is encoded directly in a set
of simple non stochastic rules.
The primary goal of Eric Brill’s research is to make
information access and the use of computing devices a
natural and painless task. As a step towards this goal,
he is trying to make computers proficient at
processing human language. He has pursued a line
of research that falls under the rubric of Empirical
Natural Language Processing [2, 3, 4, 5].

EERD Mapping
In many information systems projects, requirements
are primarily documented in English,
and then database designers convert these English
descriptions into database schemas in
terms of ERDs. During the course of this project we
have proposed a number of rules to
generate an ERD diagram from English sentence
structure. The basics constructs of
English such as noun, verb, adjective, and adverb are
found to have counterparts in the ERD. Finally and
example is used to demonstrate the applicability of
these rules in database design.

Description of Rule

In this section we present rules for translating English
sentences into ERD. Although we
call them “rules”, they might better be viewed as
“guidelines”, since it is possible to find
counterexample to them. The following are the detailed
explanations of the translation
rules. Some of the sample rules are given below. The list

Journal of American Science, 2011;7(8) http://www.americanscience.org

http://www.americanscience.org editor@americanscience.org 7

is huge and can be extended depending on the
application and use.
Rule 1
A noun followed by a verb and then a noun forms: Both
the nouns form the two entities
There exists one relationship, the verb, between the two
entities.

English Statement: Various items are supplied by a
supplier.
Analysis and translation: “Items” and “supplier” are
nouns, they become the entity and “supplied” becomes
the relationship between them. “Items” is changed to
“item”.
ERD: The corresponding ERD is shown in Figure 4.1.1.

Figure. 4.1.1 - Rule 1

English Statement: A person may own a car. A person
may belong to a political party.
Analysis and translation: Note that “person”, “car”
and “political party” are nouns and therefore

correspond to entity types. Note also that “own” and
“belongs to” are verbs and therefore correspond to
relationship types.
ERD: The corresponding ERD is shown in Figure 4.1.2.

Figure. 4.1.2 - Rule 1

Rule 2
If a noun is followed by has or have and then by
noun(s), then: The first noun found is an entity
The second noun(s) found are one or more attributes of
the entity.
English Statement: Each department has a unique name
and unique number.
Analysis and translation: “Department” is the noun and
“name” and “number” are the attributes of department.
ERD: The corresponding ERD is shown in Figure 4.2.
Rule 3

If a noun is found with an apostrophe ‘s’ followed by
other noun then:
a) The first noun is an entity.
b) The ones that follow form attribute of the entity.
English Statement: Each employee’s email and name is
stored.
Analysis and translation: “Employee” is the entity
and “email” and “name” are its attributes.
ERD: The corresponding ERD is shown in Figure 4.3

Journal of American Science, 2011;7(8) http://www.americanscience.org

http://www.americanscience.org editor@americanscience.org 8

Figure. 4.2 - Rule 2

Figure. 4.3 - Rule 3

High-Level Use Cases
The following high level use cases are catered by our
tool. These are the ones that are the external actor
interacts with.
• Input Problem Statement
• Save Input
• Generate ERD
• Save ERD
• Open ERD
• Export ERD
Analysis and Results
The following calculations were performed for the
analysis of the results obtained through the
application of above mentioned algorithm.
Text file has been divided into words. Each word
contains a tag. This tag is used for the identification
of each word i.e. either this word is a noun, proper-
noun, verb, adjective etc. Once words have been
recognized in a sentence, then algorithm make the
sequence of these tagged words. On the basis of this
tagged sentence algorithm decides which rule is
feasible for this sentence. Now, entities, attributes
and relationships have been identified in this
sentence. Similarly, this process repeats for each

sentence in the text file. As an example, summarized
results generated algorithmically in 5 different text
files are shown for each entity, attribute and
relationship in the Table 1,Table2 and Table 3. The
table1 shows the total number of entities manually
identified, total number of entities identified by the
proposed algorithm, E as O actual entity which were
termed as other (attribute or relationship), O as E
actual other (attribute or relationship) termed as a
particular entity. The table 2 shows the total number
of attributes manually identified, total number of
attributes identified by the proposed algorithm, A as
O actual entity which were termed as other (entity or
relationship), O as A actual other (entity or
relationship) termed as a particular attribute. The
table 3 shows the total number of relationships
manually identified, total number of relationships
identified by the proposed algorithm, R as O actual
entity which were termed as other (attribute or
entity), O as R actual other (attribute or entity)
termed as a particular entity. Formulas for calculating
Recall and Precision values for entities, attributes and
relationships are as follows.

Journal of American Science, 2011;7(8) http://www.americanscience.org

http://www.americanscience.org editor@americanscience.org 9

asOECorrectly Identified Entities

Correctly Identified Entities
RecallEntity




 (1)

asEOCorrectly Identified Entities

Correctly Identified Entities
PrecisionEntity




 (2)

Precision defines the proportion of the classified
words (Entities/Attributes/Relationships) which are

actually correct whereas recall depicts the sensitivity,
or the proportion of the correct results obtained.

Table 1 Entity Recall & Precision

File E(manual) E(algo) E as O O as E E Recall E Precicion

1 7 6 1 0 75 85.71%
2 10 8 1 2 72.72% 66.66%
3 14 11 3 0 64.70% 78.57%
4 25 23 1 1 88.46% 88.46%
5 17 15 2 0 78.94% 88.23%

asOACorrectly Identified Attributes

Correctly Identified Attributes
Recall Attribute




asAOCorrectly Identified Attributes

Correctly Identified Attributes
Precision Attribute




Table 2 Attribute Recall & Precision

File A(manual) A(algo) A as O O as A A Recall A Precision
1 19 16 2 1 76.19% 80%
2 26 21 4 1 70% 77.77%
3 29 28 1 0 93.33% 96.55%
4 43 39 3 1 84.78% 88.63%
5 33 27 4 2 72.97% 77.14%

asORCorrectly Identified Relations

Correctly Identified Relations
RecallRelation




asROCorrectly Identified Entities

Correctly Identified Relations
PrecisionRelation




Table 3 Relation Recall & Precision

File R(manual) R(algo) R as O O as R R Recall R Precision
1 5 3 2 0 42.85% 60%
2 11 8 1 2 66.66% 61.53%
3 13 9 1 0 64.28% 69.23%
4 17 12 2 3 63.15% 60
5 26 20 5 1 64.51% 74.07%

Journal of American Science, 2011;7(8) http://www.americanscience.org

http://www.americanscience.org editor@americanscience.org 10

It has been observed form the table 1, table 2 and
table 3 that the accuracy level of entities and
attributes identification is very good but the
identification of relationships among these entities
and attributes is below the satisfactory level.
Attributes like id, courseid, deptNo and other short
names are the major reason to down the accuracy
level of attributes identification. These short names
also contribute a lot to decrease the level of
identification of relationships among the entities. It
has been analyzed that if the writer of the text file
uses full words rather than the short words than this
accuracy level can be increased up to some
satisfactory level. The accuracy for each of the
Entities, Attributes and Relationships is 79%, 82%
and 63% respectively. Average precision for all of
the entities, attributes and relationships is 81.5%,
84% and 67% respectively and average recall for all
of the entities, attributes and relations is 76%, 79.4%
and 60.2%. Accuracy for the whole system is about
75%.
Future Directions:
The point where we export our text file to the external
tool namely DeZign leaves a lot of room for future
work in this field. The nature of any such future
work can be broadly categorized as follows:

 These rules or guidelines presented are not
the extendable. New rules can be added and
the presented ones can be modified.

 I have proposed certain constraints and
asked the user to give the description to the
system that fulfills the constraints. Work
can be done to pre process the user
description before input to the system, such
that the textual input is automatically set
according to the constraints.

 The use of semantics rather than structural
analysis to help infer many such things
that have not been catered e.g.
cardinalities, weak attributes, composite
attributes etc.

 Implementation of integrity constraints.
 Automated generation of tables that are used

by Relational Database Management
Systems (RDMS) to implement and maintain
databases

Abbreviations
Following is a list of the abbreviations that have been
used throughout the documentation.

E = Entity
A-> E = Attribute of Entity
A-> R = Attribute of Relationship
R = Relationship
C = Cardinality
RR = Recursive relationship

ERD = Entity Relationship Diagram
EERD = Extended Entity Relationship
Diagram

References
1. Elmasri & Navanthe. Fundamentals of Database
Systems, Fourth Edition.
2. http://nl.ijs.si/telri/wg5rep1/node6.html
3. http://www.cs.jhu.edu/~brill/
4. Brill. E. (1994) Some Advances in Transformation
Based Part of Speech Tagging, Proceedings of the
twelfth national conference on Artificial intelligence
(vol. 1) Pages: 722 - 727 ISBN:0-262-61102-3
5. http://www-2.cs.cmu.edu/~benhdj/c_n_s.html
6. Chen, P (2002). Entity-Relationship Modelling:
Historical Events, Future Trends, and Lessons
Learned. Software Pioneers: Contributions to
Software Engineering, 2002.
7. Chen, Thalheim & Wong. Future Directions of
Conceptual Modeling. Springer Berlin / Heidelberg,
Volume 1565/1999, Pages 287-301 ISBN978-3-540-
65926-6
8. Chen, P. P. (1983), `English sentence structure and
entity-relationship diagrams', Information Science 29,
127(149).
9. P.P Chen. (1986) The entity-relationship model-A
basis for enterprise view of data. Distributed systems,
Vol. II: distributed data base systems Pages: 347 –

354 ISBN:0-89006-213-7
10. P.P Chen. (1981) A preliminary framework for
Entity-Relationship Models. Proceedings of the
Second International Conference on the Entity-
Relationship Approach to Information Modeling and
Analysis Pages: 19 - 28 ISBN:0-444-86747-3
11. www.datanamic.com/dezign/
12. Albrecht, M., Buchholz, E., D usterh oft, A. &
Thalheim, B. (1995), An informal and efficient
approach for obtaining semantic constraints using
sample data and natural language processing., in
`Semantics in Databases', pp. 1{28
13. Omar, N., Hanna, P. & Mc Kevitt, P. (2004),
Heuristics-based entity-relationship modeling
through natural language processing, in `Fifteenth
Irish Conference on Arti_cial Intelligence and
Cognitive Science (AICS-04)', pp. 302{313.
14. Syeri Hartmenn, Sebastian Lin.2007, English
Sentence Structures and EER Modeling, ACM
International Conference Proceeding Series; Vol. 247
Proceedings of the fourth Asia-Pacific conference on
Conceptual modeling - Volume 67 Ballarat, Australia
Pages: 27 – 35.

12/14/2010

