Fuzzy Ideals in CI-algebras

Samy M. Mostafa¹, Mokhtar A. Abdel Naby² and Osama R. Elgendy³

Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt dr usamaelgendy@yahoo.com

Abstract: The fuzzification of ideals in CI-algebras is considered, and several properties are investigated. Characterizations of a fuzzy ideal are provided. **Mathematical Subject Classification:** 06F35, 03G25, 08A30. [Samy M. Mostafa, Mokhtar A. Abdel Naby and Osama R. Elgendy Fuzzy Ideals in CI-algebras. Journal of American Science 2011;7(8):485-488].(ISSN: 1545-1003). http://www.americanscience.org.

Keywords: Transitive, Self distributive, fuzzy ideal, Upper set.

1. Introduction:

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras ([3, 4]). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In [1, 2], Q. P. Hu and X. Li introduced a wide class of abstract: BCH-algebras. They have shown that the class of BCI-algebras is a proper subclass of the class of BCH-algebras. In [6], B. L. Meng introduced the notion of a CI-algebra as a generation of a BEalgebra. In this paper, we consider the fuzzification of ideals in CI-algebras. We introduce the notion of fuzzy ideals in CI-algebra, and investigate related properties. We give characterizations of a fuzzy ideal in CI-algebras.

2 Preliminaries

Definition 2.1 [6]:

An algebraic system (X,*,1) of type (2, 0) is called a CI-algebra if it satisfying the following conditions:

(1)
$$x * x = 1$$
, (2.1)
(2) $1 * x = x$, (2.2)
(3) $x * (y * z) = y * (x * z)$
for all $x, y, z \in X$. (2.3)

We introduce a relation " \leq " on *X* by $x \leq y$ if and only if x * y = 1 for all $x, y \in X$. (2.4)

Definition 2.2[5]:

A CI-algebra (X,*,1) is said to be transitive if it satisfies:

$$(y*z)*((x*y)*(x*z)) = 1$$
 for all
x, y, z $\in X$. (2.5)

A CI-algebra (X,*,1) is said to be self-distributive if it satisfies:

$$x * (y * z) = (x * y) * (x * z)$$
 for all

$$x, y, z \in X . \tag{2.6}$$

Note that every self-distributive is transitive. A non-empty subset S of an CI-algebra X is said to be a subalgebra of X if $x * y \in S$ whenever $x, y \in S$.

In an CI-algebra, the following identities are true:

(4)
$$y * ((y * x) * x) = 1.$$
 (2.7)

(5)
$$(x*1)*(y*1) = (x*y)*1$$
. (2.8)

Definition 2.3:

A non empty subset I of a CI-algebra X is said to be a an ideal of X if it satisfies:

(I₁) If $x \in X$ and $a \in I$, then $x * a \in I$, i.e., $X * I \subseteq I$, (2.9) (I₂) If $x \in X$ and $a, b \in I$, then $(a * (b * x)) * x \in I$. (2.10)

Lemma 2.4 [5]:

Let X be a CI-algebra. then

- (i) Every ideal of X contains 1,
- (ii) If I is an ideal of X, then $(a * x) * x \in I$ for all $a \in I$ and $x \in X$.

3 Fuzzy ideals in CI-algebras

In what follows, let X denote a CI-algebra unless otherwise specified.

Definition 3.1:

A fuzzy set μ is called fuzzy ideal of X if it satisfies the following:

1) $\mu(x * y) \ge \mu(y)$, for all $x, y \in X$, (3.1) 2) $(\mu((x * (y * z)) * z) \ge \min\{\mu(x), \mu(y)\})$, for all $x, y, z \in X$. (3.2)

Theorem 3.2:

Let μ be a fuzzy set in X. Then μ is a fuzzy ideal of X if and only if it satisfies:

 $(\forall \alpha \in [0,1])(U(\mu; \alpha) \neq \phi \Longrightarrow U(\mu; \alpha) \text{ is an}$ ideal of X) (3.3) where $U(\mu; \alpha) := \{x \in X \mid \mu(x) \ge \alpha\}.$

Proof. Assume that μ is a fuzzy ideal of X. Let $\alpha \in [0,1]$ be such that $U(\mu; \alpha) \neq \phi$. Let $x, y \in X$ be such that $y \in U(\mu; \alpha)$. Then $\mu(y) \ge \alpha$, and so $\mu(x * y) \ge \mu(y) \ge \alpha$ by (3.1). Thus $x * y \in U(\mu; \alpha)$. Let $x \in X$ and $a, b \in U(\mu; \alpha)$. Then $\mu(a) \ge \alpha$. It follows from (3.2) that

 $\mu((a*(b*x))*x) \ge \min\{\mu(a), \mu(b)\} \ge \alpha$

so that $(a * (b * x)) * x \in U(\mu; \alpha)$. Hence $U(\mu; \alpha)$ is an ideal of X.

Conversely, suppose that μ satisfies (3.3). If $\mu(a * b) < \mu(b)$ for some $a, b \in X$, then $\mu(a * b) < \alpha_0 < \mu(b)$ by taking

$$\alpha_0 \coloneqq \frac{1}{2}(\mu(a * b) + \mu(b))$$
 . Hence

 $a * b \notin U(\mu; \alpha_0)$ and $b \in U(\mu; \alpha_0)$, which is a contradiction. Let $a, b, c \in X$ be such that

 $\mu((a * (b * c)) * c) < \min{\{\mu(a), \mu(b)\}}.$ Taking

$$\beta_0 := \frac{1}{2} (\mu((a * (b * c)) * c) + \min\{\mu(a), \mu(b)\}\$$

, we have $\beta_0 \in [0,1]$ and

$$\mu((a * (b * c)) * c) < \beta_0 < \min\{\mu(a), \mu(b)\}.$$

It follows that $a, b \in U(\mu; \beta_0)$ and $(a * (b * c)) * c \notin U(\mu; \beta_0)$. This is a contradiction, and therefore μ is a fuzzy ideal of X.

Lemma 3.3:

Every fuzzy ideal μ of X satisfies the following inequality: $\mu(1) > \mu(n)$ for all $n \in V$ (2.4)

$$\mu(1) \ge \mu(x), \text{ for all } x \in X.$$

$$Proof. \text{ Using (2.1) and (3.1), we have}$$

$$\mu(1) = \mu(x * x) \ge \mu(x), \text{ for all } x \in X$$

$$(3.4)$$

Example 3.4:

Let $X = \{1, a, b, c, d, 0\}$ be a set with the following Cayley table:

*	1	а	b	c	d	0
1	1	а	b	c	d	0
a	1	1	а	c	c	d
b	1	1	1	c	c	с
c	1	а	b	1	а	b
d	1	1	a	1	1	a
0	1	1	1	1	1	1

Then (X,*,1) is a CI-algebra.

(1) Let μ be a fuzzy set in X defined by

$$\mu(x) \coloneqq \begin{cases} 0.7 & \text{if } x \in \{1, a, b\}, \\ 0.2 & \text{if } x \in \{c, d, 0\}. \end{cases}$$

Then

$$U\{\mu;\alpha\} = \begin{cases} \phi & \text{if } \alpha \in (0.7,1], \\ \{1,a,b\} & \text{if } \alpha \in (0.2,0.7], \\ X & \text{if } \alpha \in [0,0.2]. \end{cases}$$

Note that $\{1, a, b\}$ and X are ideals of X, and so μ is a fuzzy ideal of X.

(2) Let ψ be a fuzzy set in X defined by

$$\psi(x) := \begin{cases} 0.6 & \text{if } x \in \{1, a\}, \\ 0.4 & \text{if } x \in \{b, c, d, 0\}. \end{cases}$$

Then

$$U\{\psi;\beta\} = \begin{cases} \phi & \text{if } \beta \in (0.6,1], \\ \{1,a\} & \text{if } \beta \in (0.4,0.6], \\ X & \text{if } \beta \in [0,0.4]. \end{cases}$$

Note that $\{1, a\}$ is not an ideal of X since $(a * (a * b)) * b = (a * a) * b = 1 * b = b \notin \{1, a\}$

Hence ψ is not a fuzzy ideal in X.

Proposition 3.5:

If
$$\mu$$
 is a fuzzy ideal of X, then
 $(\forall x, y \in X)(\mu((x * y) * y) \ge \mu(x))$
(3.5)
Proof. Taking $y = 1$ and $z = y$ in (3.2) and using
(2.2) and lemma 3.3, we get
 $\mu((x*y)*y) = \mu((x*(1*y))*y) \ge \min\{\mu(x), \mu(1)\} = \mu(x)$

for all $x, y \in X$.

Corollary 3.6:

Every fuzzy ideal μ of X is order preserving, that is, μ satisfies:

$$(\forall x, y \in X) \ (x \le y \implies \mu(x) \le \mu(y))$$
. (3.6)
Proof. Let $x, y \in X$ be such that $x \le y$. Then

x * y = 1, and so $\mu(y) = \mu(1 * y) = \mu((x * y) * y) \ge \mu(x)$ by (2.2) and (3.5).

Proposition 3.7:

Let μ be a fuzzy set in X which satisfies (3.4) and

$$(\forall x, y, z \in X) \ (\mu(x*z) \ge \min\{\mu(x*(y*z)), \mu(y)\})$$

$$(3.7)$$

Then μ is order preserving.

Proof. Let $x, y \in X$ be such that $x \le y$. Then x * y = 1, and so $\mu(y) = \mu(1*y) \ge \min\{(1*(x*y)), \mu(x)\} = \min\{(1*1), \mu(x)\} = \mu(x)$

by (2.1), (2.2), (3.7) and (3.4).

We give a characterization of fuzzy ideals.

Theorem 3.8:

Let X be a transitive CI-algebra. A fuzzy set μ in X is a fuzzy ideal of X if it satisfies condition (3.4) and (3.7).

Proof. Assume that μ is a fuzzy ideal of X. By lemma 3.3, μ satisfies (3.4). Since X is transitive, we have

 $(y*z)*z \le (x*(y*z))*(x*z)$ (3.8) i.e., ((y*z)*z)*((x*(y*z))*(x*z)) = 1for all $x, y, z \in X$. It follows from (2.2), (3.2) and proposition 3.5 that

$$\mu(x*z) = \mu(1*(x*z))$$

= $\mu((((y*z)*z)*((x*(y*z))*(x*z)))*(x*z))$
 $\geq \min \{ \mu((y*z)*z), \ \mu(x*(y*z)) \}$
 $\geq \min \{ \mu(x*(y*z)), \ \mu(y) \}.$

Hence μ satisfies (3.7).

Corollary 3.9:

Let X be a self-distributive CI-algebra. A fuzzy set μ in X is a fuzzy ideal of X if it satisfies condition (3.4) and (3.7).

Proof. Straightforward.

For every $a, b \in X$, let μ_a^b be a fuzzy set in X defined by

$$\mu_a^b(x) := \begin{cases} \alpha & \text{if } a * (b * x) = 1, \\ \beta & \text{otherwise} \end{cases}$$

for all $x \in X$ and α , $\beta \in [0,1]$ with $\alpha > \beta$.

The following example shows that there exist $a, b \in X$ such that μ_a^b is not a fuzzy ideal of X.

Example 3.10:

Let $X = \{1, a, b, c, d, 0\}$ be a CI-algebra as in Example 3.4. Then μ_1^b is not a fuzzy ideal of X since $\mu_1^a((a * (a * b)) * b) = \mu_1^a((a * a) * b) = \mu_1^a(1 * b)$ $= \mu_1^a(b) = \beta < \alpha = \mu_1^a(a)$ $= \min \{\mu_1^a(a), \mu_1^a(a)\}.$

Lemma 3.11:

A nonempty subset I of X is an ideal of X if it satisfies

$$l \in I , \tag{3.9}$$

$$(\forall x, z \in X) (\forall y \in I) (x * (y * z) \in I \Longrightarrow x * z \in I)$$
. (3.10)

Proof. Let *I* be an ideal of *X*. Using (2.1) and (2.9), we have $1 = a * a \in I$ for all $a \in I$. We prove the following assertion:

$$(\forall x \in I) (\forall y \in X) (x * y \in I \Longrightarrow y \in I).$$
(3.11)

Let $x \in I$ and $y \in X$ be such that $x * y \in I$. Then

 $y = 1 * y = ((x * y) * (x * y)) * y \in I$

by (2.10). Now, let $x, z \in X$ and $y \in I$ be such that $x * (y * z) \in I$. Then $y * (x * z) \in I$

by (2.3). Since $y \in I$, it follows from (3.11) that $x * z \in I$. Hence (3.10) is valid.

Let X be an CI-algebra and $a, b \in X$. Define A(a, b) by

$$A(a,b) = \{x \in X \mid a * (b * x) = 1\}.$$

We call A(a,b) an upper set of a and b. It is easy to see that $1, a, b \in A(a,b)$ for all $a, b \in X$.

Theorem 3.12:

Let μ be a fuzzy set in X. Then μ is a fuzzy ideal of X if and only if μ satisfies the following assertion:

 $(\forall a, b \in X)(\forall \alpha \in [0, 1])a, b \in U(\mu, \alpha) \Longrightarrow A(a, b) \subseteq U(\mu, \alpha).$ (3.12) **Proof.** Assume that μ is a fuzzy ideal of X and let

 $a, b \in U(\mu; \alpha)$. Then $\mu(a) \ge \alpha$ and $\mu(b) \ge \alpha$. Let $x \in A(a, b)$. Then a * (b * x) = 1. Hence $\mu(x) = \mu(1 * x) = \mu((a * (b * x)) * x) \ge \min \{\mu(a), \mu(a)\} \ge \alpha$

and so $x \in U(\mu; \alpha)$. Thus $A(a, b) \subseteq U(\mu; \alpha)$. Conversely, suppose that μ satisfies (3.12). Note that $1 \in A(a, b) \subseteq U(\mu; \alpha)$ for all $a, b \in X$. Let $x, y, z \in X$ be such that $x * (y * z) \in U(\mu; \alpha)$ and $y \in U(\mu; \alpha)$. Since (x*(y*z))*(y*(x*z))=(x*(y*z))*(x*(y*z))=1

by (2.3) and (2.1), we have $x * z \in A(x * (y * z), y) \subseteq U(\mu; \alpha)$. It follows from Lemma 3.11 that $U(\mu; \alpha)$ is an ideal of X. Hence μ is a fuzzy ideal of X by Theorem 3.2. **Corollary 3.13**:

If μ is a fuzzy ideal of X, then

 $(\forall \alpha \in [0,1]) U(\mu, \alpha) \neq \phi \Longrightarrow U(\mu, \alpha) = \bigcup_{a, b \in U(\mu, \alpha)} A(a, b)).$ (3.12)

Proof. Let $\alpha \in [0,1]$ be such that $U(\mu;\alpha) \neq \phi$. Since $1 \in U(\mu;\alpha)$, we have

7/20/2011

$$U(\mu;\alpha) \subseteq \bigcup_{a \in U(\mu;\alpha)} A(a,1) \subseteq \bigcup_{a,b \in U(\mu;\alpha)} A(a,b) \, .$$

Now, let $x \in \bigcup_{a,b \in U(\mu;\alpha)} A(a,b)$. Then their exist

$$v, \lambda \in U(\mu; \alpha)$$
 such that

 $x \in A(v,\lambda) \subseteq U(\mu;\alpha)$ by Theorem 3.12. Thus $\bigcup_{a,b \in U(\mu;\alpha)} A(a,b) \subseteq U(\mu;\alpha)$.

This completes the proof.

Corresponding author

Osama R. Elgendy, Department of mathematics, Ain Shams University, Roxy, Cairo, Egypt. dr usamaelgendy@yahoo.com

References

- Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes 11(1983), 313-320.
- [2] Q. P. Hu and X. Li, On Proper BCH-algebras, Math Japonica 30 (1985), 659-661.
- [3] K. Iseki and S. Tanaka, An introduction to theory of BCK-algebras, Math Japonica 23 (1978), 1-20.
- [4] K. Iseki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
- [5] K. H. Kim, A Note on CI-algebras, International Mathematical Forum, 6 (2011), 1-5.
- [6] B. L. Meng, CI-algebras, Sci. Math. Japo. Online, e-2009, 695-701.