Fuzzy TM-ideals of TM-algebras

Samy M. Mostafa¹, Mokhtar A. Abdel Naby² and Osama R. Elgendy³

Department of Mathematics, Faculty of Eduction, Ain Shams University, Roxy, Cairo, Egypt dr_usamaelgendy@yahoo.com

Abstract: The fuzzification of TM- ideals in TM-algebras is considered, and several properties are investigated. Characterizations of a fuzzy ideal are provided.

Mathematical Subject Classification: 06F35, 03G25, 08A30

[Samy M. Mostafa, Mokhtar A. Abdel Naby and Osama R. Elgendy **Fuzzy TM-ideals of TM-algebras**. Journal of American Science 2011; 7(9): 17-21].(ISSN: 1545-1003). <u>http://www.americanscience.org</u>.

Keywords: TM-algebra, TM-ideal, fuzzy TM-ideal, homomorphism of TM-algebra.

1. Introduction:

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras ([3, 4]). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In [1, 2], Q. P. Hu and X. Li introduced a wide class of abstract: BCH-algebras. They have shown that the class of BCI-algebras is a proper subclass of the class of BCH-algebras. In [6], J. Neggers, S. S. Ahn and H. S. Kim introduced Q-algebras which is a generalization of BCK / BCI-algebras and obtained several results. In [5], K. Megalai and A. Tamilarasi introduced a class of abstract algebras: TM-algebras which is a generalization of Q / BCK / BCI / BCHalgebras. In this paper, we consider the fuzzification of TM-ideals in TM-algebras. We introduce the notion of fuzzy TM-ideals in CI-algebras, and investigate related properties. We investigate how to deal with the homomorphic and inverse image of fuzzy TM-ideals in TM-algebras.

2 Preliminaries

In this section, certain definitions, Known results and examples that will be used in the sequel are described.

Definition 2.1:

A BCI-algebra is an algebra (X,*,0) of type (2,0) satisfying the following conditions:

i)
$$(x * y) * (x * z) \le z * y$$

ii)
$$x * (x * y) \le y$$

iii) $x \le x$

iv) $x \le y$ and $y \le x$ imply x = y

v) $x \le 0$ implies x = 0, where $x \le y$ is defined

by x * y = 0 for all $x, y, z \in X$.

Definition 2.2:

A BCK-algebra is an algebra (X,*,0) of type (2,0) satisfying the following conditions:

- i) $(x * y) * (x * z) \le z * y$
- ii) $x * (x * y) \le y$

iii) $x \le x$

- iv) $x \le y$ and $y \le x$ imply x = y
- v) $0 \le x$ implies x = 0, where $x \le y$ is defined by x * y = 0 for all $x, y, z \in X$.

Definition 2.3:

A BCH-algebra is an algebra (X,*,0) of type (2,0) satisfying the following conditions: i) x * x = 0ii) (x * y) * z = (x * z) * yiii) x * y = 0 and y * x = 0 imply x = y for all $x, y, z \in X$.

Definition 2.4:

A Q-algebra is an algebra (X,*,0) of type (2,0) satisfying the following condition:

i) x * x = 0

ii) x * 0 = x

iii) (x * y) * z = (x * z) * y, for all $x, y, z \in X$.

Every BCK-algebra is a BCI-algebra but not conversely.

Every BCI-algebra is a BCH-algebra but not conversely.

Every BCH-algebra is a Q-algebra but not conversely.

Every Q-algebra satisfying the conditions (x * y) * (x * z) = z * y and x * y = 0 and y * x = 0 imply x = y is a BCI-algebra.

Definition 2.5 (TM-algebra):

A TM-algebra is an algebra (X,*,0) is a non empty subset X with a constant "0" and a binary operation "*" satisfying the following axioms: i) x*0 = x

ii)
$$(x * y) * (x * z) = z * y$$
, for all $x, y, z \in X$

In X we can define a binary operation \leq by $x \leq y$ if and only if x * y = 0.

In any TM-algebra (X,*,0), the following holds good for all $x, y, z \in X$

a) x * x = 0, b) (x * y) * x = 0 * y, c) x * (x * y) = y, d) $(x * z) * (y * z) \le x * y$, e) (x * y) * z = (x * z) * y, f) $x * 0 = 0 \Rightarrow x = 0$, h) $x * z \le y * z$ and $z * y \le z * x$, i) x * (x * (x * y)) = x * y, j) 0 * (x * y) = y * x = (0 * x) * (0 * y), k) (x * (x * y)) * y = 0, l) x * y = 0 and y * x = 0 imply x = y.

A QS-algebra is obviously a TM-algebra, but a TMalgebra is said to be QS-algebra if it satisfies the additional relations (x * y) * z = (x * z) * yand y * z = z * y for all $x, y, z \in X$.

Example 2.6:

Let $X = \{0,1,2,3\}$ be a set with a binary operation * defined by the following table:

*	0	1	2	3
0	0	0	0	0
1	1	0	0	0
2	2	0	0	0
3	3	0	0	0

Then (X,*,0) is a TM-algebra.

Definition 2.7:

A non empty subset I of a BCK-algebra X is said to be a BCK-ideal of X if it satisfies:

 $(I_1) \quad 0 \in I,$

(I₂) $x * y \in I$ and $y \in I$ implies $x \in I$ for all $x, y \in X$.

Definition 2.8(TM-ideal):

Let (X,*,0) be a TM-algebra. A non-empty subset *I* of *X* is called TM- ideal of *X* if it satisfies the following conditions:

(I₁) $0 \in I$, (T₂) $x * z \in I$ and $z * y \in I$ imply $x * y \in I$, for all $x, y, z \in X$.

Definition 2.9:

A non empty subset S of a TM-algebra X is said to be TM-subalgebra of X, if $x, y \in S$, implies $x * y \in S$.

Proposition 2.10:

Let (X,*,0) be a TM-algebra and *I* is a TM-ideal of *X*, then *I* is a BCK-ideal of *X*.

Proof. I_1 is satisfied.

Put in (T₂) y = 0, we have $x * z \in I$ and $z * 0 = z \in I$ imply $x * 0 = x \in I$, for all x, y and $z \in X$ i.e. *I* is a BCK-ideal of *X*.

Example 2.11:

Let $X = \{0,1,2,3\}$ as in example 2.6, and $A = \{0,1,2\}$ is a TM-ideal of TM-algebra X.

3 Homomorphism of TM-algebras:

Let (X,*,0) and (Y,*,0) be a TM-algebras. A mapping $f: X \to Y$ is called a homomorphism if f(x*y) = f(x)*f(y), for all $x, y \in X$. A homomorphism f is called monomorphism (resp., epimorphism) if it is injective (resp., surjective). A bijective homomorphism is called an isomorphism. Two TM-algebras X and Y are said to be isomorphic, written by $X \cong Y$, if there exist isomorphism $f: X \to Y$. For any homomorphism $f: X \to Y$, the set $\{x \in X \mid f(x) = 0\}$ is called the kernel of f, denoted by ker(f) and the set $\{f(x) \mid x \in X\}$ is called the image of f, denoted by Im(f). We denoted by Hom(X, Y) the set of all homomorphisms of TM-algebras from X to Y.

Proposition 3.1:

Let (X,*,0) and (Y,*,0) be a TM-algebras. A mapping $f: X \to Y$ is homomorphism of TMalgebras, then the ker(f) is TM-ideal.

Proof. Let $x * z \in \ker(f)$ and $z * y \in \ker(f)$ then

$$f(x * z) = 0'$$
 and $f(z * y) = 0'$.
Since
 $0' = f(z * y) = f((x * y) * (x * z)) = f(x * y) *' f(x * z)$

0' = f(x * y) *' 0' by using (definition 2.5), 0' = f(x * y), hence $x * y \in \ker f$.

4 Fuzzy TM-ideals of TM-algebras: Definition 4.1:

Let X be a set. A fuzzy set μ in X is a function $\mu: X \to [0,1]$.

Definition 4.2[6]:

Let X be a BCK-algebra. a fuzzy set μ in X is called a fuzzy BCK-ideal of X if it satisfies:

(FI₁) $\mu(0) \ge \mu(x)$,

(FI₂) $\mu(x) \ge \min\{\mu(x * y), \mu(y)\}, \text{ for all } x, y \text{ and } z \in X.$

Definition 4.3:

Let X be a TM-algebra. A fuzzy set μ in X is called a fuzzy TM-ideal of X if it satisfies:

(FI₁) $\mu(0) \ge \mu(x)$,

(FT) $\mu(x * y) \ge \min{\{\mu(x * z), \mu(z * y)\}}$, for all $x, y, z \in X$.

Example 4.4:

Let $X = \{0,1,2,3,4\}$ as in example 2.6, and let $t_0, t_1, t_2 \in [0,1]$ be such that $t_0 > t_1 > t_2$. Define a mapping $\mu: X \rightarrow [0,1]$ by $\mu(0) = t_0$, $\mu(1) = t_1$, $\mu(2) = \mu(3) = t_2$. Routine calculations give that μ is a fuzzy TM-ideal

Routine calculations give that μ is a fuzzy IM-idea of X.

Theorem 4.5:

Any fuzzy TM-ideal of TM-algebra X is fuzzy BCK-ideal of X. **Proof.** (FI₁) is satisfied. Put y = 0 in (FT), we have $\mu(x * 0) = \mu(x) \ge \min{\{\mu(x * z), \mu(z * 0)\}}$ $= \min{\{\mu(x * z), \mu(z)\}},$

hence we obtain (FI₂). Lemma 4.6:

If μ is a fuzzy TM-ideal of TM-algebra X, then $x \le z$ implies $\mu(x) \ge \mu(z)$. **Proof.** If $x \le z$ then x * z = 0, this together with x * 0 = x and $\mu(0) \ge \mu(x)$, gives $\mu(x * 0) = \mu(x) \ge \min\{\mu(x * z), \mu(z * 0)\}$

$$\geq \min\{\mu(0), \mu(z)\}$$
$$\geq \mu(z).$$

Theorem 4.7:

The intersection of any set of fuzzy TM-ideal in TM-algebra *X* is also a fuzzy TM-ideal.

Proof. Let $\{\mu_i\}$ be a family of fuzzy TM-ideals of TM-algebras *X*.

Then for any $x, y, z \in X$, $(\bigcap \mu_i)(0) = \inf(\mu_i(0)) \ge \inf(\mu_i(x)) = (\bigcap \mu_i)(x)$

, and

 $(\bigcap \mu_i)(x * y) = \inf(\mu_i(x * y))$

$$\geq \inf(\min\{\mu_i(x*z), \mu_i(z*y)\})$$

 $= \min\{\inf(\mu_i(x * z)), \inf(\mu_i(z * y))\}$

 $= \min\{(\bigcap \mu_i)(x * z), (\bigcap \mu_i)(z * y)\}.$

This completes the proof.

Theorem 4.8:

Let A be a non-empty subset of a TM-algebra X and μ be a fuzzy subset of X such that μ is into {0,1}, so that μ is the characteristic function of A. Then μ is a fuzzy TM-ideal of X if and only if A is a TM-ideal of X.

Proof. Assume that μ is a fuzzy TM-ideal of X. Since $\mu(0) \ge \mu(x)$ for all $x \in X$, clearly we have $\mu(0) = 1$, and so $0 \in A$. Let $x * z \in A$ and $z * y \in A$. Since μ is a fuzzy TM-ideal of X, it follows that

 $\mu(x * y) \ge \min\{\mu(x * z), \mu(z * y)\} = 1$, and that $\mu(x * y) = 1$.

This means that $\mu(x * y) \in A$, i.e., A is TM-ideal of X.

Conversely suppose A is a TM-ideal of X. Since $0 \in A$, $\mu(0) = 1 \ge \mu(x)$ for all $x \in X$. Let $x, y, z \in X$. If $z * y \notin A$, then $\mu(z * y) = 0$, and so $\mu(x * y) \ge 0 = \min\{\mu(x * z), \mu(z * y)\}$, if $x * y \notin A$, and $z * y \in A$, then $x * z \notin A$ (A is TM-ideal).

Thus $\mu(x * y) = 0 = \min{\{\mu(x * z), \mu(z * y)\}},$ therefore μ is a fuzzy TM-ideal of X.

Definition 4.9:

Let f be a mapping from the set X to a set Y. If μ is a fuzzy subset of X, then the fuzzy subset B of Y defined by

$$f(\mu)(y) = B(y) = \begin{cases} \sup_{x \in f^{-1}(y)} \mu(x), \text{ if } f^{-1}(y) = \{x \in X, f(x) = y\} \neq \phi \\ 0 & \text{otherwise} \end{cases}$$

Is called the image of μ under *f*.

Similarly, if *B* is a fuzzy subset of *Y*, then the fuzzy subset defined by $\mu(x) = B(f(x))$ for all $x \in X$, is said to be the preimage of *B* under *f*.

Theorem 4.10:

An into homomorphic preimage of a fuzzy TM-ideal is also fuzzy TM-ideal. **Proof.** Let $f: X \to X'$ be an into homomorphism of TM-algebras, B a fuzzy TM-ideal of X' and μ the preimage of B under f. Then $B(f(x)) = \mu(x)$, for all $x \in X$ (FI_1) hold. $\mu(0) = B(f(0)) \ge B(f(x)) = \mu(x)$ since Let $x, y, z \in X$, then $\mu(x * y) = B(f(x * y)) = B(f(x) *' f(y))$ $\geq \min\{B(f(x) * f(z)), B(f(z) * f(v))\}\}$ $= \min \{B(f(x * z)), B(f(z * y))\}$ $= \min\{\mu(x*z), \mu(z*y)\}.$

Hence $\mu(x) = B(f(x)) = (B \circ f)(x)$ is a fuzzy TM-ideal of X. The proof is completed.

Theorem 4.11:

Let $f: X \to Y$ be a homomorphism between TM-algebras X and Y.

For every fuzzy TM-ideal μ in X, $f(\mu)$ is a fuzzy TM-ideal of Y.

definition $B(y') = f(\mu)(y') \coloneqq \sup_{x \in f^{-1}(y')} \mu(x)$ for

all $y' \in Y$ and $\sup \phi := 0$

We have to prove that

 $B(x' * y') \ge \min\{B(x' * z'), B(z' * y')\},$ for all $x', y', z' \in Y.$

(i) Let $f: X \to Y$ be an onto homomorphism of TM-algebras. Let μ be a fuzzy TM-ideal of X with sup property and B the image of μ under f. Since μ is a fuzzy TM-ideal of X, we have $\mu(0) \ge \mu(x)$, for all $x \in X$. Note that $0 \in f^{-1}(0')$, where 0 and 0' are the zeroes elements of X and Y respectively.

Thus, $B(0') = \sup \mu(t) = \mu(0) \ge \mu(x)$, for all $t \in f^{-1}(0')$ $x \in X$ that which implies $B(0') = \sup \mu(t) = B(x')$, for any $x' \in Y$. $t \in f^{-1}(x')$ $x', v', z' \in Y$ For anv let $x_0 \in f^{-1}(x'), y_0 \in f^{-1}(y'), z_0 \in f^{-1}(z')$ be such that $\mu(x_0) = \sup \mu(t), \ \mu(y_0) = \sup \mu(t)$ $t \in f^{-1}(x')$ and $\mu(z_0) = \sup \mu(t)$ $t \in f^{-1}(z')$ and $\mu(x_0 * z_0) = B\{f(x_0 * z_0)\} = B(x' * z') = \sup_{(x_0 * z_0) \in f^{-1}(x' * z')} \{\mu(x_0 * z_0)\}$ = sup $\mu(t)$. $t \in f^{-1}(x' * z')$ Then $B(x' * y') = \sup_{t \in f^{-1}(x' * y')} \mu(t) = \mu(x_0 * y_0)$ $\geq \min\{\mu(x_0 * z_0), \mu(z_0 * y_0)\} =$ $\min\left\{\sup_{t\in f^{-1}(x'*z')}\mu(t),\qquad \sup_{t\in f^{-1}(z'*y')}\mu(t)\right\}$ $\min\{B(x' * z'), B(z' * v')\}.$ Hence *B* is a fuzzy TM-ideal of *Y*. (ii) If f is not onto. For every $x' \in Y$ we define $X_{x'} := f^{-1}(x')$. Since f is a homomorphism have $(X_{r'} * X_{z'}) \subset X_{(r'*z')}$ for we all $x', y', z' \in Y$ (v). Let $x', y', z' \in Y$ be an arbitrary given. If $(x' * z') \notin \text{Im}(f) = f(X)$, then by definition B(x' * z') = 0. But if $(x' * z') \notin f(X)$ i.e. $X_{(\mathbf{v}'*\mathbf{z}')} = \phi$, then by (v) at least one of $x', y' \text{ and } z' \notin f(X)$ and hence $B(x' * v') \ge 0 = \min\{B(x' * z'), B(z' * v')\}.$

Corresponding author

Osama R. Elgendy, Department of mathematics, Ain Shams University, Roxy, Cairo, Egypt. dr usamaelgendy@yahoo.com

References

- Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes 11(1983), 313-320.
- [2] Q. P. Hu and X. Li, On Proper BCH-algebras, Math Japonica 30 (1985), 659-661.

By

- [3] K. Iseki and S. Tanaka, An introduction to theory of BCK-algebras, Math Japonica 23 (1978), 1-20.
- [4] K. Iseki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
- [5] K. Megalai and A. Tamilarasi, Classification of TM-algebra, IJCA Special Issue on "Computer"

7/1/2011

Aided Soft Computing Techniques for Imaging and Biomedical

Applications" CASCT. 2010.

[6] J. Neggers, S. S. Ahn and H. S. Kim, On Qalgebras, Int. J. Math. Math. Sci. 27(12) (2001), 749-757.