
Journal of American Science, 2011;7(9) http://www.americanscience.org

http://www.americanscience.org editor@americanscience.org 144

Management Software for Stratospheric Airship

Afshin shaabany 1, Fatemeh Jamshidi 2

1, 2 Science and Research Branch, Islamic Azad University, Fars, Iran
afshinshy@yahoo.com

Abstract: In this paper a management software for avionics system of stratosphere airship is introduced that is
sufficiently accurate and reliable. This paper introduces the object-oriented design of the management software
based on the Unified Modeling Language (UML). First, the UML notation used in this paper and modeling steps is
introduced. Then, the avionics system of stratosphere airship is depicted. Moreover, requirement analysis is
proposed. Finally, we present the framework of management software and the detailed design of the class model.
[Afshin shaabany, Fatemeh jamshidi. Management Software for Stratospheric Airship. Journal of American
Science 2011;7(9):144-148]. (ISSN: 1545-1003). http://www.americanscience.org.

Keywords: Management Software; Software Design; Stratosphere Airship

1. Introduction

Presently, there is a strong interest in
developing unmanned stratosphere airship for its
unique advantages in military application and
scientific exploration. The avionics system is very
important to the unmanned airship. So the
management software for the avionics system must
be designed sufficiently accurate and reliable. The
management functions are realized by embedded
software based on the VxWorks real-time operating
system. The Object-Oriented Design Methods has
been used in the design process of many kinds of
software, including embedded software (Selic, 1994).
The software designed by the OO method is excellent
in maintainability, expansibility, flexibility and
reusability of codes. Therefore, we use the OO
method to model and design the management
software for stratosphere airship.

In the design process of software, it is
essential to do the system modeling, which is helpful
to system visualization, especially for complicated
system like the management software for stratosphere
airship. UML is a common visualization modeling
language and used to describe and visualize the OO
system. So the management software is developed
based on the UML (Booch, 1999 and Guoshun, 2010
and Bikander, 2000 and Kefu, 2006).

2. UML Notation and Modeling Steps

UML supplies a standard way to write an OO
system’s blueprints. Many kinds of diagrams are
provided by the UML to observe the different aspects
of the system individually. The diagrams used in this
paper are introduced as follows (Hassan, 2004 and
Bruce, 1998 and Ganssle, 1999 and Selic, 2000 and
Atkinson, 1997 and Jong, 2002).
A. Use Case Diagram

The use case diagram is a way of associating
the ‘actors’ and ‘use-cases’ in a system via the use of

relationships. Usually it is used to specify the
functional requirements of the system and lay the
foundation of the development process of the
software system.
B. Class Diagram

Class diagram is the most common diagram
in the OO modeling. It shows the static structure of
the system and describes a set of classes, interfaces
and their relationships to other classes, such as
inheritance or generalization, and associations.
C. Collaboration Diagram

Collaboration diagram defines a specific
way to use objects in a system by showing the
possible interactions between them.

The OO Design Method has three steps in
modeling. The first step is to analyze the
requirements of system, then set up the static model
for system. The last step is to describe the behavior of
the system. All the models in the first and second step
are static, including the use case diagrams and class
diagrams.

3. Introduction of Avionics System

There are many subsystems in the
stratosphere airship, such as avionics system. This
subsystem is equipped in the gondola fixed below the
envelope of stratosphere airship. Considering the
complicated interaction between devices, data bus
technology is adopted here. CAN bus is applied to
fulfill data exchanges between devices equipped
outside of the gondola, while 1553B bus is utilized to
transmit navigation, telecontrol and telemetry data in
the gondola. The onboard computers including flight
control computer and vehicle management computer
are the core nodes of all the buses. These computers
can communicate with each device of the buses.

4. Requirement Analysis

Journal of American Science, 2011;7(9) http://www.americanscience.org

http://www.americanscience.org editor@americanscience.org 145

The functional requirements of the system
are specified in terms of use cases (Figure 1). For the
management software, use cases are divided into
three use case packets: (1) data management, (2)
system detection, (3) error management.
A. Data Management

The stratosphere airship must deal with the
system data in real time, so the functions of data
receiving and sending are the base of the software.
The use case packet includes telecontrol and
telemetry data management, status data management,
and the operation of data sending and receiving.
B. System Detection

The stratosphere airship needs to operate
automatically for a very long time, so it is necessary
for the management software to detect system status.
This use case packet includes two aspects: self-
detection and device detection.
C. Error Management

When system status is abnormal, the
management software must diagnose and expel the
breakdown. This use case packet includes computer
error management and peripheral equipment error
management.

System

SendAndReceiveDataManage
<<useCasePackage>>

SystemDetect
<<useCasePackage>>

Device

ReceiveData

DataManage

SendData

SendCommand

RemoteDataManage

StatusDataManage

SendRemoteData

SelfDetect

DeviceDetect

StatsuDetect

ErrorManage
<<useCasePackage>>

ErrorManage ComputerError

DeviceError

Computer

Figure 1. Use case diagram of management software.

5. Framework Design

Based on the system use case diagram, the
framework design is the foundation of development
process. Good design of the framework can improve
the maintainability and expansibility of the software,
reduce the unnecessary work. In the framework
design of management software, many kinds of class
models (Figure 2) are designed to meet the
requirements.

Three kinds of classes are designed: (1)
abstract data class, (2) device interface class, (3) task
class. The task class includes data exchange class,
data manipulation class, timer class, period task class,
system detection class and error management class.
The design of these classes is illustrated as follows:
A. Abstract Data Class

The global variables of the software are
packaged in the abstract data class, including Status

Data class, SJZYC Frame class, SJZYK Frame class
and SJZCX Frame class. These classes are used to
store the status data, telecontrol and telemetry data.
All task and device interface classes need to read and
update the global variables to implement homologous
functions.
B. Device Interface Class

According to different devices, the device
interface classes are designed, including Device_
CAN_ Interface class, Device_ 1553B_ Interface
class, Device_ ALT1_ Interface class and Device_
ALT2_ Interface class. These classes are used to
initialize the devices, send and receive relevant data.
C. Task Class

Data exchange class: The data exchange
class is designed to send and receive the status data,
tele control and telemetry data, including Task Read
Data_ High CAN1 class, Task Read Data_ High
CAN2 class and Task Send Data class. After
conversion, data exchange class sends and receives
the data by calling the device interface class, for
example the Device_ CAN_ Interface class.

Data manipulation class: The data
manipulation class is used to realize the function of
data processing. The Task Data Manage CAN class
and Task Data Manage Msg class deal with the data
received from the CAN bus and 1553B bus
separately.

Timer class: Task Period_ Time class
realizes the function of timing periodically sends
messages to the data exchange class and give
semaphores to active the period tasks.

Period task class: The Task Period class
belongs to the period task class. This class takes the
semaphores from the Task Period_ Time class and
carries out the period tasks.

System detection class: Task BIT class
belongs to the system detection class, is designed to
implement the system detection function. The system
detection includes self-detection and device
detection. When the system status is abnormal, the
Task BIT class sends messages to error management
class to deal with it.

Error management class: The Task Erro
Manager class belongs to the error management class.
After receiving the message queens of reporting
errors from other classes, it is called to treat the errors
of computers or devices.

Journal of American Science, 2011;7(9) http://www.americanscience.org

http://www.americanscience.org editor@americanscience.org 146

Device_CAN_interface
<<device interface>>

DeviceInterface
<<device interface>>

Data
<<data>>

StatusData
<<data>>

SJZYCFrame
<<data>>

TaskErroManager
<<task>>

TaskBIT
<<task>>

TaskPeriod_Time
<<timer>>

SJZYKFrame
<<data>>

SJZCXFrame
<<data>>

TaskReadData_HighCAN1
<<task>>

TaskReadData_HighCAN2
<<task>>

TaskDataManageMsg
<<task>>

TaskDataManageCAN
<<task>>

1

1

Device_ALT1_Interface
<<device interface>>

Device_ALT2_Interface
<<device interface>>

TaskSendData
<<task>>

1

1..*

1 1..*

Device_1553B_Interface
<<device interface>>

1

1..*

TaskPeriod
<<task>>

active

11

1

1..*

active

1 1

1

1..*

11..*

1

1..*

1 1..*

1

1..*

Figure 2. Class diagram of management software.

6. Detail Design of Class Model

After finishing the design of framework, the
classes are designed to meet the requirements of the
software. The designing idea of the abstract data
class, device interface class and task class is detailed
in this section.
A. Abstract Data Class

On account of large amount, abundant
information, the status data, tele control and
telemetry data are hard to deal with. In the software
system, the abstract data class is used to store data
and provide the operations, reading or writing. The
abstract data class packages the data structure, hides
the detail, provides the unified interfaces and makes
the software easy to be maintained.

Take the SJZYC Frame class for an example.
The telemetry data is packaged in this class, which
includes 22 telemetry data frames. The structure of
the telemetry data frame is not steady, and may be
changed frequently. For this reason, the key of the
design is to locate the data and improve the
maintainability.

The attribute includes 22 data classes and 22
selection functions. The 22 data classes are numbered
in sequence from 1 to 22, and the number is named
Frame Number (FN). The data in the data class is
also numbered in the same way with the number
named Data Number (DN). Each data class has a
selection function with the DN as the parameter. The
selection function locates the data through the DN
and return the address of the data to other functions.

SJZYCFrame
<<data abstraction>>

-RemoteFrame1
-RemoteFrame22
-SelectFunction-frame1(DN, DN)
-SelectFunction-frame22(DN, DN)

+read(FN, DN, DN)
+update(data, FN, DN, DN)
+ReadAddress(FN, DN, DN)
+length(FN, DN, DN)
+bitoperation(data, FN, DN, DN)

Figure 3 Class diagram of SJZYC Frame class.

The operation functions include reading
function, updating function, reading address function,
length function and bitwise operation function. These
functions are external interfaces of the class.

Take the reading function for example. The
FN and DN are the parameters of this function. When
the reading function is used, it calls the selection
function by the switch statement and the FN. The
selection function called by the reading function
locates the data by DN and return the pointer of the
data. Finally the reading function reads the data to
accomplish the operation. Others operation functions
use the same way to locate the data. This selection
structure locates the data by selection function and
number, and realizes the encapsulation of information.
B. Device Interface Class

In the software design, device interface class
is usually used to implement the functions related to
external devices. It hides the details of device
information, so the software system cannot be
affected by replacing devices. The operations of the
device interface class include initializing, reading or
writing.

Take the Device_ALT1_Interface class for
instance. This class is related to the Serial Port
device. The operation functions include the alt_
COM_ ini function and alt_ get data function. The
alt_ COM_ ini function is designed to initialize the
device and the interior variable. The alt_ get data
function is used to read data from the serial ports.

Device_ALT1_Interface
<<device interface>>

+Attribute1

+alt_COM_ini()
+alt_getdata()

Figure 4. Class diagram of Device_ ALT1_ Interface
class.

Journal of American Science, 2011;7(9) http://www.americanscience.org

http://www.americanscience.org editor@americanscience.org 147

C. Task Class
The task class is designed to meet the task

requirements of software system. Take the
TaskReadData_HighCAN1 class for example. It is a
data exchange class and calls the Device_ CAN_
Interface class to receive relevant data. The operation
function of this class receives and stores the data in
the temporary format, then converts the data from
temporary storage format to standard storage format.
After accomplishing the conversion, according to the
type of the data, the homologous message is sent to
data manipulation class. Then data manipulation class
implements the operation on the data. We evaluated
this increase on the 48 UML models and found that
five degrees of neighbors involve between several
hundred and several thousand model elements
depending on the model. It was not practical for a
designer to consider these many model elements to
understand the impact of a single design change.
These models were very diverse in domain and size.
Figure 5 depicts the sizes of the models which cover
the entire spectrum from small to very large models
of up to 36,000 model elements.

TaskReadData_HighCAN1
<<task>>

Device_CAN_interface
<<device interface>>

TaskDataManage
<<task>>

 : Device

1

2

3 : message

Figure 5. Collaboration diagram of the Task Read
Data_ High CAN1 class.

Figure 6. Exponential increase of number of model
elements

Figure 7. Sizes of the 48 UML M

7. Conclusion
Stratosphere airship is a new kind of flying

vehicle which has attracted worldwide developing
interests for its great potential. Because it needs to
operate automatically for a very long time, the UML
is a standard visualization modeling language and its
abundant diagrams are very helpful to describe and
model the Object-Oriented system. This paper
introduces the Object-Oriented design of the
management software for the avionics system of
stratosphere airship based on the UML. After
analyzing the requirements of system, the framework
of the software and detail class models are depicted.
Although the detailed design of software is finished,
there is still a lot of work to do. The future work is to
optimize the design of the task class, improve the
quality and reusability of codes, and accomplish the
system testing.

Acknowledgements:

Authors are grateful to Science and
Research Branch ,Islamic Azad University,Fars, Iran,
for financial support to carry out this work.

Corresponding Author:
Afshin Shaabany
Science and Research Branch
Islamic Azad University
Fars
, Iran.
E-mail: afshinshy@yahoo.com

References
[1] Selic B, Gullekson G, Ward P. Real-Time

Object-Oriented Modeling. John Wiley and
Sons. New York. 1994.

[2] Booch G, Rumbaugh J, Jacobson I. The Unified
Modeling Language User Guide. Addison-
Wesley. 1999; 7-79.

[3] Guoshun S. Design of the UML modeling
technology in software project. Software Guide.
2010; 9(8).

[4] Bikander M. Graphical Programing Using UML
and SDL. IEEE Computer. 2000; 30-35.

Journal of American Science, 2011;7(9) http://www.americanscience.org

http://www.americanscience.org editor@americanscience.org 148

[5] Kefu G. The research of application of UML.,
Journal of Wuhan Bioengineering Institute.
2006; 2(3): 2006.

[6] Hassan G. Designing Concurrent, Distributed ,
and Real-Time Applications With UML. 2004;
300-326.

[7] Bruce P.D. Real-time UML-Developing
Efficient Objects for Embedded Systems.
Addison Wesley. 1998.

[8] Ganssle J. Navigating through new development
environments. Embedded Systems Programming.
1999; 22-30.

[9] Selic B. A generic framework for modeling
resources with UML. IEEE Computer. 2000; 64-
69.

[10] Atkinson. Meta-Modeling for Distributed Object
Environments. First International Workshop on
Enterprise Distributed Object Computing. 1997;
90-101.

[11] Jong G. D. A UML-based Design Methodology
for Real-Time and Embedded Systems.
Proceedings of the Design Automation and Test
in Europe (DATE). 2002; 776-778.

3/5/2011

