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Abstract: Access to the large web content in wide computer networks such as the Internet engages many hosts, 
routers/switches and faster links and they may challenge the internet backbone to operate at its capacity and this may 
result in congestion and raises concerns over various Quality of Service (QoS) issues like high delays, high packet 
loss and low throughput of the system for various Internet applications. Thus, there is a need to develop effective 
congestion control mechanisms to meet Quality of Service (QoS). In this paper, our emphasis is on the Active 
Queue Management (AQM) mechanisms, a new analytical approach based on 4-state Markov Modulated Poisson 
Process (MMPP) is introduced.  
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1. Introduction 

Applications sensitive to quality of Service 
such as VOIP, IPTV and plays can come on an IP 
such as B-ISDN. These applications need distinctive 
quality of service and impose variety to the network. 
The application for bandwidth of network for an 
individual video service causes occupation of a major 
part of bandwidth in the network. A TV channel with 
a standard quality needs 2Mb/s bandwidth while a 
TV channel with higher quality allocates 6Mb/s to 
10Mb/s of the network bandwidth. When application 
of multi-broadcast on the substructure improves the 
network, the increasing growth of number of 
channels and usage of TV networks keeps pressure 
on the substructure of the network capacity. [1] 

Such requirements may cause high delays in 
providing data and lowering quality of service. 
Furthermore, applications and protocols used in 
networks including TCP, mostly, cause packet loss 
and low throughput as well as high delay of end to 
end in the network. The following table shows some 
of the requirements of quality of network for early 
applications and plays.  

 
Table 1. quality requirements of network for various 
applications 

APPLICATION 
MAXIMUM 
ONEWAY 

DELAY 

PACKET LOS IN 
THE NETWORK 

IPTV <100 msec <0.01% 
Video-n-
Demand 

<50 msec <0.001% 

VoIP <150 msec <0.1% 
Video 

Conferencing 
<150 msec <0.05% 

Gaming <50 msec <0.1% 

Modeling of traffic resources and detecting 
parameters of quality of service provides critical 
steps for better understanding and solving problems 
of quality of service in switching packets of today 
and future. Therefore, to form a successful design for 
new networks, the most important outcome is the 
selection of proper traffic modeling for traffic 
resource to reflect traffic manner in the system.  
 
2. Proposed Model 

The Markov Modulated Poisson Process 
(MMPP) has been extensively used to model B-ISDN 
sources such as voice and video, as well as 
characterizing the superposed traffic. It captures the 
burstiness and correlation properties of the network 
traffic. In addition to characterizing the desired 
properties of B-ISDN applications, these models are 
analytically tractable and produce results that are 
acceptable approximations to reality. [2] 

An MMPP is a doubly stochastic Poisson 
Process. The arrivals occur in a Poisson manner with 
a rate that varies according to a k-state Markov chain, 
which is independent of the arrival process. 
Accordingly, an MMPP is characterized by the 
transition rate matrix of its underlying Markov chain 
and arrival rates.  

Let (i) be the state of the Markov chain 

( ijQ ) be the transition rate from 

State (i) to state (j), ( i j ) and i the arrival 

rate when the Markov chain is in state (i), ( 0i  ), 

and (  2 , , ki g g  . Define: 





k

ji;1j
iki   

In matrix form, we have: 
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Assuming that Q does not depend on time t, 
the steady-state probability vector, (P), of Q is the 
solution of the following system of equations: 





k

1i
j 1;0Q  

In our model we use a pair of thresholds for 
each traffic class. Fig. 1 shows the positions of 
thresholds for two traffic classes, in a definite 
capacity buffer where traffic arrives using a 4-state 
Markov Modulated Poisson Process (MMPP) 
distribution. [1,2] 

 
Figure. 1. Single buffer with two thresholds per 
traffic class. 

 
We use a conventional matrices approach to 

solve four-dimensional CT-MMPP Markov chains. In 
order to do so we create a Z generator matrix based 
on a system state transition diagram comprising the 
input parameters (¸ij): arrival rate, (N): service rate, 
(p = R): Rate of transition from one state to the next 
state, and (q = R’): Rate of transition from second 
state to the first state. 

 
Figure 2 shows the positions of thresholds 

and regions for the linear reduction in arrival rate. 
 

Figure 2: Positions of thresholds and regions for the 
linear reduction in arrival rate. 

We assume that 21 11 22 12N -N =N -N , such that 

12 11 22 21N - N =N -N  and 21 12N  > N . 

The arrival rate (¸ij) are all independent of 
the state before 1iN  or after 2iN  and depend on the 

state between 1iN  and 2iN , where i = 1,2,3,4 , and 

0, 1, 2,  ...,  j N , N being full queue capacity. [3] 

Each arrival rate is different with each state 
and will be linearly reduced by dropping packets in a 

region between thresholds 11 21N , N , and thresholds 

12 22N , N , for first and second traffic class 

respectively. These arrival rates can be obtained as: 
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In order to perform the steady state analysis 
of the system, we use the algorithm to solve the joint 
steady state probability vector P = Pj (0· j·N) in the 
four-dimensional Markov chain, which satisfies the 
following equations: 

PZ = 0 and Pe = 1 
Where Z is the generator matrix based on 

the system state transition diagram. We have grouped 
states according to the total number of customers in 
the queue (where: j = states, and i = number of job 
class) and then we order states epigraphically, i.e. 
(1,0), (2,0), (1,1), (2,1), ... (1,N), where, N is the 
maximum queue length. Thus, the generator matrix Z 
is given by: 
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Solving the generator matrix Z yield the 
steady state vector as: 

P = u (I ¡ Q + eu) ¡1 (4) 
Where Q = I + Z/minfZi;ig and u is an 

arbitrary row vector of Q x I and  



Journal of American Science, 2011;7 (9)                                                    http://www.americanscience.org 

  

http://www.americanscience.org            editor@americanscience.org 151

e = (1, 1, . . . , 1) T is a unit column vector of 
length N. [4] 

After the equilibrium probabilities Pj are 
found, we can evaluate system performance metrics 
such as mean system occupancy, mean packet 
waiting time, system throughput and packet dropping 
probabilities. The average buffer occupancy or Mean 
Queue Length (MQL) can be expressed from the 
equilibrium probabilities Pj as: 





N

0j
jjPL  

Using little’s law; the delay for this definite 
capacity queue can be obtained as: 

S

L
W   

Where S is the mean throughput of the 
continuous time definite capacity queue given by the 
fraction of time the server is busy and is given as 
follows: 

 )P1(S 0  

Similarly, we calculate the aggregate 
probability of packet Loss (as a measure of blocking 
probability) for the system by using the following 
relation: 
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3. System Performance 

Figures 3 and 4 present MQL and 
throughput against input parameters and threshold 
variations respectively. In our numerical examples 
for the fixed input parameters, we vary N12 and N22, 
where: N21 - N11= N22 - N12, and N12 - N11 = N22 
- N21, such 

That 21 12N  > N . From the results it is clear 

that as we increase the threshold values, the mean 
queue length increases, which in turn increases the 
utilization of the system resulting in high throughput 
which is of the fact that even though the queue is 
accumulating packets, they are being served 
efficiently at the same time. 
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Fig. 3: Effects of Threshold on Mean Queue Length. 
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Fig. 4: Effect of Threshold on Throughput. 

 
It is evident from results that the mean 

queue length can be maintained by setting the 
threshold value in order to prevent congestion. The 
Square Coefficient of Variation (SCV) is a measure 
of the variability associated with the inter-arrival and 
processing times of the system.The variation in SCV 
value, which is a function of arrival rate and 
transition probability in each state, greatly affects the 
performance of a switch/router and is an important 
measure of the degree of traffic burstiness in the CT-
MMPP traffic source.  

In our model, the SCV, c2, of the inter-
arrival time of a four-state CT-MMPP for the packets 
arrival process is given by the following expression: 

2
121

2
212

))((

)(2
1

qppq

pq
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p 


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


 

The autocorrelation coefficient of the inter-
arrival times and the number of arrivals are the two 
important measures of interest. The autocorrelation 
function of the inter-arrival time of packets with lag 
1, C (1), is given by: 

2
2121

22
2121

}pq{}qp{c

pq)(
)1(C




  

Figure 5 shows the effect of load variation 
(input arrival rate) on SCV of inter-arrival times. 
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Fig. 5: Effects of load variation on SCV. 

 
The higher burstiness traffic causes higher 

system MQL and higher throughput for the same 
threshold based on this assumption that the traffic is 
unchangeable. 

 
4. Conclusion and Future Work: 

A novel approximate analytical performance 
model of a multiple threshold congestion control 
mechanism for implementing the AQM scheme is 
presented in this paper. Furthermore, the analysis of 
definite capacity queue based on four-state CT-
MMPP distribution has been proposed to model the 
bursty Internet traffic. The traffic source slows down 
the arrival process once the queue size reaches the 
maximum threshold, jobs are blocked. Different job 
loss and QoS requirements under various load 
conditions can be met by adjusting the threshold 
values. Also, the effect of threshold based queue on 
correlated traffic scenarios by introducing correlation 
to our CT-MMPP model of bursty traffic is 
demonstrated. Typical numerical examples are 
included to demonstrate the effects of threshold 
variation on QoS measures and correlation function 
of a system. 

For further research and improving the 
proposed model in a simulator environment 
containing real-time 3G traffic as an input source and 
evaluating its impact on QoS measures. 
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