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Abstract: Predicting weld properties such as Ferrite, Austenite and Martensite content in stainless steel welds is 
desirable in order to estimate the welded properties for safety of nuclear installations like ( reactor vessels and 
piping system). Several methods have been used over the last years to estimate the Ferrite content as a function of 
the alloy composition. A new technique is developed which uses a neural network analysis to determine different 
phases of steel properties. The  ِ◌Artificial Neural Network (ANN) was trained on the same data set that was used to 
generate the Schaeffler constitution diagram. The accuracy of the neural network prediction is compared to that for 
the Schaeffler diagram. The results show that the neural network model was more accurate than that measured by 
Schaeffler diagram.  
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Introduction 

Improvement in the area of radiological safety 
engineering is connected inseparably with 
employment and development of mathematical 
modeling, numerical methods, computational 
intelligence methods, and artificial intelligence. 
Computer modeling and simulation make 
improvement of engineering materials properties 
possible, as well as prediction of their properties, 
even when the nuclear installations are welded and 
radiation may occur, with the major reduction of 
expenditures and time necessary for their analysis 
and application. Modeling becomes, therefore, the 
essential tool in materials science and in radiological 
engineering.  

The artificial neural networks are worldwide 
tools for a numerical modeling capable of mapping 
of complex functions. The adaptation of neural 
networks to fulfilling a definite assignment does not 
require the determination of an algorithm or 
recording it in the form of a computer program. This 
process replaces learning using a series of typical 
stimulations and corresponding to them desirable 
reactions. The basic feature of neural networks is 
their capability to a generalization of knowledge for 
the new data not presented in the learning process. 
This fact allows applying them whenever there are 
problems with data processing and analysis, their 
classification, prediction or control. For several years, 
neural networks are more and more often used in the 
material engineering. This growing popularity of 
neural networks results from the possibilities of 
creating relations between the examined quantities 
without any knowledge concerning a physical pattern 
of described phenomena [1-4]. 

In the field of radiological safety, material 

properties used in the physical barriers or shielding 
against radiation is of interest. The nuclear reactor 
primary coolant circuit boundary is manufactured 
from carbon steel with many weldments in the piping 
system. The study of the weldments properties and 
their characteristics is very important relevant to 
shielding properties and hence to radiological safety.  
The possibilities of applying artificial neural 
networks for predicting stainless steel weld 
properties of nuclear installations such as (Austenite, 
Martensite), as most of the previous studies focused 
on the prediction of the Ferrite number  and to 
judge their perspective use in this field, have been 
investigated.  
 
Artificial Neural Networks 

Neural networks use the distributed parallel 
processing of information during the execution of 
calculations, which means that information recording, 
processing and transferring are carried out by means 
of the whole neural network, and then by  means of 
particular memory places. Learning is a basic and 
essential feature of neural networks. Knowledge is 
recorded especially through the strength of linkages 
between particular neurons. Linkages between 
neurons leading to a "correct answer" are 
strengthened and linkages leading to a "wrong 
answer" are weakened by means of the repeated 
exposure of examples describing the problem area. 
These examples create a so-called training set.  

Neural networks are suitable for approximating 
complex mutual relations among different 
sensor-based data, especially among non-structured 
data, with a high grade of non-linearity, and with 
inaccurate and incomplete data. 

Neural networks are able to realize and 
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appropriately express the general properties of data 
and the relations among them and on the contrary to 
suppress relationships which occur sporadically or 
are not sufficiently reliable and strong. Their usage 
enables the retrieval of relationships among the 
parameters of the process which can not use common 
methods to trace the reason of their mutual 
interactions, large number and dynamics. 

A disadvantage of neural network application is 
the danger of network overtraining when a neural 
network fixates exceedingly on training data and it 
loses the capability of generalization and further 
there is an uncertainty if it is possible to achieve the 
required results because it is not possible to estimate 
beforehand the size of an error which is strongly 
dependent on network parameters and on training 
data. It is necessary to verify experimentally the 
usability of neural networks in any field and to try to 
retrieve optimal parameters by way of experiment, 
experience and suspicion to achieve the best possible 
results. 

For all types of predictions, neural networks are 
suitable to be used for their learning 
Backpropagation algorithms. This algorithm is 
convenient for multilayer feedforward network 
learning which is created minimally by three layers 
of neurons: input, output and at least one hidden 
layer (Figure 1). Between the two adjoining layers 
there is always a so-called total connection of 
neurons, thus each neuron of the lower layer is 
connected to all neurons of the higher layer. Learning 
in the neural network is realized by setting the values 
of synaptic weights wij between neurons, biases or 
inclines of activation functions of neurons. The 
adaptation at Backpropagation types of networks is 
also called “supervised learning”, when the neural 
network learns by comparing the actual and the 
required output and by setting the values of the 
synaptic weights so that the difference between the 
actual and the required output decreases [5-8]. 

 

     
Figure 1. Topology of a multilayer feedforward 

neural network 
 
Prediction of Stainless Steel Different Phases 

Neural networks are modeled after learning 
process in the human brain. A network structure 
consists of interconnected layers of nodes; the nodes 

include input and output nodes as well as internal 
hidden nodes. These nodes are connected to each 
other so that the value of one node will affect the 
value of another. 

In this study the Schaeffler diagram shown in 
Figure 2 is representing two input variables [9]; 
Nickel equivalent and Chromium equivalent. The 
output layer contains one or two or three nodes, 
corresponding to one output variable such as Ferrite 
number, two nodes corresponding to two variables 
such as Martensite and Ferrite and three nodes 
corresponding to three output variables such as 
Austenite, Martensite and Ferrite. 

The neural network is trained by introducing a 
training data set for input and corresponding outputs 
from the Schaeffler diagram. A training routine is 
then carried out in which outputs are predicted and 
these are compared with the actual output. A feed 
forward network with a back propagation learning 
scheme was utilized. The analysis scheme to develop 
the final neural network for weld properties 
prediction was summariezed in Figure 3, [10]. 

An attempt was made for quantifying the 
predictability of the final network that was developed. 
This was done by removing at random five or ten 
point from the entire data set of points and training a 
network with the same optimum architecture. The 
resultant network was tested on the removed data. 
This was repeated for different phases of Schaffler 
diagram. The error in predicting each phase is a 
reasonable estimate of error that can be expected 
when the network is applied to new data set.   

 
Figure 2. Schaeffler Diagram 
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Figure 3. Flow chart showing the four basic steps 

to identify the optimum neural network 
architecture and the best neural network   

 
Ferrite Phase Zone  

In Ferrite phase zone, the input layer has two 
nodes, chromium and nickel , the output layer has 
one node representing ferrite number. The ANN is 
trained by actual data for inputs and corresponding 
outputs from Schaffler diagram. A training routine is 
then carried out in which output are predicted and 
compared with the true output as shown in Table 1 
and Figure 4. The results illustrated in Table 1 
indicates that ANN gives accurate result. The straight 
line in Figure 4(a) and (b) represent the linear least 
square fit line between the predicted and actual 
ferrite number values, its equation and the  
coefficient of determination (R2 )  values were 
shown in Figure 4 (a) and (b). As seen in this figure 
good results were obtained from multilayer 
feed-forward.  

 
Table 1. Schaeffler Diagram input data for training ANN and actual input data for prediction using ANN  
      Input data for training using 

ANN 
Input data for prediction using ANN ANN output values for comparison  

Chromium 
Equivalent 

Nickel 
Equivalent 

Chromium 
Equivalent 

Nickel 
Equivalent 

Fn actual values 
(%) 

Fn prediction 
values (%) 

16 1 23 3 100 100.18 
22 3 27 3 100 99.98 
28 5 27 4.5 100 100.08 
32 6 31 3 100 100.07 
34 7 33 5 100 99.99 
25 3 34 3 100 99.92 
32 3 35 6 100 100.03 
34 6 37 6 100 100.11 

 

y = -0.0069x + 100.26

R2 = 0.163
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Figure 4. Comparison between Sachaeffler diagram ferrite phase actual values and ferrite phase predicted 
values using ANN w.r.to (a) Chromium Equivalent. (b) Nickel Equivalent. 

 
Ferrite and Austenite phases zone 

In Ferrite and Austenite phases zone, the input 
layer has two nodes, Chromium and Nickel , the 
output layer has two nodes corresponding to Ferrite 
number and Austenite. A plot for actual data used for 
training the neural network is shown in Figure 5. A 
comparison between actual and predicted Ferrite 

number with respect to (w.r.to) Chromium equivalent 
is shown in Figure 6 and for austenite w.r.to Nickel 
equivalent is shown in Figure 7. The results show 
that the actual data in most of the selected points are 
approximately the same as the predicting values by 
the feed forward neural network. 
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Figure 5.  Schaeffler Diagram input data for training ANN 

 

 
Figure 6. Comparison between Sachaeffler diagram ferrite phase actual values and ferrite phase predicted 

values using ANN w.r.to Chromium Equivalent.  
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Figure 7. Comparison between Sachaeffler diagram Austenite phase actual values and Austenite phase 

predicted values using ANN w.r.to Nickel Equivalent. 
 
Ferrite, Martensite & Austenite phases 

In Ferrite, Martensite and Austenite phases, 
neural networks with classical three layer structure 
have been used for prediction. Training data were 
given as Chromium and Nickel equivalent for inputs 

and Ferrite, Martensite and Austenite for output as 
shown in Figure 8. The results illustrated in Figure 9 
and 10 show that the actual data in all of the selected 
points are approximately the same as the predicting 
values. 

 
 
 
Chromium  
Equivalent 

                                                                                                                          Ferrite           
                                                                                                                

Nickel 
Equivalent 

                                                                                                                           Martensite & Austenite 
                                                                

                
                      
               Input Layer                 Hidden Layer                  Output Layer 
 

Figure 8. Schematic diagram showing the multiple layer structure of a neural network used inpredicting 
Ferrite , Martensite & Austenite phases. 

 

 
Figure 9. Comparison between Sachaeffler diagram Ferrite phase actual values and Ferrite phasepredicted 

values using ANN w.r.to Chromium Equivalent         
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Figure 10. Comparison between Sachaeffler diagram Austenite , Martensite phase actual values and  

predicted values using ANN w.r.to Chromium Equivalent. 
 
Austenite and Martensite phase  

In austenite and Martensite phase zone, the 
input layer corresponding to Chromium and Nickel 
equivalents and the output layer represent the 
predicting values for Autensite and Martensite.  

Figures 11, a and b show a comparison between 
actual values for Austenite, Martensite  and neural 
network predicted values. It can be seen that for most 
of the point the actual values are similar to the 
predicted values for either austenite or Martensite. 

 

 
(a) 

 
(b) 

Figure 11. Comparison between Sachaeffler diagram Austenite, Martensite actual values and predicted values 
using ANN w.r.to, (a) Chromium   (B) Nickel Equivalent. 

 
Martensite and Ferrite phase 
 Figure 12, shows a comparison between Martensite 
and Ferrite actual and predicted values w.r.to (a) 
Chromium and (b) Nickel equivalent the result 

indicates that there is a small difference between the 
two values. 
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(a) 

 
(b) 

Figure 12. Comparison between Sachaeffler diagram Martensite, Ferrite actual values and predicted values 
using ANN w.r.to (a) Chromium, (b) Nickel Equivalent. 

 
Austenite phase 
     In Austenite phase zone, the input data used 
for predicting Austenite are shown in Table2 
(columns 1,2) and the output values for austenite 

predicted by ANN are illustrated in (column 3). The 
results indicate that the output values for Austenite 
are 100% which exactly equal the actual values from 
Schaeffler diagram.  

 
Table 2. Schaeffler Diagram input data for prediction and Austenite predicted values using ANN  

 Input data for prediction using ANN ANN output values (%) 
Chromium Equivalent Nickel Equivalent  

0 28 100 
4 27 100 
8 24 100 

12 21 100 
16 27 100 
20 21 100 
24 24 100 
28 27 100 

 
Martensite phase 
    In Martensite phase zone, the input layer has 
two nodes corresponding to nodes, Chromium and 
Nickel and the output layer nodes represent 

Martensite values as shown in Figure 13. The results 
indicates that artificial neural network gives no error 
as Martensite predicted values is 100% exactly as the 
actual values in Schaeffler diagram. 
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                     Chromium                       
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Figure 13. Schematic diagram showing the multiple layer structure of a neural network used in  
                    predicting Martensite phase 
 
Conclusion  

Neural network model for weld properties 
prediction in stainless steel have been developed 
using the database which was used for generating 
Schaeffler diagram. The best model was chosen 
based on minimum in the test error. The result 
indicates that new model can be used for predicting 
different phases of stainless steel weld properties 
with a better accuracy than the constitution diagram.    
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