
Journal of American Science, 2011;7(12)                                                    http://www.americanscience.org 

  

http://www.americanscience.org            editor@americanscience.org 
 

641

Using a 0/1 Knapsack Algorithm for Software Components Selection in Component-based Software 
System Development 

 
Marjan Kuchaki Rafsanjani1, Noushin Rakhshan 2 

 
1. Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran 

2. Science and Research Branch, Islamic Azad University, Kerman, Iran 
kuchaki@mail.uk.ac.ir 

 
Abstract: Reusing of the software (SW) components concept started in 1960, when engineering and scientific 
libraries were used in the SW development to reuse the previously developed functions. This concept is now widely 
used in SW development as Component Based Development (CBD). CBD is the technology that facilitates the reuse 
of the existing components into the new ones. One of the most important aspects of Component-Based Software 
System (CBSS) development is an optimal selection of software components for modules. However, very few 
researches work on this subject and none of them consider both two important criteria together: cost and 
cohesion/coupling. In this paper, we have proposed a formulation for profitable components selection for CBSS 
development. The model has two objectives: maximizing the intra module interactions and minimizing development 
and adaptation costs between software components and modules with inspiration from a 0/1 knapsack algorithm and 
this model also consider the modules granularity criterion. This concept in CBD engineering is the complexity of 
functions that each module in CBSS must do. Granularity criterion in our model is determined with the number of 
software components that allocate to each module, considering this parameter can help to have same modules in 
function complexity and run time. This model exploits from a linear formulation that can solve without need to any 
specific method like genetic algorithm (GA). An example is used to illustrate the proposed methodology. 
 [Marjan Kuchaki Rafsanjani, Noushin Rakhshan. Using a 0/1 Knapsack Algorithm for Software Components 
Selection in Component-based Software System Development. Journal of American Science 2011;7(12):641-648]. 
(ISSN: 1545-1003). http://www.americanscience.org. 
 

Keywords: Software components; Knapsack algorithm; Cohesion; Coupling; Adaptation and development costs 
 

1. Introduction 
              Reuse of software components concept has 
been taken from manufacturing industry and civil 
engineering field. Manufacturing of vehicles from 
parts and construction of buildings from bricks are 
the examples. Spare parts of a product should be 
available in markets to make it successful. Software 
companies have used the same concept to develop 
software in parts. Software parts are shipped with the 
libraries available with SW. These SW parts are 
called components. Different people have defined the 
component in different ways. The most popular 
definition is “Each reusable binary piece of code is 
called a component”. The component concept is 
similar to object concept of Object Oriented 
Programming. A component is an independent part of 
the system having complete functionalities. A 
component is designed to solve a particular purpose, 
such as command button and text box of VB. The 
component is like a pattern that forces the developers 
to use the predefined procedures and meets the 
specifications to plug it into the new SW components 
(Qureshi and Hussain, 2008). For safety critical 
software a component-based software development 
(CBSD) approach, using pre-verified library 
components, can bring savings, particularly in the 
cost associated with verification. However, a 

component-based approach is only viable when the 
overall effort in reusing components is significantly 
less than the effort in developing (and verifying) the 
software from scratch (Hemer, 2007). Like other 
CBSS approaches, there are many challenges that 
need to be addressed before any real savings can be 
made (Brereton and Budgen, 2000). These challenges 
include locating suitable components and adapting 
them to meet the specific needs of the software 
engineer (Hemer, 2007). In the context of software 
engineering, the word reuse often means code reuse, 
but there is nothing that should prevent the reuse of 
other software artifacts such as specifications, 
designs, and test cases. Many researchers argue that 
greater benefits from software reuse are presumably 
achieved if higher-level assets such as design artifacts 
are reused. With current technologies such as object-
oriented techniques and domain analysis, software 
reuse can be amended by concentrating on: reusing 
artifacts from early stages of the development process 
rather than later stages, reusing more general 
solutions rather than specific ones, and reusing more 
abstract rather than concrete resources. Therefore, 
current technologies expand the target of reuse to 
include the reuse of analysis and design artifacts 
instead of just focusing on program code (Fauzi and 
Weichang, 2004). In the development of modular-



Journal of American Science, 2011;7(12)                                                    http://www.americanscience.org 

  

http://www.americanscience.org            editor@americanscience.org 
 

642

based conventional software systems, the criteria of 
minimizing the coupling and maximizing the 
cohesion of software modules were commonly used. 
Coupling is about the measure of interactions among 
software modules while cohesion is about the 
measure of interactions among the software 
components which are within a software module. A 
good software system should possess software 
modules with high cohesion and low coupling. A 
highly cohesive module exhibits high reusability and 
loosely coupled systems enable easy maintenance of 
a software system (Kwong et al., 2010). Chang and Hua 
(1994) propose a module-oriented design approach, 
which is based on a method termed class-function 
decomposition. This decomposition is not simply an 
object-oriented decomposition. More meaningfully, it 
takes a functional view into account. A software 
environment, called DAGC, is described by Parsa 
and Bushehrian (2004). The main idea behind the 
design of DAGC is to facilitate research works in 
design and development of genetic clustering 
algorithms for automatic re-modularization of 
software systems. Within the DAGC environment, 
clustering algorithms may be assembled or modified 
by simply selecting the parts from an extendable list 
of components. Sarkar et al. (2005) have presented a 
new set of metrics for analyzing the interaction 
between the modules of a large software system. The 
metrics are based on the rationale that code 
partitioning should be based on the principle of 
similarity of service provided by the different 
functions encapsulated in a module. Sarkar later 
presented a new set of metrics that measure the 
quality of modularization of a non-object-oriented 
software system (Sarkar et al., 2007). A quantitative 
approach is proposed to measure and assess the 
solutions of software modularity based on the criteria 
of minimal coupling and maximal cohesion (Abreu 
and Goulão, 2001). None of the previous researches 
consider both two important criteria together: cost 
and cohesion/coupling so in this paper we have 
proposed a formulation that it has considered two 
factors: maximizing the intra module interactions and 
minimizing development and adaptation costs 
between software components and modules. This 
new model is based on a 0/1 knapsack algorithm and 
also considers the modules granularity criteria to 
have same modules in function complexity and run 
time. 
             The rest of this paper is organized as follows: 
the next section gives a background and problem 
statement. An overview of the model is describes in 
section 3. Then an illustrative example and a 
discussion of the results are presented in section 4 
and finally conclusions and further works are 
described in final section. 

2. Background and problem statement 
              Generally, a CBSS is developed based on a 
top-down approach. Based on the approach, 
functional/customer requirements are first defined. 
Then the number and nature of software modules are 
determined. The next task is to select software 
components to formulate the modules. The domain 
management stage in CBSS is the planning stage of a 
reuse program. This planning stage has received little 
research attention, although it is often cited as being a 
major barrier to reuse. One of the activities of domain 
management is domain definition, which consists of 
defining the scope and boundaries of the envisioned 
domain. Domain definition must be made consistent 
with business objectives. The next step is to identify 
an exhaustive list of candidate components based on 
customer demands for products (Sundarraj, 2002). 
So, one of the major problems of CBSS development 
is how to select software components available in 
markets to formulate a software module and build a 
beneficial end-product. There are some different 
criteria to select a suitable subset of components and 
a good model should be able to consider a set of more 
important criteria together. We have considered two 
factors in our profitable model: maximizing 
component interaction within each module and 
minimizing total of adaptation and development 
costs. For each software component, the organization 
incurs a development cost, which comprises the 
programming cost to design and create the software 
component as well as the maintenance costs. In 
addition, each end-product has a demand. Finally, for 
each software component, some modules result 
directly when the software component gets built, 
while others can be obtained by an appropriate 
transformation of the software component, at a 
certain adaptation cost. On the other hand, the 
software components should be selected such that the 
interactions of the software components within a 
software module are maximized, and interactions of 
the software components among software modules 
are minimized. The question that is addressed in this 
paper is: which set of software components 
minimizes the total of the development and 
adaptation costs and simultaneous maximizes the 
component interaction within each module? 
  

3. Profitable Model  
           To formulate the problem of selecting 
software components for CBSS development, the 
following notations are introduced:   
              We can calculate the cohesion within the jth 
module, ( ) jinCI , as follows (Kwong et al., 2010): 



Journal of American Science, 2011;7(12)                                                    http://www.americanscience.org 

  

http://www.americanscience.org            editor@americanscience.org 
 

643

( ) jiij

N

i

N

ii
iijin xxrCI ′

−

= +=′
′∑ ∑=

1

1 1

                                          (1) 

               Also we compute the total cost for jth 
module, ( ) jtTcos , by the following: 

( ) ijiij

N

i
ijjt xfxcT +=∑

=1
cos                                         (2) 

 
M                               the number of software modules 
N                                the number of software components 
L                                  the number of sets of software component 

ks   ,  Lk ,...,1=     the kth set of software components 

isc ,  Ni ,...,1=      the ith software component 

jM , Mj ,...,1=      the jth software module 

jG                                the granularity parameter for module j  

( ) jtTcos                                     total of development and adaptation costs    

                                       for module j                                    
( ) jinCI                                      the number of component interactions  

                                       within module j (cohesion)          

iir ′    , Ni ,...,1=     the number of interactions between 

                                      isc , jsc  

ijx   Ni ,...,1=        ijx is a binary variable.  ijx  = 1 if isc  is  

         Nj ,...,1=         selected for 
jM ; otherwise,  ijx  = 0 

if                                 cost of developing isc  

ijc                                 cost of adapting isc  to module j   

 ( ) jprofit                    the quantity sufficiency of module j  

( ) jweight                    the number of software components in  

                                       module j 
 
By previous section, we want to have two objective 
functions for each module in our profitable model: 

( ) jiij

N

i

N

ii
iijin xxrCIMax ′

−

= +=′
′∑ ∑=

1

1 1

                                     (3) 

( ) ijiij

N

i
ijjt xfxcTMin +=∑

=1
cos                                    (4) 

The objective function (3) is formulated based on 
maximizing cohesion within module j and the 
objective function (4) is formulated based on 
minimizing the total of development and adaptation 
costs for module j. Hence, the profitable problem of 
software components selection for CBSS 
development can be considered such as a 0/1 
knapsack problem with following objective function: 

( ) ( )
( ) j

jin
j t

CI
profit

cos
1

max
+

=                                                   (5) 

( ) jj Gweight ≤                                                                       (6) 

⎥⎥
⎤

⎢⎢
⎡≤≤⎥⎦

⎥
⎢⎣
⎢

M
LG

M
L

j                                                              (7) 

LGzG
M

j
jj =∈ ∑

=1

,  

Lkx
kSi

M

j
ij ,...,1,1

1
==∑∑

∈ =

                                                     (8) 

1
1

≥∑
=

N

i
ijx                                                                                      (9) 

{ } Nixij ,...,1,1,0 =∈   Mj ,...,1=                                   (10) 

             Where unequal (6) help to have same 
modules in functions complexity and run time that 

jG  can estimate in (7) as we described in previous 
sections. Equation (8) also denotes that only one 
software component can be selected from a set of 
alternative software components for a particular 
module. Unequal (9) is recommended that each 
module must contain at least one software 
component. 
 

4. An Illustrative Example and Implications 
             The example below illustrates the steps 
involved in applying the profitable model. Consider a 
situation in which a local software system supplier 
planned to develop a system, assume that the 
software system development team of the company 
made decision that the product can be built using a 
combination of three modules. A total of 20 software 
components available in markets make up ten sets of 
alternative software component ( 101 ss − ). Only one 
software component in each set is selected for a 
particular software module. For example, sc1, sc2 all 
belong to the set of alternative software components, 
s1. They can provide similar functions and can be 
replaced by each other; these are denoted as 1sc –

20sc . Table 1 shows the degrees of interaction 
among the software components. The range of the 
degrees is 1–10. The degree ‘1’ means a very low 
degree of interaction while the degree ‘10’ refers to a 
very high degree of interaction. The degrees of 
interaction were determined based on the team’s 
judgment in (Kwong et al., 2010). In this case study, 
development and adaptation costs have been 
estimated in 0.5–25 range as shown in Table 2. Now 
the question is that: how we can select a set of 
software components that minimizes the total of the 
development and adaptation costs and simultaneous 
maximizes the component interaction within each 
module? 



Journal of American Science, 2011;7(12)                                                    http://www.americanscience.org 

  

http://www.americanscience.org            editor@americanscience.org 
 

644

Table 1. Interactions among software components 
(Kwong et al., 2010) 

 
Some of assumptions must be considered in our 
profitable model to solve described problem are in 
follow: 
Assumptions 

I. We assume that the minimum cost of 
adapting to module j is 0.5, and maximum 
cost of adapting to module j is 25, to prevent 
0 and ∞ values. 

II. When a SC be determined to built in a 
specific module all SCs that are in the same 
set of it, be ignored for next steps. 

III. For this example G1 and G3 are 3 and G2 is 
4. 

IV. Until first SC belongs to a module, cohesion 
parameter values for this module stays 0. 

 
Table 2. Total of development and adaptation costs 

for module 
 M1 M2 M3 
SC1 0.5 3 3.5 

SC2 3.25 2.75 0.5 

SC3 20 15 0.5 

SC4 23 16 2.25 
SC5 19 14 1 

SC6 0.5 1.5 7 

SC7 11 4.25 5 

SC8 7.5 3 2.2 

SC9 0.5 1 5 

SC10 5.5 2.3 11 

SC11 18 16 0.5 

SC12 0.5 0.5 1 

SC13 1.2 15 7.3 

SC14 0.5 13 16.25 

SC15 17 12 5.5 

SC16 4 3.25 4.25 
SC17 23 11 16 

SC18 3.2 0.5 0.5 

SC19 17 12.1 11 

SC20 20 3 2.5 

             With these notations and assumptions, a 
profitable model to select a suitable set of SCs for the 
above problem can be stated as follows: 
             In all steps we would have filled tables with 
calculate below objective function: 

( ) ( )
( ) j

jin
j t

CI
profit

cos
1

max
+

=                                   (11) 

            For three module M1, M2, M3 considering by 
values that has been organized in table 1 and table 2. 
 Step1 

 M1 M2 M3
Sc1 2 0.33 0.28 
Sc2 0.3 0.36 2 
Sc3 0.05 0.06 2 
Sc4 0.04 0.06 0.44 
Sc5 0.05 0.07 1 
Sc6 2 0.66 0.14 
Sc7 0.09 0.23 0.2 
Sc8 0.13 0.33 0.45 
Sc9 2 1 0.2 
Sc10 0.18 0.43 0.09 
Sc11 0.05 0.06 2 
Sc12 2 2 1 
Sc13 0.83 0.06 0.13 
Sc14 2 0.07 0.06 
Sc15 0.05 0.08 0.18 
Sc16 0.25 0.3 0.23 
Sc17 0.04 0.09 0.06 
Sc18 0.31 2 2 
Sc19 0.05 0.08 0.09 
Sc20 0.05 0.33 0.4 

                                           ⎯⎯ →⎯yields  
Survivor SCs : 203 ,..., scsc   

1

M1 

M3 

M2 



Journal of American Science, 2011;7(12)                                                    http://www.americanscience.org 

  

http://www.americanscience.org            editor@americanscience.org 
 

645

 
Step2 

 M1 M2 M3 
Sc3 0.29 0.06 2 
Sc4 0.46 0.06 0.44 
Sc5 0.05 0.07 1 
Sc6 1 0.66 0.14 
Sc7 0.08 0.23 0.2 
Sc8 0.12 0.33 0.45 
Sc9 5 1 0.2 
Sc10 1.83 0.43 0.09 
Sc11 0.54 0.06 2 
Sc12 1 2 1 
Sc13 0.58 0.06 0.13 
Sc14 1 0.07 0.06 
Sc15 0.05 0.08 0.18 
Sc16 2.25 0.3 0.23 
Sc17 0.04 0.09 0.06 
Sc18 0.27 2 2 
Sc19 0.17 0.08 0.09 
Sc20 0.43 0.33 0.4 

                                            ⎯⎯ →⎯yields                                                       
Survivor SCs : 201110543 ,....,,,,, scscscscscsc  
 
 
 
 
Step3 

 M1 M2 M3 
Sc3 0.76 0.06 2 
Sc4 0.87 0.06 0.44 
Sc5 0.25 0.07 1 
Sc10 2.5 0.43 0.09 
Sc11 0.73 0.06 2 
Sc12 3.33 2 1 
Sc13 2.27 0.06 0.13 
Sc14 3.33 0.07 0.06 
Sc15 0. 5 0.08 0.18 
Sc16 4 0.3 0.23 
Sc17 0.33 0.09 0.06 
Sc18 2.38 2 2 
Sc19 0.38 0.08 0.09 
Sc20 0.85 0.33 0.4 

                                              ⎯⎯ →⎯yields         
Survivor SCs : 

3 4 5 10 11 12 13 14 15

18 19 20

, , , , , , , , ,
, ,

sc sc sc sc sc sc sc sc sc
sc sc sc

 

 
 
 
 
 

 
Step4 

 M2 M3
Sc3 0.06 2 
Sc4 0.06 0.44 
Sc5 0.07 1 
Sc10 0.43 0.09 
Sc11 0.06 2 
Sc12 2 1 
Sc13 0.06 0.13 
Sc14 0.07 0.06 
Sc15 0.08 0.18 
Sc18 2 2 
Sc19 0.08 0.09 
Sc20 0.33 0.4 

                                  ⎯⎯ →⎯yields  
 
 
Survivor SCs : 

2019181514131110543 ,,,,,,,,,, scscscscscscscscscscsc   
 
 
 
 
 
Step5 

 M2 M3
Sc3 0.32 2 
Sc4 0.06 0.44 
Sc5 0.06 1 
Sc10 1.07 0.09 
Sc11 0.42 2 
Sc13 0.51 0.13 
Sc14 0.07 0.06 
Sc15 0.4 0.18 
Sc18 1 2 
Sc19 0.63 0.09 
Sc20 0.28 0.4 

                          ⎯⎯ →⎯yields  
                 
 
 Survivor SCs : 

2019181514131110 ,,,,,,, scscscscscscscsc  

   
 
 
 
 
 
 
 

1

M3 

M2 

M1 

9

M3 

M1 

M2 16 

9 

1 

M1 

M2 
9 

1 

12 

16 

M3 

3 

M1 

M2 16 

9

1

12 

M3 



Journal of American Science, 2011;7(12)                                                    http://www.americanscience.org 

  

http://www.americanscience.org            editor@americanscience.org 
 

646

                 
Step6 

 M2 M3 
Sc10 1.07 0.34 
Sc11 0.42 1 
Sc13 0.51 0.12 
Sc14 0.07 0.71 
Sc15 0.4 0.16 
Sc18 1 1 
Sc19 0.63 0.08 
Sc20 0.28 0.33 

                            ⎯⎯ →⎯yields  
 
 
Survivor SCs : 201918151413 ,,,,, scscscscscsc   
 
 
 
Step7 

 M2 M3 
Sc13 0.84 0.12 
Sc14 0.18 0.71 
Sc15 0.47 0.16 
Sc18 1.51 1 
Sc19 0.87 0.08 
Sc20 1.89 0.33 

                           ⎯⎯ →⎯yields  
 
 
 
Survivor SCs : 151413 ,, scscsc  

 
 
 
 
Step8 

 M2 M3 
Sc13 1.29 0.12 
Sc14 0.58 0.71 
Sc15 0.84 0.16 

                       
                      
                           ⎯⎯ →⎯yields  
 

    
Survivor SCs : 1514 ,scsc  
 
 
 
 
 

 
Final Result 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
            Figure 1 shows the results of solving the 
problem in question using profitable model. In the 
figure, the upper chart refers to the interactions 
between each software component and other software 
components within its relevant module and the lower 
chart represents the mean values of interactions 
between each software component and software 
components in other modules that it is not belongs 
them. Table 3 shows the final results of applying 0/1 
knapsack model for solving software components 
selection problem for discussed example. From the 
figure, it can be noted that for all software 
components inside dependency is greater than outside 
dependency and it means that the cohesion and 
coupling criteria are in a good condition for each 
modules. Table 4 also shows the binary matrix X for 
discussed example, from this matrix we can 
obviously understand that only one software 
component be selected from each set. 

 
 
 
 
 
 

M1 

M2 

12 

16 

M3 

3 

10 

9

1 

12 

M3 
3 

10 

M1 
1 

9 

16 

20 

M2 

12 

10 

16 

M2 

1 

9 
M1 

20 
13 

M3 
3 

14 

15 

12 

10 

16 

M2 

1

9 
M1 

20 
13 

M3 
3



Journal of American Science, 2011;7(12)                                                    http://www.americanscience.org 

  

http://www.americanscience.org            editor@americanscience.org 
 

647

 
 
 
 
 
 

 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

0
2
4
6
8
10
12
14
16
18

SC1 SC9 SC12 SC14 SC16

Co
m
po

ne
nt
 In
te
ra
ct
io
ns

Software Components

(CI)in

(CI)out

 
Figure 1. Results of solving the components   selection problem using a 0/1 knapsack algorithm 

 

5. Discussion and Conclusion 
               In this paper, a methodology of selecting 
software components for CBSS development is 
proposed. This profitable model with inspiration from 
a 0/1 knapsack algorithm, minimizes total of 
development and adaptation costs and maximizes 
intra module cohesions. This model considers the 
modules granularity criteria that helps to have same 
modules in function complexity and run time and in 
our model we determine it with the number of 
software components that allocate to each modules 
and also compared it with the previous studies on 
CBSS development. So, a modified way of software 
components selection to consider the total costs and 
software component interactions simultaneous for 
CBSS development is introduced. This model 

exploits from a linear formulation that can solve 
without need to any specific method like GA. An 
example of a system design was used to illustrate the 
proposed methodology. However, this methodology 
involves some subjective judgments from software 
development teams, such as the determination of the 
scores of interaction and the adaptation and 
development costs. 
 
Corresponding Author: 
Marjan Kuchaki Rafsanjani  
Department of Computer Science  
Shahid Bahonar University of Kerman  
Kerman, Iran  
E-mail: kuchaki@mail.uk.ac.ir 
 
 

 
Table 3. Component selection results 

 
G 

M1      M2      M3 
CI in 

M1      M2      M3 
                         Results of SCs selection for modules 
           M1                                   M2                                  M3 

         Costs 
M1       M2       M3 

3         4          3        19      26       14          Sc1,Sc9,Sc16                Sc10,Sc12,Sc13,Sc20              Sc3,Sc14,Sc15n      5       20.8    22.25 
 
 

Table 4. Showing component selection results in binary matrix X 
 

 Sc1 Sc2 Sc3 Sc4 Sc5 Sc6 Sc7 Sc8 Sc9 Sc10 Sc11 Sc12 Sc13 Sc14 Sc15 Sc16 Sc17 Sc18 Sc19 Sc20 

M1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 

M2 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 

M3 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 



Journal of American Science, 2011;7(12)                                                    http://www.americanscience.org 

  

http://www.americanscience.org            editor@americanscience.org 
 

648

References 
1. Qureshi MRJ, Hussain SA. A reusable software 

component-based development process model. 
Advances in Engineering Software 2008:39:88–
94. 

2. Hemer D. Semi-Automated Component-Based 
development of formally verified software. 
Electronic Notes in Theoretical Computer Science 
2007:187:173–188. 

3. Brereton P, Budgen D. Component-based 
systems: A classification of issues. IEEE 
Computer 2000:33:54–62. 

4. Fauzi MA, Weichang D. Toward reuse of object-
oriented software design models. Information and 
Software Technology 2004:46: 499–517. 

5. Kwong CK, Mu LF, Tang JF, Luo XG. 
Optimization of software components selection 
for component-based software system 
development. Computers & Industrial 
Engineering 2010:58: 618–624. 

6. Chang CK, Hua S. A new approach to module-
oriented design of OO Software. Computer 
software and applications conference 1994:29–34. 

7. Parsa S, Bushehrian O. A framework to 
investigate and evaluate genetic clustering 
algorithms for automatic modularization of 
software systems. Lecture Notes in Computer 
Science 2004:699–702. 

8. Sarkar S, Kak AC, Nagaraja NS. Metrics for 
analyzing module interactions in large software 
systems. 12th Asia Pacific software engineering 
conference 2005:264–271. 

9. Sarkar S, Rama GM, Kak AC. API-based and 
information theoretic metrics for measuring the 
quality of software modularization. IEEE 
Transactions on Software Engineering 
2007:33(1):14–32. 

10. Abreu FB, Goulão M. Coupling and cohesion as 
modularization drivers: Are we being over-
persuaded. Fifth European conference on software 
maintenance and reengineering. Washington, DC, 
USA: IEEE Computer Society 2001. 

11. Sundarraj RP. An optimization approach to plan 
for reusable software components. European 
Journal of Operational Research 2002:142:128–
137. 

 
 
11/21/2011 
 
 
 


