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Abstract: A multiple fault tolerant measurement system based on nonlinear dynamic models, a special search 
algorithm, principle components decomposition and Q test is developed. The proposed system uses a model-based 
estimator to deliver symptoms. The symptoms are then analyzed in a statistical unit in order to detect the faults and 
isolate the faulty sensors. Multi-layer perceptron networks, radial basis function networks and Tagaki-Sugeno fuzzy 
models were examined for the fault estimator module while fuzzy models presented the best performance. The main 
advantages of the proposed scheme are the capability to detect, isolate and repair multiple faults in both input and 
output sensors and the feasibility to be applied to any system with as many sensors as required, all due to particular 
design of its model-based estimator. The system was tested on a CSTH model developed based on an experimental 
platform; different experiments demonstrated satisfactory results. 
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1. Introduction 

Nowadays increasing complexity of 
industrial plants necessitates reliable measurement 
systems that can minimize the operational risk and 
increase the system robustness in order to maintain 
the plant normal operation in the case of abnormal 
situations. 

To detect any abnormality in the process 
operation two main approaches are applied: fault 
detection and identification (FDI) and fault detection 
and diagnosis (FDD). The former identifies the 
occurrence, type, location and time of the fault. The 
latter can identify all what FDI can as well as size 
and dynamic characteristics. 

It is assumed that any kind of abnormality in 
the process behavior is due to a fault. Most of the 
fault detection approaches are based on residual 
generators that include analytical and functional 
redundancy or physical and hardware redundancy 
techniques. However, fault detection and diagnosis 
methods are not enough to guarantee the process 
normal operation after occurrence of a fault. 
Therefore, it is crucial to have a fault tolerant control 
system that can reconstruct the damaged signals and 
estimate the real signal.  

Fault detection and isolation have received 
much attention in recent years. In [1] a physical 
redundancy approach is presented that detects the 
faults in measurement systems by applying simple 
statistical techniques. Also an analytical redundancy 
approach is introduced that detects the faults based on 
a linear model and least square analysis for the 
residuals. In this method a matrix that states the 
relationship between the quantities is required. 

Simani et al [2] suggest a fault detection system 
based on neural networks that employ an observer 
bank for residual generation. Neural networks are 
also used for fault classification. Described procedure 
shows good results for step-like faults, other faults 
have not been considered and it is not possible to 
reconstruct the damaged signal. Balle [3] applies a 
fuzzy modeling approach to detect sensor faults in a 
thermal platform. The scheme uses linear Tagaki- 
Sugeno fuzzy models to generate parity relations. The 
results indicate that the designed scheme can detect 
the faults in the five measurements under analysis. 
Edward and Alwi present a fault detection scheme 
based on sliding mode theory. The method requires  

Information about which sensors are prone 
to faults and the results only show the faults in input 
sensors. Raoufi and Marquez [4] applied generalized 
sliding mode observers to estimate both input and 
output corrupted signals simultaneously. The scheme 
requires knowing which sensors are likely to fail. Du 
and Jin [5] used joint angle plots and multi-level 
principle component analysis to detect and isolate 
multiple faults. The reconstruction procedure is done 
based on a compensatory technique that finds the bias 
for a signal that minimizes the square prediction 
error. In this approach, the isolation process requires 
historical fault data to create a knowledge base.  

The fact that losing a signal due to 
occurrence of a fault can extend to whole operation 
failure make it necessary to design and implement 
fault tolerant measurement systems that can provide 
corrected measurements in the presence of faults.  

In this research work a new method is 
proposed to detect and diagnose sensor faults. The 
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presented scheme is designed to reconstruct the 
damaged signals using a simple reconstruction 
method creating a fault tolerant measurement system. 
The developed scheme combines the capabilities of 
both model based and statistical methods enabling the 
system to recognize sensor faults and reconstruct the 
faulty signals. The symptoms are generated using 
Tagaki-Sugeno fuzzy models which are obtained 
from an identification procedure. By combining 
statistical methods, a specific search algorithm, 
principle component analysis and Q test, sensor faults 
are detected and the faulty sensors are isolated. 
Finally a correction step is applied and the damaged 
signals are reconstructed.  

The designed scheme was tested on 9 sensor 
measurement of an continuous stirred tank heater 
(CSTH) model. The model is based in an 
experimental platform in department of chemical 
engineering in IIT Bombay [6].  

The paper is organized as it follows. The 
second section describes the CSTH platform and its 
basic equations. In the third section the scheme 
proposed to diagnose the faults and reconstruct the 
damaged signals is explicated and the main 
techniques are presented. The fourth section 
discusses different test scenarios and presents the 
obtained results and section 5 concludes the paper. 

 
Fig. 1 The continuous stirred tank heater (CSTH) [6] 
 
2.The Continuous Stirred Tank Heater (CSTH) 
2.1. CSTH model description 

 An experimental platform of a CSTH has 
been developed in the automation laboratory of 
chemical engineering department in IIT Bombay 
[6,7]. Fig. 1 illustrates the process model. Cold water 
enters into tank 1 and tank 2 and it is heated using 
separate electric heaters in each tank. The hot water 
from tank 2 is recycled into tank 1 which introduces 
additional complexity into the process. The model 
involves five inputs: water flow rate into tank1, water 
flow rate into tank2, reverse flow rate from tank 2 to 
tank1, heat flow rate into tank 1, heat flow rate into 
tank 2 and four outputs: water temperature of tank1, 
water temperature of tank2, output flow from tank2 

and water level of tank2. Table 1 presents the model 
parameters and units. 
2.2. CSTH basic relations  

Equations 1 and 2 are the dynamic heat 
balance equations of the plant and Equation 3 
expresses the dynamic mass balance relationship.  

	��
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The input heat and flow rates are functions 
of input variables u1,…, u5 and the tank2 output flow 
rate is a function of level. Correlations have been fit 
for these parameters experimentally.  The correlations 
are provided below: 
����(ℎ�)= 0.1 × 10�� × (0.406ℎ�

� + 0.8061ℎ�
� −

0.01798ℎ� + 0.1054)
�

�         (4) 
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−8 × 10����
�  

Q5(��)= 104+ 14.44�� + 0.96��
� 

−8 × 10����
�       (9) 

It is important to note that variables u1,…, u5 
in the above correlations are expressed in percent 
varying between 0 to 100%. 

In this work, Simulink model of the 
described plant is developed in MATLAB 
environment based on dynamic heat and mass 
balance equations and the correlations stated above. 
The model is used in order to acquire data and 
perform the required experiments. 
3.Fault detection and diagnosis system 

 Fault detection and diagnosis based on 
mathematical models have concentrated much 
attention in the last 20 years [8]. The conventional 
approach for model-based fault detection is to use a 
model or an observer to estimate different variables 
of a process. The most popular models are state 
space, auto regressive, neural networks and fuzzy 
models. These models can be linear or nonlinear   [9-
13]. 

The most common approach for sensor fault 
detection and diagnosis is to compare the process 
measurements with those obtained from a 
mathematical model; the difference between these 
two is referred to as residual. This approach is 
applied in [2, 14] for example. Different methods 
such as dedicated observers, parity relations and 
parameter identification [15] are used for residual 
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generation. After residual generation, a classification 
procedure is carried out in order to distinguish 
between faulty sensors and those operating at normal 
condition. Neural networks are very common in this 
context. In this approach although it is possible to 
detect the faults but it is difficult and sometimes 
impossible to rebuild the damaged signals. Recent 
research work in this context is concentrated on 
increasing system robustness in residual generation 
and residual classification steps [16-18].   

 
Table 1. CSTH model parameters 
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On the other hand, there are fault detection 

approaches that do not require a model, approaches 
based on statistical analysis are in this category [19-
20]. However due to presence of disturbances that 
usually affect the process, strong restrictions should 
be considered for the process variables such as 
constant variance and constant mean. Another 
disadvantage of these algorithms is that although they 
can detect the faults, they hardly can identify the fault 
origin or reconstruct the damaged signals. 

 
Fig. 2. The proposed multiple fault tolerant 
measurement scheme 

3.1. Proposed scheme  
The proposed scheme is presented in Fig. 2 

in which the fault signals are estimated by the fault 
estimator directly. The scheme receives input and 
output sensor measurements as the input and provides 
fault alarm signal and faulty sensor or sensors as the 
output. As it is illustrated in Fig. 2 the scheme has 4 
stages. In the first stage, faults are estimated by the 
fault estimator. In the second stage statistical methods 
(PCA and Q test) are applied to detect the presence of 
faults. In the third stage the faulty sensor is isolated 
and in the fourth stage the damaged signals are 
corrected.  

The main purpose of this work is to integrate 
the capabilities of both model-based and statistical 
methods in order to increase the system robustness 
and improve its fault detection and diagnosis ability 
in the presence of noise and disturbance. 

In this research, the faults are considered as 
additive faults in both input and output sensors. 
Therefore the faulty signals are considered as: 

�
u�(t)= u(t)+ f�(t)

y�(t)= y(t)+ f�(t)
�   (10) 

Where u(t) and y(t) are the input and output sensor 
measurements in the absence of faults. The 
measurement signals [ũ(t),ỹ(t)] enter into the fault 
estimator that provides estimations of symptoms 
[f̂u(t),f̂y(t)]. It is expected to have a null vector of 
symptoms in the absence of faults but due to noise 
and modeling error, the estimator output is not null. 

By comparing the estimated value of faults 
against a properly adjusted dynamic threshold, the 
faults are detected. Reconstruction of the damaged 
signals is completed by subtracting the fault 
estimations [f̂u(t),f̂y(t)] from the sensor measurements 
[ũ(t),ỹ(t)]. 

 
3.2. Fault estimator and search algorithm 
3.2.1. Fault estimator  

In this work the fault estimator is a dynamic 
model that receives the sensor measurements as the 
input and delivers the fault signals as the output. By 
applying identification techniques to process data, the 
process modeling is accomplished which results in a 
model based fault estimator.  
The model is defined as it is follows: 
W�(t)= g(ı̃(t))  (11) 
Where ı̃(t) is the vector of sensor measurements 
[ũ(t), ỹ(t)], ��(�) is the vector of estimated faults 
[f̂u(t),f̂y(t)] and g(•) is a nonlinear function. By 
applying dynamic modeling techniques, available 
data pairs [��(�), �̃(�)] are employed to identify a data 
driven model in order to be used as nonlinear 
function g(•).  
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It is important to note that in order to obtain 
a reliable model that can provide symptoms with 
sufficient accuracy the following conditions must be 
held: 
• Data should include the process operation under 
different operating points, steady states and transient 
situations. 
• Data should be gathered when no internal fault acts 
on the process operation. 
If the above conditions are held, fault detection and 
diagnosis become feasible, since the fault estimator is 
identified to deliver both input and output fault 
signals (symptoms).  

For the fault estimator part of the system, 
Tagaki- Sugeno fuzzy models are utilized[21]. As it 
is illustrated in Fig.3 the T-S system consists of 5 
layers. The nodes in the first layer determine the 
membership degree of each input. Nodes in the 
second layer are fixed and have the role of constant 
multipliers. Outputs of this layer provide the firing 
strength of rules and are denoted by W letter. Nodes 
in the third layer calculate the ratio of fifing strength 
of ith layer to the sum of firing strengths of all layers. 
The output of this layer is denoted by W̅. The output 
of nodes in the fourth layer is the product of outputs 
of third layer with a linear model. Finally the fifth 
layer sums up all the incoming signals and calculates 
the output of the fuzzy model. The parameters of the 
first layer and fourth layer are adjustable parameters. 
A hybrid strategy including least squares and gradient 
descent optimization methods is employed to 
optimize these parameters. The gradient descent and 
least square methods are applied to first and fourth 
layers respectively. [22] 
Mathematically, Tagaki-Sugeno (T-S) fuzzy models 
are constructed based on rules with the following 
definition [23]: 
If x1 is A1

k and, …, and xn is An
k then yk = gk (•) (12) 

Where xn is the nth input, An
k is the nth membership 

function in the kth rule and gk (•) is a linear function 
with the following form: 
gk (•) = b0

k+ b1
k x1+….+ bn

kxn                                     (13)     (12)  
Where xn is the nth input and bn is the nth constant.  
 

 
Fig. 3. Tagaki-Sugeno fuzzy model structure 
 

 
Fig.2. The proposed multiple fault tolerant 
measurement scheme 

 
3.2.2 Search algorithm 

Fig. 4 illustrates the the diagram of the 
procedure followed by a search algorithm which is 
augmented to the fault estimator in order to enable 
the estimator to detect multiple faults simultaneously. 
In this method data obtained from different operating 
points of the process are collected in a database. For 
every sensor in the process, an independent partition 
of the fault estimator is dedicated. Every partition of 
the fault estimator has 9 inputs and 1 output. 9 inputs 
correspond to 9 sensor measurements of the process 
and 1 output provides the estimated fault for the 
sensor under analysis. The search algorithm works in 
the following way: At every operating point of the 
process, the algorithm analyzes values of sensor 
measurement in order to find the operating point. The 
algorithm then imports one sensor measurement into 
the corresponding fault estimator partition. The 8 
remaining inputs are imported from the database 
having normal data. Therefore when more than one 
sensor become faulty at the same moment every 
partition of the fault estimator detects the presence of 
fault in one sensor and as a result the system is able 
to detect multiple faults simultaneously.  

 
3.3. Alternative models  

Perceptron networks: In this type of neural 
networks, the output of each neuron is computed as:  

y� = g�∑ (W�,�
�
��� x�)− 	b��  (14) 

In which �� is the network’s kth input variable, ��,� 

is the weight of kth input ��  for neuron j, and ��  is 

the bias for neuron j. sigmoidal function (g(•)) is the 
commonly used function in this kind of networks 
[23]. Fig. 5 illustrates the function of a neuron and 
the overall structure of a perceptron network.  
Radial basis function network: This is another type of 
neural network in which the output of ��		�� each 
neuron j=1, …,p is calculated as: 

y� = g��X − C���      (15) 
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Where g(•) is the activation function, ‖•‖  is the 
Euclidean norm, X=[x1, …,xn] is the input vector and 
��  is the center of neuron j. A commonly used 

activation function is the Gaussian function in the 
following form [24]: 

g� = exp	 �−
������

�

���
�	         (16) 

       (16) 

 
Fig. 5.a. Neuron structure 
 

 
Fig. 5.b. MLP structure 
 

3.4.Identification and training 
In order to identify the models, data are 

acquired from the CSTH plant described in section 2. 
The plant is run at different operating points and 
5000 data points are acquired. The first 3000 of 5000 
data points are used to identify the parameters of each 
model and the remaining for validation purpose. The 
plant under study involves 5 inputs and 4 outputs 
yielding a 9-input 9-output model structure for the 
fault estimator since there are 9 parameters to be 
estimated. 

Generally, it is difficult to identify a model 
using faulty data. To avoid this problem, an artificial 
fault vector was generated to simulate fault scenarios 
in each sensor, following the same strategies used in 
[2, 25]. Fig. 6 illustrates the fault signal used for 
identification. This signal is applied to train the fault 
estimator for input and output sensor measurements. 
The signal is divided into 5 parts: first a null effect is 
introduced to guarantee output close to zero in the 
absence of faults. Second abrupt variations are 
represented by steps. Third an incipient change is 
placed as a ramp. Fourth a null interval is considered 
again to ensure output close to zero in the absence of 
faults and finally white noise is included. The fault 
estimator can estimate any fault scenario similar to 

any section of the pattern shown in Fig. 6. The fault 
signal has unity amplitude and is duly scaled 
proportional to variable under analysis varying up to 
50 % of the variable size.   

The identification procedure is carried out 
by adding the signal (duly scaled) to each sensor and 
considering it as the output of the fault estimator. The 
presence of noise and disturbance in one sensor must 
not affect the estimation quality for other sensors. For 
this purpose the following iterations should be carried 
out for each sensor with the following characteristics: 
1-Considering the sensor measurements ũ(t),ỹ(t) as 
input for the fault estimator, adding the training 
pattern to the corresponding sensor and considering it 
as output for the fault estimator. 
2-Considering the sensor measurements ũ(t),ỹ(t) as 
input, adding the training pattern to the corresponding 
sensor and random noise to other sensors and 
considering the pattern as output. 
3-Considering the sensor measurements ũ(t),ỹ(t) as 
input, leaving the corresponding sensor unchanged, 
adding random noise to other sensors and considering 
a null output for the estimator. 

The random noise signal �  is generated 
stochastically as it follows: 
δ(0)= 0 
δ(t)= 	δ(t − 1)+ z      (17) 
Where z has a normal distribution with unit variance 
and zero average. This increases the estimator 
robustness in the presence of noise [25-27]. 
 

 
 Fig. 6. Fault training pattern 
 

for neural networks, Levenberg-Marquardt 
algorithm [28] is used to estimate the parameters, and 
normalized average quadratic error is chosen as the 
stopping criterion. For MLP network, 1 and 2 hidden 
layers each including 2-15 neurons are checked and 
for RBFN network, 2-25 neurons in the hidden layer 
are tested. For the case of Tagaki-Sugeno fuzzy 
model, the bell shape membership function in the 
following form is employed:   

μ�(x)= exp�− 	 �
�����

�

��
�
�

�    (18)  
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Where xi is the ith input and ��
� is the component i of 

vector 	�� . The parameters of these functions are 
optimized by the gradient descent algorithm. A 
number of 2-25 rules are tested. Least square 
optimization method is applied to optimize the 
parameters of the output function gk (•). 

 
3.5. Training and validation analysis 

Selection of the number of parameters for 
each model was made based on the fitting index 
below[21]: 

FIT = 	1 −
|��ŷ|

|����|
  (19)  (19) 

where y is the vector that contains p measurements of 
the system output, ŷ is the vector of p measurements 
estimated by the model, and y̅ is a vector where all its 
components equals the average values of vector y.  

Fig. 7 presents the results for model 
identification and validation as a function of 
parameter number.  For comparison purpose, number 
of rules for the fuzzy model and number of hidden 
layers and neurons for the neural networks are varied.  
As it is expected the model performance improves as 
the number of parameters increase. However as it is 
shown in Fig. 7 there is an asymptotic limitation for 
the models. Table 2 represents the best results 
obtained for training and validation of the applied 
techniques based on the fitting index defined in 
equation 19 T-S fuzzy model represented the best 
performance; therefore it is selected as the fault 
estimator. 

 
Fig. 7.a. Results of fitting performance, T-S fuzzy 
model showed the best performance 

 
Fig. 7.b. Results of validation, T-S fuzzy model 
presented better validation performance 

 

Table 2. Best obtained results for validation and 
training 

Model 
Training FIT 

(%) 
Validation FIT 

(%) 
T-S 95.45 91.27 

MLP 94.34 91.03 
RBFN 91.97 89.47 

 
3.6. Principle Component Analysis  

Principle component analysis is a statistical 
technique commonly used for the monitoring of the 
process operation. It is proposed to apply this 
technique in order to minimize the effects of noise 
and modeling error when constructing the estimator. 
Suppose that X=[x1,x2,…,xq] to be a p×q matrix that 
contains p measurements of q symptoms delivered by 

the fault estimator ���	
ˆ (�), ��

ˆ(�)�
�

. In order to 
eliminate the effect of size of each variable the 
following matrix is formed:  
X� = O�

��(X − M{X})  (20) 
Os is a diagonal matrix where it’s elements are the 
variance of the variables and E{w}= [m1,m2,…,mq] is 
the average of the variables xi. Let C, q×q dimension 
matrix, be the covariance matrix of variables xi. 
Decomposition of matrix Q into proper vectors 
corresponds to: 
U�CU = R  (21) 
Where U is an orthonormal matrix which its columns 
are the eigenvectors of C and R is a diagonal matrix 
with eigenvalues of C. 
In order to minimize the effects of noise and 
estimation errors, estimator output data are filtered 
through the k most important principle components. 
Let k be the number of eigenvalues of Q matrix that 
contain more than 99 percent of total data energy. In 
mathematical form it can be written as: 
∑ ��
�
���

∑ ��
�
���

> 0.99	 

And let Û be the matrix formed by the k most 
important eigenvectors of matrix Q which 
corresponds to the k most important eigenvalues. 
These eigenvectors include the most important 
characteristics of total data set obtained from the 
estimator output. 
Matrix X̅ is decomposed into principle component 
space X̂ and residual space X̃ according to the 
following equation: 

X� = X� + X� 
Â = ÂX� + ��	X�  (22) 
Where X̂=	ÛÛ�  and Ã=1- Â.  Projection of data into 
the principle component space X̂ reduces the 
dimension of q variables into k principle components. 
In the normal operating state, the residual space can 
is formed by subtracting the principle component 
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space from the normalized data X̃= X̅-X̂. In the 
occurrence of faults, signals cannot be interpreted by 
principle component space, therefore the residual 
space deviates from the normal operating condition 
and the alarm is triggered. 
 
3.7. Fault detection (Q test) 

In order to detect abrupt variations in the 
behavior of variables, different multivariable 
statistical methods are used with the principle 
component analysis. Hotelling test (T2), Q test and 
Scheffe test are in this category [12, 28]. Since Q test 
is more accurate than Hotelling and Scheffe tests for 
classification of abnormalities [28, 29, 30] Q test is 
applied in this paper. 
Q index or square prediction error is calculated as it 
follows: 
Q	 = 	(X − ỹ�)

�	(X − ỹ�)	= 	 ||��	X||
�      (23)   

Where x is a column vector representing q variables 
xi and ỹf is the prediction obtained from the principle 
components model. It is calculated as: 
y�� = ��X                                                                (24) 
This index shows the difference between the 
measurements of the variables and the predictions 
obtained from the principle components model. 
A confidence level α can be calculated for the Q 
index in the following form: 

Q� = β� �
��

��
�2β�	b�

� 		+ 	
��		��(����)

��
� + 1�

�
��
�

     (25)  (25) 

Where: 
�i : eigenvalue corresponding to the eigenvector �� , 
column i of matrix U.  
β� = ∑ γ�

�
�����   (26)    (26) 

β�	 = 	∑ γ�
��

�����   (27)    (27) 

β�	 = 	∑ γ�
��

�����   (28)    (28) 

b�= 1 −
�	��	��

�	��
�   (29)    (29) 

c = β�

��
�

��
��	

����(����)

��
� ���

������
�

   (30)    (30) 

It can be shown that c has approximately a normal 
distribution with mean zero and unit variance [31] 
and ��  in Equ. 16 indicates a value for which the 
accumulated normal distribution covers an area α. 

In the presence of faults or noise, data 
cannot be interpreted by the principle components 
model. At this moment Q index exceeds Qα threshold 
and the alarm is triggered. Repeated experiments 
indicated that the sensitivity level of the fault 
detection system is about 0.5% of the magnitude of 
variable under analysis. If faults happen in more than 
one sensor at the same moment (very unlikely case) 
or a fault happens when another fault has already 
occurred, Q index again will exceed the threshold and 
the alarm is triggered. In such situations, the fault 

isolation module will indicate the faulty sensors. This 
fault isolation module is described below.    

 
3.8. Fault isolation  

When the presence of fault is announced by 
the fault detection module, the faulty sensor or 
sensors should be isolated from those operating at 
normal condition. Considering the identification 
procedure of the fault estimator in normal operating 
condition, the fault estimator output should be null. 
However due to noise and modeling error, the 
estimator output shows minor deviations from zero. 
In the proposed scheme, this deviation is less than 1% 
of the magnitude of measured quantity. The 
maximum value of these deviations for is indicated 
by DEV. In the presence of a fault, only the part of 
the estimator corresponding to the faulty sensor 
exceeds DEV threshold and the faulty sensor is 
isolated. Therefore: 
DEVi = max | f̂i(t) |     (31) 
f̂i(t) > DEVi  For faulty sensor   (32) 
Where DEVi is the maximum deviation from zero in 
the normal operating condition for the fault estimator 
output corresponding to ith sensor and f̂i(t) is the ith 
estimated fault. 
 
3.9 Signal Correction: 

To reconstruct the damaged signals, all the 
fault estimations are subtracted from the measured 
signals.  Faults can occur in input or output sensors 
[21]. 
If faults occur in input sensors j=1,…,m then: 
���
̂∗  ≠ 0  ∀  j=1,2,…,m   &     ���

̂∗  = 0    ∀  j≠1,2,…,m 

If faults are occurred in output sensors i=1,…,n then: 
���
̂∗  ≠ 0   ∀  i=1,2,…,n    &    ���

̂∗  = 0     ∀  i≠1,2,…,n 

Signal reconstruction is performed as it follows: 

�
��(�)
��(�)

� = �
��(�)
��(�)

� - �
��
̂∗(�)

��
̂∗(�)

�     (33) 

Where u�(t)	and	y�(t)	 represent the the corrected 
signals, u�(t)	and	y�(t)	  are the sensor measurements 
and	f�

̂∗(t)		and	f�
̂∗(t) are the estimated faults.  

 
4. Test Scenario results 

In order to evaluate the system performance 
the following items are considered: 
• Undetected faults: calculated as the percentage of 
time during which erroneously no fault was detected 
with respect to total evaluation time. 
• Mean Absolute Relative Error (MARE): this value 
express the quality of estimated faults by fault 
estimator. 
• Reconstruction quality: express the quality of 
reconstruction of the damaged signals with respect to 
original signal based on the fitting index defined in 
section 3.5. 
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Table 3 represents the results for fault 
detection for different fault scenarios . Six fault 
scenarios are considered and for each scenario the 
MARE and the undetected fault percentage is 
calculated. It is clear that in all the cases the 
undetected fault percentage is less than 4%. The 
maximum value for MARE is 0.0642 that indicates a 
satisfactory estimation quality by the fault estimator. 
The error of signal reconstruction is less than 6% in 
all the cases. Various test results indicated that the 
minimum detectable variation range for fault 
detection stage is about 0.5% of size of the variable 
under study and it is about 1% for fault isolation 
stage. 
 
Table 3. Statistical analysis for different fault 
scenarios 

Fault type MARE Not detected (%) Corrected signal (%) 
Incipient1 0.0430 2.43 94.23 

Noise1 0.0384 3.12 94.79 
Incipient2 0.0642 2.56 94.53 

Noise2 0.0445 3.67 94.14 

Abrupt1 0.0078 0.00 95.12 
Abrupt2 0.0207 0.00 95.76 

 
The fault scenarios are explicated below: 

 
4.1. Scenario Noise 1 and noise 2 

Noise faults generated by the procedure 
explained in section 3.4 are simulated over sensor 
measurements of tank2 output water flow rate and 
tank1 input heat rate. Because the fault signals cross 
the zero line several times during the, simulation 
interval the undetected percentage indicator rises up 
to approximately 4 % in this case. Fig. 8 shows the 
results for tank2 output water flow. 

 
4.2. Scenario Incipient 1 and Incipient 2 

Faults with incipient character are simulated 
over sensor measurements of the tank1 input water 
flow rate and tank2 output water flow rate. In this 
case because each fault signal crosses the zero line, 
there are intervals where the fault variation 
magnitude is less than minimum detectable threshold 
of the estimator. Therefore undetected intervals can 
be observed. As it is presented in table 3 the presence 
of these undetected intervals has affected the signal 
reconstruction quality, decreasing it about 1% 
comparing with the abrupt fault scenario where no 
undetectable intervals exist. Fig.9 demonstrates the 
details of this fault scenario for tank2 output water 
flow rate. 

 
4.3. Scenario Abrupt 1 and Abrupt 2 

Step-like faults are added to measurements 
of tank1 and tank2 temperature sensors. Since the 
minimum variation of each fault is more than the 

sensitivity threshold of the estimator (0.5% of the 
original variable size) undetected fault index is zero 
in this case. The maximum magnitude of each fault 
with respect to the original variable size is 50% and 
40% respectively.  

 

 

 
 

 
Fig. 8. Noise fault, alarm signal, original and repaired 
signals for tank2 output water flow. 
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Fig. 9. Noise fault, alarm signal, original and repaired 
signals for tank1 input water flow rate 

 
5. Conclusion 

In this research work, a scheme is proposed 
for detection and isolation of multiple faults by 
applying dynamic modeling techniques and statistical 
methods. The proposed scheme was examined 
successfully on a CSTH model. Tagaki- Sugeno 
fuzzy model, Multi-layer perceptron and RBF 
networks were checked as the fault estimator while 
Tagaki- Sugeno model appeared to be the best 
choice. The scheme presented sufficient sensitivity 
for detection of faults and isolation of faulty sensors 
and it is capable of detecting noise, abrupt and 
incipient fault and repairing the damaged signal 
which is an important contribution from industrial 
viewpoint. The studied experiments showed that the 
percentage of undetected faults varies depending on 
fault character and its closeness to the sensitivity 
threshold. However this value had only minor effects 
on the quality of repaired signals since the signal 
correction error showed only minor degradation. 

It is important to consider that the proposed 
scheme is independent of the process or system under 
study and the fault estimator has the capability of 
being extended to as many sensors as required, 
therefore the system can be generalized, trained and 
applied to any other process for fault diagnosis 
purposes. 
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