Synthesis of some new (E)-2-arylidine-4-oxo-4-arylaminobutanoic acids and (E)-3-arylidine-1arylpyrrolidine-2,5-diones of possible medicinal applications and biological activities

Boshra Awad^{*}, Shadia Abdallah, Halima Hefny, Mervat Abdou, Fatehya Abdelmonem, and Noura Abdelmonem

Chemistry Department, University College of Women for Arts, Science, and Education, Ain Shams University, Asma Fahmy Street, Heliopolis-11341, Cairo, EGYPT. <u>boshra_awad@yahoo.com</u>

Abstract: Synthesis of compounds 3-32 of possible medicinal and biological activities have been carried out by reaction of (E)-3-(3,4-dimethoxybenzylidene)dihydrofuran-2,5-dione (1) and (E)-3-(benzo[d] [1,3] dioxol-5ylmethylene)dihydrofuran-2,5-dione (2) with aromatic amines (a-h) using microwave and conventional thermal heating to study the structural effect of reactants and techniques used. The microwave irradiation of compound 1 (E)-2-(3,4-dimethoxybenzylidine)-4-oxo-4-arylaminobutanoic acids 3-5 and (E)-3-(3.4gave dimethoxybenzylidene)-1-arylpyrrolidine-2,5-diones 11-17. Also compound 2 gave (E)-2-(benzo[d][1,3]dioxol-5ylmethylene)-4-oxo-4-arylaminobutanoic acids (E)-3-(benzo[d][1,3]dioxol-5-ylmethylene)-1-18-23, and arylpyrrolidine-2,5-diones **26-32**. In all reactions, microwave irradiation technique, showed enhancement in yields, selectivity, cleaner reactions with reduction in reaction time, and easier working up than in the conventional thermal heating technique. On the other hand, reaction of compounds 1 or 2 with amines **a-h** using the conventional thermal heating technique yielded only the corresponding (E)-2-arylidine-4-oxo-4-arylaminobutanoic acid derivatives 3-10, or 18-25, respectively. The structural formulas of the products obtained were assigned by their spectral data. Some prepared compounds were found to have cytotoxic and antimicrobial activities.

[Boshra Awad, Shadia Abdallah, Halima Hefny, Mervat Abdou, Fatehya Abdelmonem, and Noura Abdelmonem Synthesis of some new (E)-2-arylidine-4-oxo-4-arylaminobutanoic acids and (E)-3-arylidine-1arylpyrrolidine-2,5-diones of possible medicinal applications and biological activities] Journal of American Science 2012; 8(2):87-95]. (ISSN: 1545-1003). <u>http://www.americanscience.org</u>. 13

Key Words: Cytotoxic, antimicrobial, microwave irradiation, butanoic acids, pyrrolidine-2,5-diones

Introduction

Microwave-assisted organic synthesis is rapidly becoming recognized¹. Coupling of microwave irradiation with solvent-free technique allows enhancement in yields, selectivity, cleaner reactions with reduction in reaction time, and easier working up²⁻⁸.

The synthesis of some butenamides and pyrrolidine-2,5-diones by microwave irradiation of some α , β -unsaturated anhydrides with some aliphatic or aromatic amines, was found to be more convenient and efficient, comparable to the conventional thermal heating technique. Some of the products obtained showed biological and cytotoxic (antiproliferative) activities⁹⁻¹¹. The conventional thermal condensation of γ -phenylitaconic anhydrides with hydrazine hydrate, aromatic or aliphatic amines gave the corresponding biological active γ -aryl itaconic hydrazides, γ -aryl itaconamic acids and γ -aryl itaconimides, respectively¹².

The aim of the present work is to synthesize some new 2-substituted methylene-4-oxo-4arylaminobutanoic acid and pyrrolidine-2,5-dione derivatives as antimicrobial and cytotoxic compounds in an efficient procedure, short time, high yield and purity, and also to study the factors affecting the reaction.

Experimental

(E)-3-(3,4-dimethoxybenzylidene)dihydrofuran-2,5-dione 1 and (E)-3-(benzo[d] [1,3] dioxol-5ylmethylene) dihydrofuran-2,5-dione 2 were prepared and purified¹³. Microwave irradiation of compounds 1 or 2 with different aromatic amines; aniline (a), 2aminoaniline (**b**). 2-mercaptoaniline (c). 2hydroxyaniline (**d**), 2-methoxyaniline 2-(e), methylaniline (f), 2-aminopyridine (g), or 2aminothiazole (h), have been carried out in absence of solvents. The factors affecting this reaction, such as structures of reactants, basicity of amines, and solvent effect were studied. Some microwave irradiation reactions were carried out in presence of dimethyl formamide as an aprotic solvent, in order to study the effect of solvation on the reaction. The biological activities; cytotoxic and antimicrobial were screened. The results obtained from the microwave irradiation reactions were compared with the corresponding conventional thermal reactions.

General remarks

Microwave irradiation was carried out in a Galanz Microwave Oven, WP1000AP30-2, Chemistry Department, University College of Women for Arts, Science and Education, Ain Shams University. Spectral measurements were carried out at Micro Analytical Centre, Faculty of Science, Cairo University, using:

(a) FTIR: PERKIN-ELMER-1430; Infrared Spectrophotometer.

(b) GCMS OP 1000 EX Shimaedzy; MS spectra.

(c) Varian Gemmi (300 MHz); ¹H-NMR spectra.

(d) Biological activity: Antimicrobial Screening was measured in the Botany Department, University College of Women for Arts, Science, and Education, Ain Shams University, Asma Fahmy Street, Heliopolis, Cairo, Egypt

(e) Cytotoxic measurements were carried out in the National Institute of Cancer, Cairo University, Cairo, Egypt.

Microwave irradiation technique

In an open vessel a homogenous grinded mixture of compounds 1 or 2 with different aromatic amines (a-h) was dry irradiated for 2-5 minutes in a microwave oven (1000 watt, 100% power). The reaction progress was monitored by thin layer chromatography (TLC) until no more unreacted materials were observed. The reaction mixture was then cooled down to room temperature and dissolved in chloroform. The chloroform layer was washed with dilute HCl to get rid of unreacted amine, followed by its extraction with 10% ice-cold sodium carbonate solution. Acidification of the aqueous layer with ice-cold concentrated hydrochloric acid,

 Table 1: Biological activities of some butanoic acids

precipitated corresponding (E)-2-(3,4the dimethoxybenzylidine)-4-oxo-4-(arylamino)butanoic (E)-2-(benzo[d][1,3]dioxol-5acids 3-5 or vlmethylene)-4-oxo-4-(arylamino)butanoic acids 18-23. On the other hand the organic layer was thoroughly washed with water, dried over anhydrous sodium sulfate and distilled to give the corresponding (E)-3-(3.4-dimethoxybenzylidene)-1arylpyrrolidine-2,5-diones 11-17, or (E)-3-(benzo[d] dioxol-5-ylmethylene)-1-arylpyrrolidine-2,5-[1,3] diones 26-32.

Reaction of compounds 1 and 2 with amine b in presence of DMF as a solvent gave the arylpyrrolidine-2,5-diones 12 and 27, respectively.

The products obtained 3-32 were crystallized from the appropriate solvent and their structures were confirmed by their spectral analysis data; IR, ¹H-NMR and MS.

Conventional thermal heating technique

A homogenous mixture of 1 or 2, with different aromatic amines (a-h) (1:2) was heated under reflux for at least 4 hrs in benzene. The reaction progress was monitored by TLC. The reaction mixture was then concentrated and the precipitate formed was filtered and dissolved in chloroform then worked up in the same way given in the solvent-free microwave irradiation technique. Structures of products were confirmed by their melting and mixed melting points, spectral measurements, FTIR, ¹H-NMR, and MS.

Product	Antimicrobial Act Inhibition zone (mm	Cytotoxic				
	Bacillus subtilis	E. Coli	Pseudomonas	Staphylococcus	activity	
	(G^{+})	(G ⁻)	aeruginosa (G ⁻)	Aureus (G^+)	IC50 µg/ml	
5	30		15	03		
6	15			20		
7	22	15	20	21		
9	15	20	21	17		
10		16	17			
13					7.5	
16					7.7	
17					9	
20	30			30		
21	23	16	15	22		
22	15	17	22	16		
24	15	16	19	15		
25	15		20	15		
28					16	
31					6.45	
32					13.7	
Doxorubicin					3.73	

Biological activity: Antimicrobial screening

The antimicrobial screening of carboxylic compounds; 5-7, 9, 10, 20-22, 24, and 25, was carried out using the disk diffusion method, inhibition zone diameter (mm/mg sample) in DMSO as solvent. It showed that all derivatives examined have

antimicrobial activity ranging from high to moderate values against; *Bacillus subtilis* (G^+), *Staphylococcus aureus* (G^+), *Escherichia coli* (G^-), and *Pseudomonas aeruginosa* (G^-). The most pronounced antibacterial activities were obtained with compounds **5** and **20**, where (G^+) is 30 (mm/mg), whereas the other compound showed (G^-) and/or (G^+) in the range 15-23 (mm/mg). The results obtained are given in Table 1. The high activity of compounds **5** and **20** could be attributed to the presence of mercapto (-SH) group. **Medicinal application: Cytotoxic activity**

Cytotoxic activity of compounds 13, 16, 17, 28, 31, and 32 was tested by using HEPG2-DOX as a reference drug, against human liver carcinoma cell line using the method that reported by Skehan *et al.*¹⁴. The results obtained showed that compounds 28, 32 and 17, have low activity (16.0, 13.7, 9.0; IC50 µg/ml, respectively), whereas compounds 13, 16 show moderate activity, (7.5, 7.7; IC50 µg/ml, respectively), and compound 31 is the most active one (6.45; IC50 µg/ml), compared to the reference drug (3.73; IC50 µg/ml). IC50 is defined as the concentration that results in a 50% decrease in cell number as compared with that of the control structures in the absence of an inhibitor.

(E)-2-(3,4-Dimethoxybenzylidine)-4-oxo-4phenylaminobutanoic acid (3): White crystals from ethanol, mp 190 °C, 5% yield in microwave and 99% yield in thermal. FTIR (KBr): υ (cm⁻¹) = 3345 (NH, amide) 3400-2400 (OH, acid), 1703 (CO, acid) and 1665 (CO, amide). MS: m/z = 341 (M⁺, 3.5%, C₁₉H₁₉NO₅), 323 (1.5, C₁₉H₁₇NO₄), 248 (38, C₁₃H₁₂O₅), 176 (100, C₁₁H₁₂O₂), 161 (47, C₁₀H₉O₂), 147 (2.5, C₈H₅NO₂), 119 (7, C₇H₅NO), 115 (20, C₄H₅NO₃), 93 (36, C₆H₇N) and 92 (14, C₆H₆N).

(E)-2-(3,4-Dimethoxybenzylidine)-4-oxo-4-(2aminophenylamino)butanoic acid (4): White crystals from ethanol, mp 249-250 °C, 97% yield in microwave and 95% yield in thermal. FTIR (KBR): υ (cm⁻¹) = 3300-3272 (⁺NH₃, anilinium and NH, amide), 1679 (CO, amide), and 1516-1448 (2CO, carboxylate). MS: m/z = 356 (M⁺, 2%, C₁₉H₂₀N₂O₅), 339 (5, C₁₉H₁₉N₂O₄), 338 (24, C₁₉H₁₈N₂O₄), 321 (1, C₁₉H₁₅NO₄), 310 (1.5, C₁₈H₁₈N₂O₃), 293 (30, C₁₇H₁₃N₂O₃), 248 (6, C₁₃H₁₂O₅), 247 (6, C₁₃H₁₃NO₄), 217 (3, C₁₂H₁₁NO₃), 134 (3, C₇H₆N₂O), 133 (9, C₇H₅N₂O), and 132 (100, C₇H₄N₂O).

¹H-NMR (DMSO-d₆): δ (ppm) = 3.68 (3H, s, H-1), 3.76 (3H, s, H-2), 3.63 (2H, s, H-7), 6.98-7.01 (1H, dd, H-10), 7.10-7.13 [3H, m, (H-3), (H-11), and (H-12)], 7.18-7.20 (1H, dd, H-4), 7.46-7.49 [3H, m, (H-5), (H-6), and (H-13)], 7.49 (1H, s, H-8), and 7.82 (3H, s, H-9).

(E)-2-(3,4-Dimethoxybenzylidine)-4-oxo-4-(2mercaptophenylamino)butanoic acid (5): White crystals from acetone, mp 168-170 °C, 93% yield in microwave and 88% yield in thermal. FTIR (KBr): υ (cm⁻¹) = 3400-2400 (OH, acid), 3100-3050 (NH, amide), 2614 (SH), and 1657 (CO, acid and CO, amide). MS: m/z = 373 (M⁺, 0.01%, C₁₉H₁₉NO₅S), 356 (14, C₁₉H₁₈NO₄S), 355 (59, C₁₉H₁₇NO₄S), 328 (0.02, C₁₈H₁₈NO₃S), 248 (3, C₁₃H₁₂O₅), 247 (2, C₁₃H₁₃NO₄), 151 (6.6, C₇H₅NOS), 150 (10.5, C₇H₄NOS), and 149 (100, C₇H₃NOS). ¹H-NMR (DMSO-d₆): δ (ppm) = 3.40 (2H, imp, H-7), 3.75 (3H, s, H-1), 3.77 (3H, s, H-2), 4.33 (1H, s, H-9), 6.99-7.03 (1H, dd, H-4), 7.17-7.19 (1H, d, H-3), 7.35-7.44 [2H, m, (H-5) and (H-12)], 7.46-7.52 (1H, m, H-11), 7.86 (1H, s, H-6), 7.92-7.95 (1H, dd, H-10), 8.02-8.05(1H, dd, H-13), and 12.80 (1H, br., H-14).

(E)-2-(3,4-Dimethoxybenzylidine)-4-oxo-4-(2hydroxyphenylamino)butanoic acid (6): Pale brown crystals from benzene, mp 193-194 °C, 0% yield in microwave and 96% yield in thermal. FTIR (KBr): υ (cm⁻¹) = 3400-2400 (OH, acid), 3318 (OH, phenol), 3173 (NH, amide), and 1662 (CO, acid and CO, amide). MS: m/z = 357 (M⁺, 14%, C₁₉H₁₉NO₆), 340 (1, C₁₉H₁₈NO₅), 339 (6, C₁₉H₁₇NO₅), 248 (96, $C_{13}H_{12}O_5$), 220 (6, $C_{11}H_9NO_4$), 176 (99, $C_{11}H_{12}O_2$), 161 (56, C₁₀H₉O₂), 136 (5, C₇H₆NO₂), and 109 (100, C_6H_7NO). ¹H-NMR (DMSO-d₆): δ (ppm) = 3.62 (2H, s, H-7), 3.76 (3H, s, H-1), 3.78 (3H, s, H-2), 6.73-6.79 [(1H, d, H-3) and (1H, dd, H-10)], 6.84-6.94 [2H, m, (H-11) and (H-12)], 7.01-7.16 (1H, dd, H-4), 7.25-7.26 (1H, d, H-5), 7.77 (1H, s, H-6), 7.87-7.90 (1H, dd, H-13), 9.33 (1H, s, H-9), 9.84 (1H, s, H-8), and 12.56 (1H, br., H-14).

(E)-2-(3,4-Dimethoxybenzylidine)-4-oxo-4-(2methoxyphenylamino)butanoic acid (7): White crystals from ethanol, mp 196 °C, 0% yield in microwave and 93% yield in thermal. FTIR (KBr): v $(cm^{-1}) = 3400-2400$ (OH, acid), 3323 (NH, amide), 1679 (CO, acid) and 1653 (CO, amide). MS: m/z = $371 (M^+, 47\%, C_{20}H_{21}NO_6), 354 (0.6, C_{20}H_{20}NO_5),$ 353 (3, C₂₀H₁₉NO₅), 326 (1, C₁₉H₂₀NO₄), 248 (39, C₁₃H₁₂O₄), 177 (13, C₉H₇NO₃), 176 (48, C₁₁H₁₂O₂), 161 (27, $C_{10}H_9O_2$), 150 (5, $C_8H_8NO_2$), 149 (4, C₈H₇NO₂), and 123 (100, C₇H₉NO). ¹H-NMR $(DMSO-d_6)$: δ (ppm) = 3.62 (2H, s, H-7), 3.76 (3H, s, H-1), 3.78 (3H, s, H-2), 3.84 (3H, s, H-9), 6.65-6.95 [2H, m, (H-3), and (H-10)], 7.01-7.04 (1H, m, H-12), 7.01-7.17 (1H, dd, H-4), 7.20-7.28 (1H, m, H-11), 7.36 (1H, d, H-5), 7.76 (1H, s, H-6), 8.02-8.05 (1H, dd, H-13), and 9.33 (1H, s, H-8).

(E)-2-(3,4-Dimethoxybenzylidine)-4-oxo-4-(2methylphenylamino)butanoic acid (8): White crystals from ethanol, mp 212-213 °C, 0% yield in microwave and 91% yield in thermal. FTIR (KBr): v(cm⁻¹) = 3305 (NH, amide), 3400-2400 (OH, acid), 1684 (CO, acid) and 1661.5 (CO, amide). MS: m/z = 355 (M⁺, 92%, C₂₀H₂₁NO₅), 354 (3, C₂₀H₂₀NO₅), 338 (2, $C_{20}H_{20}NO_4$), 337 (6, $C_{20}H_{19}NO_4$), 310 (7, $C_{19}H_{20}NO_3$), 248 (37, $C_{13}H_{12}O_5$), 176 (62, $C_{11}H_{12}O_2$), 175 (55.5, $C_{10}H_9NO_2$), 161 (41, $C_{10}H_9O_2$ or $C_9H_7NO_2$), 132 (10, C_8H_6NO), 107 (100, C_7H_9N), 91 (87, C_7H_7) and 89 (19, C_7H_5).

(E)-2-(3,4-Dimethoxybenzylidine)-4-oxo-4-(pyridin-2-ylamino)butanoic acid (9): White crystals from ethanol, mp 198-200 °C, 0% yield in microwave and 99% yield in thermal. FTIR (KBr): υ (cm⁻¹) = 3400-2400 (OH, acid), 3246 (NH, amide), and 1685 (CO, acid and CO, amide). MS: m/z = 342 (M⁺, 19%, C₁₈H₁₈N₂O₅), 325 (5, C₁₈H₁₇N₂O₄), 324 (23, C₁₈H₁₆N₂O₄), 297 (2, C₁₇H₁₇N₂O₃), 248 (48, C₁₃H₁₂O₅), 176 (52, C₁₁H₁₂O₂), 134 (4, C₇H₆N₂O), 121 (100, C₆H₅N₂O), and 78 (64, C₅H₄N).

(E)-2-(3,4-Dimethoxybenzylidine)-4-oxo-4-(thiazol-2-ylamino)butanoic acid (10): White crystals from ethanol, mp 226-228 °C, 0% yield in microwave and 99% yield in thermal. FTIR (KBr): υ (cm⁻¹) = 3400-2400 (OH, acid), 2966 (NH, amide), and 1675 (CO, acid and CO, amide). MS: m/z = 348 (M⁺, 4%, C₁₆H₁₆N₂O₅S), 331 (7, C₁₆H₁₅N₂O₄S), 330 (36, C₁₆H₁₄N₂O₄S), 302 (1, C₁₅H₁₄N₂O₃S), 248 (46, C₁₃H₁₂O₅), 176 (100, C₁₁H₁₂O₂), 161 (40.5, C₁₀H₉O 2), 126 (2, C₄H₂N₂OS), 115 (20, C₄H₅NO₃), 100 (63, C₃H₄N₂S), and 98 (1.2, C₄H₄NO₂).

(E)-3-(3,4-Dimethoxybenzylidene)-1-

phenylpyrrolidine-2,5-dione (11): Pale yellow crystals from benzene , mp 211-212 °C, 95% yield in microwave and 0% yield in thermal. FTIR (KBr): v (cm⁻¹) = 1770 and 1706 (2CO, imide). MS: m/z = 323 (M⁺, 74%, C₁₉H₁₉NO₅), 176 (100, C₁₁H₁₂O₂), 175 (9, C₁₁H₁₁O₂), 162 (6, C₁₀H₁₀O₂), 161 (46, C₁₀H₉O₂ or C₉H₇NO₂), 145 (6, C₁₀H₉O), 119 (17, C₇H₅NO), 107 (11, C₇H₇O) and 91 (25, C₆H₅N).

(E)-3-(3,4-Dimethoxybenzylidene)-1-(2-

aminophenyl)pyrrolidine-2,5-dione (12): Pale brown crystals from benzene, mp 224-226 °C, 95% yield in microwave (only in the presence of DMF) and 0% yield in thermal. FTIR (KBr): υ (cm⁻¹) = 3426-3348 (NH₂) and 1758-1635 (2CO, imide). MS: m/z = 338 (M⁺, 57%, C₁₉H₁₈N₂O₄), 322 (4, C₁₉H₁₆NO₄), 321 (28, C₁₉H₁₅NO₄), 247 (15, C₁₃H₁₂NO₄), 246 (8, C₁₃H₁₂NO₄), 176 (49, C₁₁H₁₂O₂), 162 (9.5, C₈H₆N₂O₂), and 134 (56, C₇H₆N₂O).

(E)-3-(3,4-Dimethoxybenzylidene)-1-(2-

hydroxyphenyl)pyrrolidine-2,5-dione (13): Brown crystals from benzene, mp 223-224 °C, 96% yield in microwave and 0% yield in thermal. FTIR (KBr): υ (cm⁻¹) = 3374 (OH, phenol), 1766 -1643 (2CO, imide).MS: m/z = 339 (M⁺, 100%, C₁₉H₁₇NO₅), 338 (2,C₁₉H₁₆NO₅), 322 (2, C₁₉H₁₆NO₄), 311 (1, C₁₈H₁₇NO₄), 297 (2, C₁₇H₁₅NO₄), 294 (30.5, C₁₈H₁₆NO₃), 246 (0.3, C₁₃H₁₂NO₄), 189 (3, C₁₀H₇NO₃),176 (44, C₁₁H₁₂O₂), and 135 (12, C₇H₅NO₂). ¹H-NMR (DMSO-d₆): δ (ppm) = 3.75 (2H, s, H-7), 3.83 (3H, s, H-1), 3.85 (3H, s, H-2), 6.87-6.92 [2H, m, (H-3) and (H-9)], 6.95-6.98 (1H, dd, H-4), 7.06-7.11 [2H, m, (H-10) and (H-11)], 7.13 (1H, d, H-5), 7.26-7.31 (1H, dd, H-12), 7.51 (1H, s, H-6), and 9.75 (1H, s, H-8).

(E)-3-(3,4-Dimethoxybenzylidene)-1-(2-

methoxyphenyl)pyrrolidine-2,5-dione (14): Grey crystals from benzene, mp 186 °C, 93% yield in microwave and 0% yield in thermal. FTIR (KBr): v (cm⁻¹) = 1769-1647 (2CO, imide). MS: m/z = 353 (M⁺, 93%, C₂₀H₁₉NO₅), 339 (3, C₁₉H₁₇NO₅), 322 (3, C₁₉H₁₆NO₄), 294 (3, C₁₈H₁₆NO₄), 280 (7, C₁₇H₁₄NO₃), 203 (4, C₁₁H₁₉NO₃), 177 (14.5, C₉H₇NO₃), 161 (31, C₁₀H₉O₂), 150 (11, C₈H₈NO₂), 149 (57, C₈H₇NO₂), and 57 (100, C₂H₃NO). ¹H-NMR (DMSO-d₆): δ (ppm) = 3.75 (2H, s, H-7), 3.80 (3H, s, H-1), 3.81 (3H, s, H-2), 3.83 (3H, s, H-8), 7.02-7.04 (1H, m, H-9), 7.06-7.09 (1H, d, H-3), 7.18-7.21 (1H, dd, H-4), 7.23-7.28 [2H, m, (H-10) and (H-11)], 7.30 (1H, d, H-5), 7.44-7.49 (1H, dd, H-12), and 7.52 (1H, s, H-6).

(E)-3-(3,4-Dimethoxybenzylidene)-1-(2methylphenyl)pyrrolidine-2,5-dione (15): White crystals from benzene, mp 186-188 °C, 90% yield in microwave and 0% yield in thermal. FTIR (KBr): v(cm⁻¹) = 1766-1647 (2CO, imide). MS: m/z = 337 (M⁺, 100%, C₂₀H₁₉NO₄), 336 (15, C₂₀H₁₈NO₄), 322 (4, C₁₉H₁₆NO₄), 306 (8, C₁₉H₁₇NO₃), 292 (12, C₁₈H₁₅NO₃), 176 (77, C₁₁H₁₂O₂), 175 (13, C₁₀H₉NO₂), 161 (39, C₁₀H₉O₂ or C₉H₇NO₂), 132 (3, C₈H₆NO), and 91 (13.5, C₇H₇).

(E)-3-(3,4-Dimethoxybenzylidene)-1-(pyridin-2-yl)pyrrolidine-2,5-dione (16): Yellow crystals from benzene, mp 214-215 °C, 98% yield in microwave and 0% yield in thermal. FTIR (KBr): υ (cm⁻¹) = 1769-1709 (2CO, imide). MS: m/z = 324 (M⁺, 100%, C₁₈H₁₆N₂O₄), 296 (1.5, C₁₇H₁₆N₂O₃), 264 (1, C₁₆H₁₂N₂O₂), 187 (2, C₁₀H₇N₂O₂), 176 (56, C₁₁H₁₂O₂), 175 (6, C₉H₇N₂O₂), 161 (35, C₁₀H₉O₂), 120 (11, C₆H₄N₂O), and 78 (50, C₅H₄N).

(E)-3-(3,4-Dimethoxybenzylidene)-1-(thiazol-2yl)pyrrolidine-2,5-dione (17): Pale brown crystals from benzene, mp 236-238 °C, 99% yield in microwave and 0% yield in thermal. FTIR (KBr): v(cm⁻¹) = 1768-1647 (2CO, imide). MS: m/z = 330 (M⁺, 67%, C₁₆H₁₄N₂O₄S), 302 (1, C₁₅H₁₄N₂O₃S), 288 (1, C₁₄H₁₂N₂O₃S), 193 (1, C₈H₅N₂O₂S), 176 (100, C₁₁H₁₂O₂), 161 (40, C₁₀H₉O₂), 126 (5, C₄H₂N₂OS), and 84 (1, C₃H₂NS).

(E)-2-(Benzo[d][1,3]dioxol-5-ylmethylene)-4oxo-4-phenylaminobutanoic acid (18): White crystals from ethanol, mp 190 °C, 20% yield in microwave and 98% yield in thermal. FTIR (KBr): v(cm⁻¹) = 3284 (NH, amide), 3400-2400 (OH, acid), 1700-1640 (CO, acid) and (CO, amide). MS: m/z = 325 (M⁺, 3%, C₁₈H₁₃NO₄), 307 (2, C₁₈H₁₃NO₄), 206 (6, $C_{11}H_{10}O_4$), 161 (13, $C_{10}H_9O_2$), 160 (100, $C_{10}H_8O_2$), 159 (21, $C_{10}H_7O_2$), 147 (3, $C_8H_5NO_2$), 119 (3, C_7H_5NO), 115 (2, $C_4H_5NO_3$), 98 (3, $C_4H_2O_3$) and 93 (92, C_6H_7N).

(E)-2-(Benzo[d][1,3]dioxol-5-ylmethylene)-4oxo-4-(2-aminophenylamino)butanoic acid (19): White crystals from ethanol, mp 258-260 °C, 93% yield in microwave and 88% yield in thermal. FTIR (KBr): υ (cm⁻¹) = 3354-3270 (⁺NH₃, anilinium and NH, amide), 1667 (CO, amide), and 1498-1443 (2CO, carboxylate).MS: m/z = 340 (M⁺, 1%, C₁₈H₁₆N₂O₅), 323 (2, C₁₈H₁₅N₂O₅), 322 (9, C₁₈H₁₄N₂O₄), 296 (0.6, C₁₇H₁₆N₂O₃), 233 (5, C₁₂H₉O₅), 232 (27, C₁₂H₈O₅), 231 (2, C₁₂H₉NO₄), 206 (2.5, C₁₀H₁₀N₂O₃), 160 (100, C₁₀H₈O₂), 135 (9, C₇H₇N₂O), 134 (8, C₇H₆N₂O), 108 (47, C₆H₈N₂), and 107 (18, C₆H₇N₂).

(E)-2-(Benzo[d][1,3]dioxol-5-ylmethylene)-4oxo-4-(2-mercaptophenylamino)butanoic acid (20): White crystals from acetone, mp 178-180 °C, 90% yield in microwave and 86% yield in thermal. FTIR (KBr): υ (cm⁻¹) = 3400-2400 (OH, acid), 3400-3055 (NH, amide), 2511 (SH), and 1665 (CO, acid and CO, amide). MS: m/z = 357 (M⁺, 0.02%, C₁₈H₁₅NO₅S), 340 (12, C₁₈H₁₄NO₄S), 339 (55, C₁₈H₁₃NO₄S), 313 (0.1, C₁₇H₁₅NO₃S), 248 (2, C₁₂H₁₀NO₅), 233 (2, C₁₂H₁₉O₅), 223 (3, C₁₀H₉NO₃S), 151 (5, C₇H₅NOS), 150 (10.6, C₇H₄NOS), and 149 (100, C₇H₃NOS).

(E)-2-(Benzo[d][1,3]dioxol-5-ylmethylene)-4oxo-4-(2-hydroxphenylamino)butanoic acid (21): White crystals from benzene, mp 194-196 °C, 6% yield in microwave and 95% yield in thermal. FTIR (KBr): υ (cm⁻¹) = 3400-2400 (OH, acid), 3300 (OH, phenol), 3178 (NH, amide), 1664-1616 (CO, acid and CO, amide). MS: m/z = 341 (M⁺, 15%, C₁₈H₁₅NO₆), 324 (6, C₁₈H₁₄NO₅), 323 (30, C₁₈H₁₃NO₅), 297 (8, $C_{17}H_{18}NO_4$), 232 (52, $C_{12}H_9NO_4$), 160 (100, $C_{10}H_8O_2$), 135 (5, $C_7H_5NO_2$), 109 (83, C_6H_7NO), and 108 (13, C₆H₆NO). ¹H-NMR (DMSO-d₆): δ (ppm) = 3.58 (2H, s, H-6), 6.06 (2H, s, H-1), 6.37-6.40 (1H, dd, H-9), 6.49-6.54 (1H, m, H-11), 6.61-6.63 (1H, m, H-2), 6.73-6.94 (1H, m, H-10), 6.98-7.11 (1H, dd, H-3), 7.22 (1H, d, H-4), 7.73 (1H, s, H-5), 7.86-7.89 (1H, dd, H-12), 9.31 (1H, s, H-8), and 9.84 (1H, s, H-7).

(E)-2-(Benzo[d][1,3]dioxol-5-ylmethylene)-4oxo-4-(2-methoxyphenylamino)butanoic acid (22): White crystals from ethanol, mp 204 °C, 8% yield in microwave and 91% yield in thermal. FTIR (KBr): v(cm⁻¹) = 3400-2400 (OH, acid), 3318 (NH, amide), 1680-1630 (CO, acid and CO, amide). MS: m/z= 355 (M⁺, 8%, C₁₉H₁₇NO₆), 338 (2, C₁₉H₁₅NO₅), 337 (2, C₁₉H₁₅NO₅), 232 (53, C₁₂H₈O₅), 231 (3, C₁₂H₉NO₄), 206 (10, C₁₁H₁₀O₄), 177 (2, C₉H₇NO₃), 160 (91, C₁₀H₈O₂), 159 (18, C₁₀H₇O₂), 146 (5, C₉H₆O₂), 123 (100, C_7H_9NO), 119 (2, C_7H_5NO), 115 (2, $C_4H_3NO_3$), 108 (67.5, C_7H_8O), 102 (66, C_8H_6) and 98 (3, $C_4H_2O_3$). ¹H-NMR (DMSO-d₆): δ (ppm) = 3.58 (2H, s, H-6), 3.79 (3H, s, H-8), 6.07 (2H, s, H-1), 6.87-6.93 (1H, dd, H-9), 6.98-7.01 (1H, d, H-2), 6.98-7.11 [3H, m, (H-11), (H-10), and (H-3)], 7.22 (1H, d, H-4), 7.73 (1H, s, H-5), 7.99-8.02 (1H, dd, H-12), 9.30 (1H, s, H-7), and 12.63 (1H, br., H-13).

(E)-2-(Benzo[d][1,3]dioxol-5-ylmethylene)-4oxo-4-(2-methylphenylamino)butanoic acid (23): White crystals from ethanol, mp 217-218 °C, 10% yield in microwave and 90% yield in thermal. FTIR (KBr): υ (cm⁻¹) = 3292 (NH, amide), 3400-2400 (OH, acid), 1683 (CO, acid), and 1656 (CO, amide) MS: m/z = 339 (M⁺, 31%, C₁₉H₁₇NO₅), 338 (1,C₁₉H₁₆NO₅), 322 (1, C₁₉H₁₆NO₄), 321 (2.5, C₁₉H₁₅NO₄), 294 (1, C₁₈H₁₆NO₃), 206 (20, C₁₁H₁₀O₄), 175 (18.5, C₁₀H₉NO₂), 161 (8, C₁₀H₉O₂ or C₉H₇NO₂), 160 (44, C₉H₆NO₂), 107 (100, C₇H₉N), 91 (13, C₇H₇), and 89 (11.5,C₇H₅).

(E)-2-(Benzo[d][1,3]dioxol-5-ylmethylene)-4oxo-4-(pyridin-2-ylamino)butanoic acid (24): White crystals from ethanol, mp 223-224 °C, 0% yield in microwave and 99% yield in thermal. FTIR (KBr): υ (cm⁻¹) = 3400-2400 (OH, acid), 3245 (NH, amide), and 1683 (CO, acid and CO, amide). MS: m/z = 326 (M⁺, 19%, C₁₇H₁₂N₂O₅), 309 (2, $C_{17}H_{13}N_2O_4$), 308 (9, $C_{17}H_{12}N_2O_4$), 281 (2. C₁₆H₁₃N₂O₃), 232 (27, C₁₂H₈O₅), 231 (1, C₁₂H₉NO₄), 204 (19, C₁₁H₁₀NO₃), 161 (6, C₉H₉N₂O), 160 (51, C₁₀H₈O₂), 135 (3.5, C₇H₇N₂O), 121 (91, C₆H₅N₂O), and 102 (100, C_8H_6). ¹H-NMR (DMSO-d₆): δ (ppm) = 3.59 (2H, s, H-6), 6.05 (2H, s, H-1), 6.99 (1H, d, H-2), 7.07-7.11 [3H, m, (H-3),(H-4), and (H-9)], 7.72 (1H, s, H-5), 7.74-7.80 (1H, m, H-10), 8.04-8.07 (1H, m, H-11), 8.30-8.32 (1H, dd, H-8), and 10.64 (1H, s, H-7).

(E)-2-(Benzo[d][1,3]dioxol-5-ylmethylene)-4oxo-4-(thiazol-2-ylamino)butanoic acid (25): White crystals from ethanol, mp 213-215 °C, 0% yield in microwave and 99% yield in thermal. FTIR (KBr): υ (cm⁻¹) = 3400-2400 (OH, acid), 3176 (NH, amide), and 1679 (CO, acid and amide). MS: m/z = 332 (M⁺, 3%, C₁₅H₁₂N₂O₅S), 315 (1, C₁₅H₁₁N₂O₄S), 314 (7, C₁₅H₁₀N₂O₄S), 232 (33, C₁₂H₈O₅), 231 (1, C₁₂H₉NO₄), 188 (2, C₁₄H₁₂N₂O₃S), 160 (74, C₁₀H₈O ₂), and 127 (15.5, C₄H₃N₂OS).

(E)-3-(Benzo[d][1,3]dioxol-5-ylmethylene)-1phenylpyrrolidine-2,5-dione (26): White crystals from benzene, mp 219-220 °C, 80% yield in microwave and 0% yield in thermal. FTIR (KBr): v (cm⁻¹) = 1766 and 1706 (2CO, imide). MS: m/z = 307 (M⁺⁺, 57%, C₁₈H₁₃NO₄), 278 (1, C₁₇H₁₂NO₃), 173 (1, C₁₀H₇O₂), 161 (12, C₁₀H₉O₂), 160 (100, C₁₀H₈O₂), 159 (16, C₁₀H₇O₂), 147 (0.3, C₉H₇O₂), 146 (0.5, $C_9H_6O_2$), 119 (7, C_7H_5NO), 102 (46, C_8H_6), 77 (11, C_6H_5), 75 (16, C_6H_3) and 51 (89, C_4H_3).

(E)-3-(Benzo[d][1,3]dioxol-5-ylmethylene)-1-(2-aminophenyl)pyrrolidine-2,5-dione (27): Brown crystals from benzene, mp 240-241 °C, 90% yield in microwave (only in the presence of DMF) and 0% yield in thermal. FTIR (KBr): v (cm⁻¹) = 3437 (NH₂) and 1729-1646 (2CO, imide). MS: m/z = 338 (M⁺, 57%, C₁₉H₁₈N₂O₄), 322 (4, C₁₉H₁₆NO₄), 321 (28, C₁₉H₁₅NO₄), 247 (15, C₁₃H₁₂NO₄), 246 (8, C₁₃H₁₂NO₄), 176 (49, C₁₁H₁₂O₂), 162 (9.5, C₈H₆N₂O₂), and 134 (56, C₇H₆N₂O).

(E)-3-(Benzo[d][1,3]dioxol-5-vlmethylene)-1-(2-hydroxyphenyl)pyrrolidine-2,5-dione (28): Brown crystals from benzene, mp 226-228 °C, 93% yield in microwave and 0% yield in thermal. FTIR (KBr): υ (cm⁻¹) = 3235 (OH, phenol), 1769-1647 $(2CO, imide).MS: m/z = 323 (M^+, 100\%),$ C₁₈H₁₃NO₅), 306 (4,C₁₈H₁₂NO₄), 295 (2, C₁₇H₁₃NO₄), 294 (4, C₁₇H₁₂NO₄), 281 (3, C₁₆H₁₁NO₄), 279 (24, C₁₇H₁₃NO₃),187 (9, C₁₁H₉NO₂), 163 (1, C₈H₅NO₃), 135 (14, C₇H₅NO₂), and 134 (6.5, C₇H₄NO₂). ¹H-NMR (CDCl₃-d): δ (ppm) = 3.77 (2H, s, H-6), 6.08 (2H, s, H-1), 6.91-6.94 [2H, m, (H-2) and (H-8)], 7.01 (1H, s, H-7), 7.07-7.10 [3H, m, (H-3), (H-10), and (H-9)], 7.27 (1H, s, H-5), 7.30-7.33 (1H, dd, H-11), and 7.67 (1H, d, H-4).

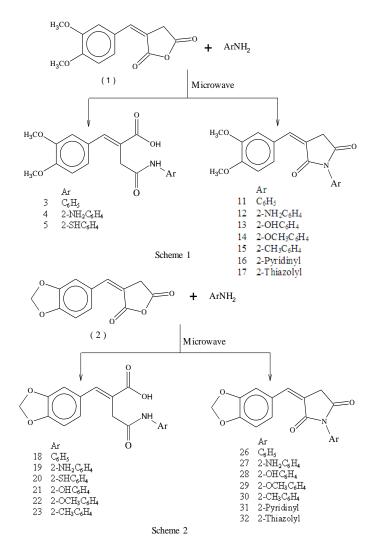
(E)-3-(Benzo[d][1,3]dioxol-5-ylmethylene)-1-(2-methoxyphenyl)pyrrolidine-2,5-dione (29): Pale grey crystals from benzene, mp 188-192 °C, 89% yield in microwave and 0% yield in thermal. FTIR (KBr): υ (cm⁻¹) = 1766-1649 (2CO, imide). MS: m/z = 337 (M⁺, 11%, C₁₉H₁₅NO₅), 309 (0.16, C₁₈H₁₅NO₄), 293 (10, C₁₈H₁₅NO₃), 160 (100, C₁₀H₈O₂), 149 (0.32, C₈H₇NO₂), 119 (15.5, C₇H₅NO), and 108 (4, C₇H₈O).

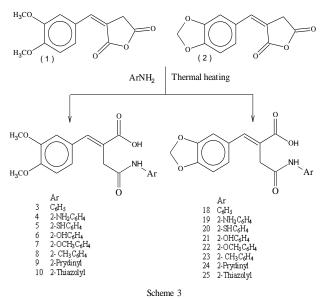
(E)-3-(Benzo[d][1,3]dioxol-5-ylmethylene)-1-(2-methylphenyl)pyrrolidine-2,5-dione (30): White crystals from benzene, mp162-163 °C, 85% yield in microwave and 0% yield in thermal. FTIR (KBr): υ (cm⁻¹) = 1766-1652 (2CO, imide). MS: m/z = 321 (M⁺, 67%, C₁₉H₁₅NO₄), 320 (2.6, C₁₉H₁₄NO₄), 306 (1, C₁₈H₁₂NO₄), 292 (1, C₁₈H₄NO₃), 279 (1, C₁₇H₁₃NO₃), 276 (2, C₁₈H₁₄NO₂), 200 (1.5, C₁₂H₁₀NO₂), 174 (1, C₁₀H₈NO₂), 161 (14, C₉H₇NO₂), 160 (100, C₉H₆NO₂), 133 (2, C₈H₇NO), 91 (8, C₇H₇), and 89 (7.5, C₇H₅).

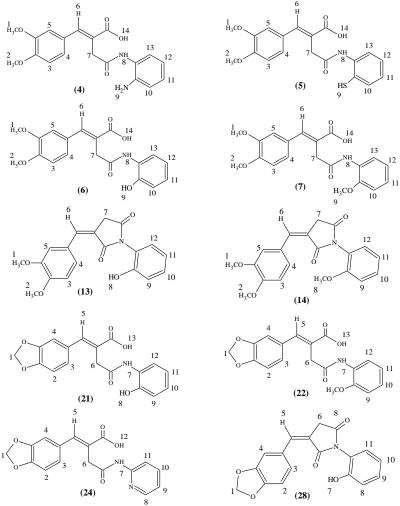
(E)-3-(Benzo[d][1,3]dioxol-5-ylmethylene)-1-(pyridin-2-yl)pyrrolidine-2,5-dione (31): Yellow crystals from benzene, mp 216-218 °C, 95% yield in microwave and 0% yield in thermal. FTIR (KBr): υ (cm⁻¹) = 1763-1646 (2CO, imide). MS: m/z = 308 (M⁺, 77%, C₁₇H₁₂N₂O₄), 280 (3.5, C₁₆H₁₂N₂O₃), 279 (10, C₁₆H₁₁N₂O₃), 187 (3, C₁₀H₇N₂O₂), 175 (1, C₉H₇N₂O₂), 161 (9, C₈H₅N₂O₂), 160 (73, C₁₀H₈O₂), 134 (2.6, $C_7H_7N_2O$), 120 (8, $C_6H_4N_2O$), and 102 (100, C_8H_6).

(E)-3-(Benzo[d][1,3]dioxol-5-ylmethylene)-1-(thiazol-2-yl)pyrrolidine-2,5-dione (32): Pale yellow crystals from benzene, mp 204-206 °C, 97% yield in microwave and 0°% yield in thermal. FTIR (KBr): υ (cm⁻¹) = 1768-1647 (2CO, imide). MS: m/z = 314 (M⁺, 49%, C₁₅H₁₀N₂O₄S), 269 (0.4, C₁₉H₁₀N₂O₂S), 286 (1.3, C₁₄H₁₀N₂O₃), 231 (2.3, C₁₂H₉NO₄), 230 (0.4, C₁₂H₈NO₄), 187 (4, C₁₁H₉NO₂), 160 (100, C₁₀H₈O ₂), 140 (0.3, C₅H₄N₂OS), 127 (45, C₄H₃N₂O S), and 126 (4, C₄H₂N₂OS).

Results and discussion


Microwave irradiation reaction


Microwave irradiation of compounds 1 or 2, with the unsubstituted amine (a) ($K_{\rm b} = 4.2 \times 10^{-10}$) gave the corresponding separable mixtures of pyrrolidiene-2,5-diones as major products (11, 95% and 26, 80%), and butanoic acids as minor products (3, 5% and 18, 20%). However with the amines that containing electron repelling groups; hydroxyl, methoxyl and methyl groups (d-f), compound 1 formed the corresponding pyrrolidine-2,5-diones 13-15. as only products, whereas compound 2 gave separable mixtures from butanoic acids 21-23 as minor products (6, 8, 10%, respectively), and pyrrolidine-2,5-dinoes 28-30 as major products (93, 89, 85%, respectively). The formation of butanoic acid derivatives as minor products is ascribed to the slight distortion resulted from the presence of the 2benzo[d][1,3]dioxol moiety, which could prevent the complete coplanarity necessary for ring closure. The formation of the separable mixtures can be attributed to the presence of the electron donating, hydroxyl, methoxyl, and methyl groups which increases the susceptibility of amido nitrogen atom towards nucleophilic attack on the carbonyl carbon. This means that with amines (a, d-f) the basicity factor outweighs the distortion effect exerted by the 2benzo[d][1,3]dioxol moiety.


The basicity factor has been confirmed by the reaction of compound 1 with amines (\mathbf{g} and \mathbf{h}), where the corresponding pyrrolidine-2,5-diones 16 (98%) and 17 (99%), are formed as the only products. Similarly compound 2 gave with amines (\mathbf{g} and \mathbf{h}) pyrrolidine-2,5-diones 31 (95%) and 32 (97%), respectively as only products.

These results can be attributed to the presence of the lone pair of electrons on the heterocyclic nitrogen atom, results in increasing the nucleophilicity of the amido nitrogen towards further intramolecular attack on the carbonyl carbon to give the cyclic products. The unexpected formation of the corresponding butanoic acids **4** and **19** as only products, from the reaction of amine (**b**) with compounds **1** or **2**, respectively, irrespective to their structure or the basicity of amine (**b**) ($K_b = 3 \times 10^{-10}$), led us to propose a mechanism in which a proton transfer takes place from the carboxyl group to the amino group, forming the anilinium ⁺NH₃ ion. These results were ascertained by the IR measurements of **4** and **19**, where v (cm⁻¹) appeared at 3300-3272, and 3354-3270, characteristic for (⁺NH₃, anilinium and NH, amide), 1679 (CO, amide), 1516-1448 and 1498-1443 (2CO, carboxylate), respectively. Also the ¹H-NMR data of compound **4**, showed signals at δ =7.82 (3H, s, H-9) representing (⁺NH₃). The presence of such anilinium ion could decrease the susceptibility

of the amido nitrogen atom towards further intramolecular nucleophilic attack on the carbonyl carbon to form the cyclic products. However, by repeating the same reactions with compounds **1** and **2**, in presence of DMF, as aprotic solvent, the corresponding pyrrolidine-2,5-diones **12** and **27** were formed as the only products. These results were confirmed by the IR spectrum where two bands appeared at 3426-3348 and 3437-3300 cm⁻¹ characteristic for NH₂ in compounds **12** and **27**, respectively.

Protons Numbering of HNMR Spectra

Table 2: Comparison between yields of products resulted from the microwave irradiation and conventional therma	al
heating technique.	

	Product (Yield %)									
Amine	Compound 1				Compound 2					
	Microwave irradiation		Conventional thermal heating		Microwave irradiation		Conventional thermal heating			
	Butanoic	Pyrrolidine-	Butanoic	Pyrrolidine-	Butanoic	Pyrrolidine-	Butanoic	Pyrrolidine-		
	acid	2,5-dione	acid	2,5-dione	acid	2,5-dione	acid	2,5-dione		
Aniline	3; 5%	11;95%	3; 99%	-	18; 20%	26; 80%	18; 98%	-		
2-Aminoaniline	4; 97%	12*; 95%	4; 95%	-	19; 93%	27*; 90%	19; 88%	-		
2- Mercaptoaniline	5; 93%	-	5; 88%	-	20; 90%	-	20; 96%	-		
2-Hydroxyaniline	-	13;96%	6; 96%	-	21;6%	28; 93%	21; 95%	-		
2-Methoxyaniline	-	14;93%	7; 93%	-	22;8%	29; 89%	22; 91%	-		
2-Methylaniline	-	15;90%	8; 91%	-	23; 10%	30; 85%	23; 90%	-		
Pyridine	-	16; 98%	9; 99%	-	-	31; 95%	24; 99%	-		
Thiazole	-	17; 99%	10; 99%	-	-	32; 97%	25; 99%	-		

* (in presence of DMF)

These results can be ascribed to the solvent effect in microwave irradiation technique, where

interaction takes place between microwave and polar molecules of the solvent. Such an interaction results

in energy transfer through solvent molecules to the reaction mixture so that it enhances the intramolecular nucleophilic attack by the lone pair electrons the of amido nitrogen atom on the carbonyl carbon to form the pyrrolidine-2,5-diones **12** and **27**.

Microwave irradiation reactions of compounds 1 and 2 in absence of solvent with amine (c) gave the substituted butanoic acids 5 and 20, respectively as only products. These results can be attributed to the presence of the electron deficient d-orbital in the mercapto (-SH) group which decreases the nucleophilicity of the nitrogen in the amido group to form the corresponding pyrrolidine-2,5-diones. However, in the presence of the aprotic solvent DMF, no cyclization took place. Such results indicate that the effect resulted from the presence of mercapto (-SH) group, outweighs the effect due to the microwave-solvent interaction (Schemes 1 and 2).

Conventional thermal heating of compounds 1 and 2 with amines (a-h)

Conventional thermal heating reactions of compounds 1 or 2 with amines (a-h) gave the corresponding butanoic acids 3-10 and 18-25, respectively, as only products irrespective to the structure of compounds 1, 2 or amines (Scheme 3). The comparison between results obtained from microwave irradiation reactions and conventional thermal condensation, can be attributed to the acceleration of reactions exerted by microwave thermal effects and specific non-purely thermal effects, resulted from material-wave interactions¹⁵. The combination of these two contributions can be responsible for regiospecific property and the formation of the cyclic compounds (Table 2).

Compounds 5-7, 9, 10, 20-22, 24, and 25 showed biological activities, and compounds 13, 16, 17, 28, 31, and 32 showed cytotoxic activity.

Conclusion

The present work shows that microwave irradiation effects assist the cyclization and regiospecific property of the reaction. It accomplishes the reactions in excellent yields, purity and shorter time, in addition to be environmental friendly, more than the conventional thermal heating technique. These requirements are important for the industrial synthesis of compounds having medicinal applications (cytotoxic) and biological activities such as methylene-4-oxo-4-arylaminobutanoic acids and pyrrolidine-2,5-diones. Also the reactions showed that the presence of aprotic solvent DMF in the microwave irradiation technique enhances the cyclization process. With compound 2 the presence

1/12/2012

of the 2-benzo[d][1,3]dioxol moiety, could prevent the complete coplanarity that is necessary for ring closure to form the corresponding pyrrolidine-2,5diones as only products.

Acknowledgments

The authors would like to thank the Department of Chemistry of the College of Women for Arts, Science, and Education; Ain shams University for its support during carrying out this work.

Corresponding author Boshra Awad

Chemistry Department, University College of Women for Arts, Science, and Education, Ain Shams University, Asma Fahmy Street, Heliopolis-11341, Cairo, EGYPT boshra_awad@yahoo.com

References

- 1. Gedye, R. N.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, J. *Tetrahedron Letters*, **1986**, *27*: 279-282.
- Vass, A.; Dudas, J.; Varma, R. S. Tetrahedron Letters, 1999, 40: 4951-4954.
- 3. Loupy, A.; Petit, A.; Hamelin, J.; Texier-Boullet, F.; Taquault, P.; Mathe, D. *Synthesis* **1998**, 1213-1234.
- 4. Loupy, A.; C. R. Chim. 2004, 7: 103-112.
- 5. Leadbeater, N. E.; Pillsbury, S. J.; Shanahan, E.; Williams, V. A. *Tetrahedron* **2005**, *61*: 3565-3585.
- 6. Marquez, H.; Loupy, A.; Calderon, O.; Perez, E. R. *Tetrahedron* **2006**, 62: 2616-2621.
- Gardre, J. N.; Vardhan, D. K.; Late R. N.; Mohit M.; Chaitanya, V. *Research J. Chem. Enviro.* 2004, 8 (1): 13-15.
- Strubing, D.; Neumann, H.; Jacobi Von Wangelin, A.; Klaus, S.; Hubnre, S.; Beller, M. *Tetrahedron* 2006, 62: 10962-10967.
- 9. Hefny, H. A.; Abdallah, Sh. M. Int. J. Chem. 2007, 17: 279-287.
- 10. Abdallah, Sh. M.; Hefny, H. A. Turk. J. Chem. 2011, 35: 463-474.
- 11. Abdallah, Sh. M.; Hefny, H. A.; El Toukhy, A. M.; Abdelmonem, F. I. *Int. J. Chem.* 2009, 20 (1): 11-20.
- 12. El-wahhab, S. M.; Abdallah, Sh. M.; Elmariah, F. A.; Mansour, E. A.; Awad, B. M. *Rev. Roum. Chim.* 2003, 48 (8): 619-627.
- 13. El-Assal, L. S.; El-Wahhab, S. M. J. Chem. Soc. 1960, 849-852.
- 14. Skehan, P.; Storeng, R. J. Nat. Cancer Inst. 1990, 82: 1107-1112.
- **15.** Perreux, L.; Loupy, A.; Volatron F. *Tetrahedron*, **2002**, *58* (11): 2155-2162