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Abstract: In the present paper, a non-dimensional mathematical model for high tower buildings and its foundation 
under randomly fluctuating wind loads and earthquake ground motions excitations is developed as a nonlinear model 
to study the system more extensively. The system main equations could be derived using two different derivation 
methods and linearized in minimal symbolic forms; which facilitate a subsequent numerical simulation in order to 
investigate the vibration characteristics of whole system. The analysis enables designers to have more insight into the 
characteristics of high tower buildings of similar configuration but with different geometry and material. The 
complexity of wind loading with its variations in space and time has been considered. A comprehensive 
mathematical model of six degrees of freedom is presented and solved for free and forced vibrations.  
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Introduction and literature review 
 Large investments have recently been made for 
the construction of new medium- and high-rise 
buildings in the world. In many cases performance-
based designs have been the preferred method for 
these buildings. A main consideration in 
performance-based seismic design is the estimation of 
the likely development of structural and nonstructural 
damage limit-states given a hazard level. For this type 
of buildings efficient modeling techniques are 
required able to compute the response at different 
performance states. Certain structures are less 
vulnerable against vibration impacts whereas certain 
others are more vulnerable. As we all know that 
vibration effects are now cannot be neglected, as our 
day to day life is affected by them. Study of vibration 
responses of structures has always been a principal 
concern for design engineers. Therefore, we do put an 
eye on the vibrations of buildings and its foundations. 
Uncontrolled vibration causes devastation. 
Occurrences of Tsunami, earthquake, collapse of 
structures are few such most common devastating 
effects of vibration. Thus the study of vibration 
responses in advance is of immense importance for 
sustainable and positive effects of vibrations for the 
well being of humans. 
 Nowadays, the new and emerging concept of 
seismic structural design, the so-called performance-
based design, requires careful consideration of all 
aspects involved in structural analysis. One of the 
most important aspects of structural analysis is Soil-
Structure Interaction (SSI). Such interaction may alter 

the dynamic characteristics of structures and 
consequently may be beneficial or detrimental to the 
performance of structures. Soil conditions at a given 
site may amplify the response of a structure on a soil 
deposit. Not taking into account these structural 
response amplifications may lead to an under-
designed structure resulting in a premature collapse 
during an earthquake. Analytical methods of SSI 
concentrate mainly on single degree of freedom 
systems and analysis/design of long and important 
structures such as large bridges and nuclear power 
plants, and rarely on regular type buildings. Studies 
which include SSI effects will help to better predict 
the performance of structures during future ground 
motions. State of the art knowledge and analytical 
approaches require, that, the structure-foundation 
system to be represented by mathematical models that 
include the influence of the sub-foundation media.  
 A research work of Panagiotou (2008) was 
conducted at University of California San Diego 
(UCSD) on the seismic design, experimental 
response, and computational modeling of medium- 
and high-rise reinforced concrete wall buildings. Kim 
(2008) presented an investigation of the effect of 
vertical ground motion on reinforced concrete 
structures studied through a combined analytical-
experimental research approach. Krier (2009) 
analyzed several soil-structure interaction problems. 
Buildings on elastic foundations were studied and 
comparisons were made between analytical results 
and the solutions obtained from a Tera Dysac finite 
element analysis. Gouasmia et al. (2009) studied the 
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seismic response of an idealized small city composed 
of five equally spaced, five storey reinforced concrete 
buildings anchored in a soft soil layer overlaid by a 
rock half space. These results show response 
amplification of the buildings in the near field in 
accordance with the results observed in similar cases. 
Antonyuk, Timokhin (2007) outlined a 
mathematical model describing the vibrations of 
buildings and engineering structures with general-
type passive shock-absorbers, rigid bodies, and ideal 
constraints. 
 Auersch (2008) predicted a practice-oriented 
environmental building vibrations. A Green’s 
functions method for layered soils is used to build the 
dynamic stiffness matrix of the soil area that is 
covered by the foundation. A simple building model 
is proposed by adding a building mass to the dynamic 
stiffness of the soil. Belakroum et al. (2008) studied 
the numerical prediction of the aerodynamic 
behaviour of rectangular buildings. Simulations were 
made for rectangles of different side coefficients and 
different angles of attack. The finite element method 
is used to simulate fluid flow considered Newtonian 
and incompressible. Davoodi, et al. (2008) used the 
ambient vibration tests to rely on natural excitations, 
consequently, it was recommended to perform 
impulsive test for identifying the hidden dynamic 
characteristics of the building. Kuźniar and 
Waszczyszyn (2006) applied neural networks for 
computation of fundamental natural periods of 
buildings with load-bearing walls. The analysis is 
based on long-term tests performed on actual 
buildings. The identification problem was formulated 
as the relation between structural and soil basement 
parameters, and the fundamental period of building. 
 Uzdin, et al. (2009) derived equations for the 
vibrations of a building on the foundations under 
consideration. Impossibility of use of traditional 
methods of the linear-spectral theory for analysis of 
their earthquake resistance is demonstrated. It is 
established that the systems under consideration do 
not possess a natural vibration period, and may have 
ambiguous solutions for forced vibrations. The 
influence of city traffic-induced vibration on Vilnius 
Arch-Cathedral Belfry was investigated (Kliukas et 
al. 2008). Two sources of dynamic excitation were 
studied. Conventional city traffic was considered to 
be a natural source of excitation while excitation 
imposed artificially by moving a heavily loaded truck 
was considered to be the source of increased risk 
excitation. Configuration of equipment on springs is 
simplified for numerical analysis. A simplified 
approach and associated equations of motion can be 
developed to evaluate the response of the equipment 
with vertical and horizontal forcing functions 
(Turner 2004). Gong (2010) developed a free 

vibration analysis method for space mega frames of 
super tall buildings. The physical model of a mega 
frame was idealized as a three-dimensional 
assemblage of stiffened close-thin-walled tubes with 
continuously distributed mass and stiffness. 
 Yang et al. (2008) analyzed the wave propagation 
problems caused by the underground moving trains 
by the 2.5-dimensional finite/infinite element 
approach. The near field of the half-space, including 
the tunnel and parts of the soil, was simulated by 
finite elements, and the far field extending to infinity 
by infinite elements. Ground-borne vibrations due to 
subway trains have sometimes reached the level that 
cannot be tolerated by residents living in adjacent 
buildings (Shyu et. al. 2002). Also, approaches for 
predicting vibrations caused by metro trains moving 
through the tunnel were developed (Gupta et al. 
2007), e.g., a semi-analytical pipe-in-pipe model 
(Forrest and Hunt 2006a,b) and a coupled periodic 
finite-element–boundary-element model (Clouteau et 
al. 2005; Degrande et al. 2006b). Clearly, ground-
borne vibrations have become an issue of great 
concern, which will continuously attract the attention 
of researchers and engineers worldwide. Many 
research projects on ground-borne vibrations due to 
subway trains were conducted by field measurement 
(Vadillo et al. 1996; Degrande et al. 2006a) and 
empirical or semiempirical prediction models 
(Kurzweil 1979; Trochides 1991; Melke 1998). 
These studies provide practical references for solving 
related problems. However, most of these studies 
were performed for a specific condition, thereby 
suffering from the lack of generality. On the other 
hand, concerning the techniques of simulation, most 
previous works have been based on the two-
dimensional (2D) models (Balendra et al. 1991; Yun 
et al. 2000; Metrikine and Vrouwenvelder 2000). 
 Prowell (2011) presented an experimental and 
numerical investigation into the seismic response of 
modern wind turbines simultaneously subjected to 
wind, earthquake, and operational excitation. Ulusoy 
(2011) described a certain class of system 
identification algorithms with particular emphasis on 
civil engineering applications. The algorithms 
originated from system realization theory enabled one 
to identify finite dimensional, linear, time-invariant 
models of systems in the state space representation 
from observed data. Wieser (2011) used OpenSees 
finite element framework to develop full three 
dimensional models of four steel moment frame 
buildings. The incremental dynamic analysis method 
is employed to evaluate the floor response of inelastic 
steel moment frame buildings subjected to all three 
components of a suite of 21 ground motions. Ghafari 
Oskoei (2011) dealt with the dynamic behavior of tall 
guyed masts under seismic loads. Zhong (2011) 
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utilized a ground motion acceleration time-history as 
an input to an analytic model of a structure and 
solved the structural response at each time step of the 
ground motion record.  
 
 Weng (2010) proposed a forward substructuring 
approach, the eigenproperties of the partitioned 
substructures were assembled to recover the 
eigensolutions and eigensensitivities of the global 
structure, which were tuned to reproduce the 
experimental measurements through an optimization 
process. Sonmez (2010) developed semi- active 
controllers, which were based on real-time estimation 
of instantaneous (dominant) frequency and the 
evolutionary power spectral density by time-
frequency analysis of either the excitation or the 
response of the structure. Time-frequency analyses 
were performed by either short-time Fourier 
transform or wavelet transform. Soudkhah (2010) 
examined the dynamic response of surface 
foundations on sandy soils under both forced and 
ground motion disturbance. Yao (2010) used the 
direct method for modeling the soil and a tall building 
together and studied energy transferring from soils to 
buildings during earthquakes, which is critical for the 
design of earthquake resistant structures and for 
upgrading existing structures. Ahearn (2010) studied 
the dynamic effects of wind-induced vibrations on 
high-mast structures and proposed several retrofits 
that increase the aerodynamic damping, thereby 
reducing vibrations. 
 The ground vibration induced by earthquake 
ground motions is a complicated dynamic problem 
due to the involvement of a number of factors along 
the paths of wave propagation, including the load 
generation mechanism, the geometry and location of 
tunnel structures, the irregularity of soil layers, etc. 
Previously, many research projects on ground-borne 
vibrations due to earthquakes were conducted by field 
measurement and empirical or semi-empirical 
prediction models. These studies provide practical 
reference for solving related problems. However, 
most of these studies were performed for a specific 
condition, thereby suffering from the lack of 
generality. 
 
Assumptions 
1. The high tower building-foundation equivalent 

system moves only in the y*- z* plane. 
2. The wind effect is identified as randomly 

fluctuating wind loads in horizontal direction. 
3. Uy(t), UZ(t) are random ground motions of 

earthquake in horizontal and vertical directions y 
and z. 

4. The high tower building and its foundation are 
assumed as rigid bodies. 

5. The soil kind under the foundation is assumed as a 
sandy clay. 

6. The angular velocities ),t( ),t( *
1

*
o  and )t(*

2 are 

very small (<<1). 
7. The equivalent spring stiffness  k k EHH ,, and 

vk are linear. 

8. The equivalent damping coefficients  r r EHH ,, and 

vr are linear. 

9. The density of building 2  is taken as 0.1 that of 

the foundation. 
10.The air friction was not considered. 

11.The place pressure factor pC can be replaced 

 through the average load factor of total building. 

12.The spectral power density )(S
11UU  is 

 independent on the Cartesian Coordinates z, y. 
13.The wind velocity distribution along the height of 

 the building is )H(U)
H

z
()z(U  . 

14.The cross spectral power density )(S
21UU  can 

 be represented through the coherence spectrum of 

 the wind velocity )t,z(U 1
' and )t,z(U 2

' : 

)](S . )(S[)(S)(
22112121 UUUU

2

UU
2

UU     

 
Derivation of system equations using D’alembert’s 
principle 
       The model of the problem to be considered is 
schematically shown in Fig. 1. This model describing 
the vibrations of high-tower building and its 
foundation with general-type equivalent passive 
springs and dampers, rigid bodies, and some ideal 
constraints like linear springs and dampers under the 
effect of randomly fluctuating wind loads and the 
excitation of earthquake ground motions. In setting 
up the equations of motion of the equivalent system 
in Fig. 1, it should be born in mind that the geometric, 
elastic, and kinetic relations of both high tower 
building and its foundation must be derived. 
Moreover the external excitation of wind loads should 
be prepared.  
 
Foundation differential equations of motion  
Figure 2 shows the free body diagram of foundation 
with its accompanied vibrating soil. 
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Geometric relations of tall building and its foundation 
For the linearization of derived equations, let   and 21o  , << 1. Geometric relations of building’s foundation are 

)(..)()( *** tb50tztz ooC  , )(..)()( *** tb50tztz ooD  , )(..)()( *** tb50tztz 11E  , )t(.b5.0)t(z)t(z *
1

*
1

*
F  , 

)())(cos.(.)()( **** tzt1c50tztz o2o2  , )()( ** tt o2  , )()( ** tyty oC  , 

)(..)()(sin..)()( ***** tc50tytc50tyty 2o2o2  , )()( ** tyty oD  , )()( ** tyty 1E  , and )()( ** tyty 1F       

Rearranging the previous geometric relations leads to the following form  

)t(.b5.0)t(z)t(z *
2

*
2

*
C  , )t(.b5.0)t(z)t(z *

2
*
2

*
D  , )t(.b5.0)t(z)t(z *

1
*
1

*
E  , )t(.b5.0)t(z)t(z *

1
*
1

*
F   

)t(.c5.0)t(y)t(y *
2

*
2

*
C  , )t(.c5.0)t(y)t(y *

2
*
2

*
D  ,  )t(y)t(y *

1
*
E  , and )t(y)t(y *

1
*
F      }     (1) 

 
Elastic relations of building’s foundation 
Elastic relations of building’s foundation have the form 

)]t(z)t(z.[r)]t(z)t(z.[kF *
C

*
EV

*
C

*
EVV1   , )]t(y)t(y.[r)]t(y)t(y.[kF *

C
*
EH

*
C

*
EHH1    , 

)]t(z)t(z.[r)]t(z)t(z.[kF *
D

*
FV

*
D

*
FVV2   , )]t(y)t(y.[r)]t(y)t(y.[kF *

D
*
FH

*
D

*
FHH2  

,

)]t(U)t(y.[r)]t(U)t(y.[kF y
*
1EHy

*
1EHEH

  , )]t(U)t(z.[r)]t(U)t(z.[kF z
*
1EVz

*
1EVEV

    }     (2) 

)t(.r)t(.kT *
1EK

*
1EKEK    

 
Kinetic relations of building’s foundation 
     Applying Newton’s second law for the forces in z- 
and y-directions and the moments about s1 results in 

  EVV2V1
*
11z FFF)t(z.mF  , 

  EHH2H1
*
11y FFF)t(y.mF   

  )t(cos.b5.0.F)t(.JM *
1V1

*
111s   

 )t(T)t(cos.b5.0.F EK
*
1V2     

 (3)                   )t(Tb5.0).FF( EKV1V2   

Differential equations of motion of high tower 
building 
Figure 3 shows the free body diagram of high tower 
building with its forces and moments affecting on it. 
Aeroelastic relations of wind excitation  

Nowadays, the study of the behavior of a 
structure subjected to hydro or aerodynamic loadings 
forms an integral part of tasks allocated to engineers. 
The effect of wind must be taken into consideration 
during the design phase of tall buildings. The 
mechanism of wind loads acting on a building is very 
complex. Substantial works have dealt with this 
problem. In civil engineering and construction of tall 
buildings, the assessment of wind loads is required to 
check the resistance of components of the 
construction and coating. In recent years, the methods 
proposed by scientists in this field are constantly 
being updated. The institutions of global 
standardization are thus forced each time to review 
the standards that are in force. Under the effect of 
wind, a building oscillates according to both 
directions parallel and perpendicular to the flow and 
in a torsional mode. Notwithstanding its enormous 

fascination, wind loading is in fact a parasitic effect, 
and mostly an obstacle in the way of designing 
structures for their primary intended use. Without 
wind, structures – particularly large ones – would 
probably be a lot easier to design and cheaper. 

Dynamic wind  pressures  acting  on  buildings  
are  complicated  functions  of both  time  and space. 
The wind load per unit area has the form 

)t,z(q.C)t,z(W p  and   )t,z( U
2

1
)t,z(q 2  

)]t,z(U)t,z(U).z(U2)z(U[ .
2

.C

)]t,z(U)z(U.[
2

.C)t,z(U.
2

.C)t,z(W

2''2
p

2'
p

2
p











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Fig. 1 Equivalent system of tall building and its 
foundation 

 

 
Fig. 2 Free body diagram of foundation with its 

accompanied vibrated soil  
 

 

),()(),().(.)(..),( '' tzW zWtzUzU.C zU 
2

CtzW p
2
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



               
The total turbulent wind force in y*-direction as a 
function of time is 

  
c

0

c

0
p dz tzUzU.C  dz tzWtW ),().(.),()( ''   (4) 

The total turbulent wind moment as a function of time 
is 

 
c

0

'*
2

*
2W dz )t,z(W))].t(sin

2

b
)t(cos

2

c
(z[)t(M

  
c

0

' dz )t,z(W).
2

c
z(  

  
c

0

'
p dz )t,z(U).z(U..C ).

2

c
z(        (5) 

Fig. 3 Free body diagram of the high tower building 
 
Elastic relations of high tower building 

Elastic relations of high tower building have the form 

)]t(z)t(z.[r)]t(z)t(z.[kF *
E

*
CV

*
E

*
CVV1   , )]t(y)t(y.[r)]t(y)t(y.[kF *

E
*
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*
E

*
CHH1    

)]t(z)t(z.[r)]t(z)t(z.[kF *
F

*
DV

*
F

*
DVV2   , )]t(y)t(y.[r)]t(y)t(y.[kF *

F
*
DH

*
F

*
DHH2      (6) 

 
Kinetic relations of high tower building 
Applying Newton’s second law for the forces in z and y-directions and also the moments about s2 results in 

  V2V1
*
22z FF)t(z.mF  , )t(WFF)t(y.mF H2H1

*
22y    

  )](cos.)(sin..[)(. *** t
2

b
t

2

c
FtJM 22V1222s  )](sin.

2
)(cos.

2
.[ *

2
*
21 t

b
t

c
F H       

)]t(cos.
2

b
)t(sin.

2

c
.[F *

2
*
2V2   )t(M)]t(sin.

2

b
)t(cos.

2

c
.[F W

*
2

*
2H2   }        (7)  

The previous equation can be linearized in the following form 

  ]
2

c
)t(.

2

b
.[F)]t(.

2

c

2

b
.[FM *

2H1
*
2V12s )t(M]

2

c
)t(.

2

b
.[F)]t(.

2

c

2

b
.[F W

*
2H2

*
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Deriving the system’s differential equations of motion  
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Application of the geometric relations of the foundation 
Substitute from Eqs. 1 in Eqs. 2 of the elastic relations of foundation free body diagram 
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Application of the elastic relations of the foundation 

Substitute from Eqs. 2 of foundation’s elastic relations in Eqs. 3 of its kinetic relations results in     
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Application of the geometric relations of the building 
Substitute from Eqs. 1 of geometric relations in Eqs. 6 of elastic relations of the building 
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Application of the elastic relations of the building 
Substitute Eqs. 10 of building’s elastic relations in Eqs. 7 of its kinetic relations lead to the following differential 
equations    
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Arranging the differential equations of motion 
The differential equations of motion of both tall building and its foundation can be summarized in the form 
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Derivation of system equations using Lagrange’s method 

The previous obtained system differential equations 12 of motion can be verified using another derivation 
method, like Lagrange’s method using the following Lagrangian Differential Equation  





























i K

i
iK

KKK q
FQ

qq

L

q

L

dt

d




  ,   L = E – U   ,  

n

2
nnr

2

1
           (13) 

QK : General forces, Fi : External forces, and i : Velocity 

 
Lagrangian function 
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(b) Elastic potential energy of the total equivalent system 
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(c) Lagrangian function 
Using Eqs. 1 and 14-15 to obtain the following Lagrangian function 
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Rayleigh’s dissipation function 

The Rayleigh’s dissipation function can be derived as 

)t(r
2

1
)]t(U)t(y[r

2

1
)]t(U)t(z[r

2

1
r

2

1 2*
1EK

2
y

*
1EH

2
z

*
1EV

61n

2
66    



 

   2*
2

*
2

*
1H

2*
2

*
2

*
1

*
1V )]t(.c5.0)t(y)t(y[r

2

1
)]t(.b5.0)t(z)t(.b5.0)t(z[r

2

1
    

2*
2

*
2

*
1

2*
2

*
2

*
1

*
1 )](.5.0)()([

2

1
)](.5.0)()(.5.0)([

2

1
tctytyrtbtztbtzr HV                   (17) 

General external forces 

 









i K

i
i

i K

i
iK

q

r
F

q
FQ


, Where **

2221W21  and , y , MF , WF    

Deriving the differential equations of motion 
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Substitute from the equations of case (a) in Eq. 13, the first differential equation of motion can be obtained       
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Substitute from the equations of case (b) in Eq. 13, the second differential equation of motion can be obtained 
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Substitute from the equations of case (c) in Eq. 13, the third differential equation of motion can be obtained 
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Similarly, the fourth differential equation of motion can be obtained 
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Similarly, the fifth differential equation of motion can be obtained 
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Similarly, the sixth differential equation of motion can be obtained    
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Equations 18-23 can be written in the following matrix form  
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Normalization of the system differential equations of motion 
The system differential equations of motion of the high tower building with its foundation can be presented in a 
dimensionless form using the following quantities 
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Therefore the differential equations of motion will be written in the following dimensionless form 
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Analytical solutions using the general modal analysis method 
Eigen value problem 
Homogeneous differential equations without damping 

 0  (t)xK  (t)xM
****

                          (26) 

Assume that the exponential solutions of Eqs. 26 have the form 
tie x  )t(*x 

                             (27) 

Applying the solutions of Eqs. 27 in Eqs. 26 leads to the general eigen value problem 
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Using equation 3 one can obtain 12 eigen values ),,,,,( 654321        and 6 eigen vectors 

),,,,,( 654321 x x x x x x


. 
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Modal matrix 
The modal matrix has the form 
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Decoupling of the system differential equations 
The transformation of coordinates can be carried out using the equation 

q .   *x                                

and the system of the vibration differential equations will has the form 

 UB  q K  q R  q M
**T*T*T*T                        

Where  I  M
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 , ]D [2 diag.  R
*T   , ][ diag.  K 2*T   , and  Q] [ diag.  (t)F 2*T    

When the damping forces of the equivalent system are smaller than its elastic restoring forces, then the coupled terms 
of the transformed damping matrix can be neglected without any great error. The decoupled differential equations of 
the system will have the form 
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The general external excitations of the system are 
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Applying the total turbulent wind forces W(t) in y-direction and the total wind moments MW(t) on the previous 
equations. 
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The decoupled system of differential equations can be presented in the following form 
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From the previous equations, one can obtain the following imaginary transformation functions 
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A dynamical system with known properties responds 
to a dynamical loading in a known manner, provided 
the time-description of the loading is available a 
priori. Such description is however not possible in 
case of the excitations due to earthquake ground 
motions or fluctuating wind loads. Therefore, the 
safety of a structural system has to be ensured by 
stochastic modeling of these motions for perceived 
seismic hazard at the site of the system and by 
predicting the structural response in probabilistic 
sense with the help of well-known concepts of 
random vibration theory. This theory estimates the 
statistical variations in the peak structural response 
due to possible variations in the time-description of 
the excitation (there may be several `different 
looking' time-histories corresponding to a given 
characterization of the excitation). The classical 
random vibration theory makes use of the frequency 

distribution of input energy as obtained from the 
Fourier Transform of the excitation. However, since 
Fourier Transform gives only an `average' energy 
distribution in an excitation with time-evolving 
structure, this theory is insufficient for those cases 
where the non-stationary processes cannot be 
modeled as stationary or quasi-stationary. As a 
natural extension to double Fourier Transform for 
such processes is not considered to be practical, a 
large amount of effort has been devoted to modeling a 
(slowly-varying) non-stationary process through 
modulating function-based power spectral density 
function (PSDF). The auto power spectral density 
function of the response as a result of random wind 
and earthquake excitations with respect to general 
coordinates has the form 





6

1s

ffs
*
r

6

1r

qq )( S)(H )(H  )(S
srii
                      

 )( S)(H )(H......)( S)(H )(H)( S)(H )(H  )(S
6ii f6

*
12

*
11

*
1qq    

 ......)( S)(H )(H......)( S)(H )(H)( S)(H )(H
6f6

*
22

*
21

*
2    

)( S)(H )(H......)( S)(H )(H)( S)(H )(H
6666 ff6

*
6f2

*
6f1

*
6       (35) 

The cross correlation function of excitation functions with respect to 
general coordinates is 
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The cross and auto power spectral density functions of excitation functions are  
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The cross correlation function of excitations is 
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The differential equations of motion can be written in the form 
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The cross power spectral density function of the vibration response with respect to general coordinates is 
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The cross power spectral density function of the vibration response with respect to original coordinates is 
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Substitute from Eq. 42 in Eq. 46 results in 
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Substitute from Eq. 40 in Eq. 44, one can obtain the cross power spectral density function of the response with 
respect to original coordinates of the form 
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and the auto power spectral density function of the response with respect to original coordinates of the form  
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The power spectral density function of the excitations 
Correlation function of the excitations  
The correlation function of the excitations with respect to general coordinates is 
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Since the wind velocity U(z,t) and the underground excitations (t) ,t  )( are uncorrelated, the following correlation 
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The power spectral density function of the excitations 
The cross power spectral density function of the excitations with respect to general coordinates is 
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The wind velocity )(zU  depends on the height of the building, according to the following equation 
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These double integrals can be described as Aerodynamic Amplification Functions (Transformation Functions) are   
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Complex transformation matrix with respect to general coordinates 
Fourier transformation of the vibration response and excitation has the following form 
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Response power spectral density function with respect to general coordinates 
Cross correlation functions of the response with respect to general coordinates have the form 
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The response power spectral density function with respect to general coordinates is 
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Where the mechanical amplification functions (Transformation Functions) are 
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and the Aerodynamic Amplification Functions (Transformation Functions) are shown in Eqs. 54 
 
Response power spectral density function with respect to original coordinates 
Cross correlation functions of the response with respect to original coordinates have the form 
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The response power spectral density function with respect to original coordinates is 
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Mean square value response with respect to 
original coordinates 
Mean square value of the random vibration response 
with respect to original coordinates can be written as 
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Conclusions 
This paper outlines a mathematical model describing 
the vibrations of high-tower buildings and its 
foundations with general-type equivalent passive 
springs and dampers, rigid bodies, and some ideal 
constraints under the effect of randomly fluctuating 
wind loads and the excitation of earthquake ground 
motions. Two derivation methods of the equivalent 
system’s differential equations have been considered, 
namely D’alembert’s principle and Lagrange’s 
method, which verified the acceptability of the 
developed equations of motion. Following 
conclusions can be withdrawn : 

 The mathematical model with 6 degrees of 
freedom presented in the present paper can be used 
to investigate the effect of both wind and 
earthquakes loading. 

 Analytical solution of the free vibrations of tall 
building and its foundation using the general modal 
analysis method has been performed. 

 Analytical solution of forced vibrations of tall 
building and its foundation has been developed, 
through the correlation function (time domain) and 
the power spectral density function (frequency 
domain) of system response with respect to general 
and also original coordinates. 

 Without wind and earthquakes, structures – 
particularly large ones – would probably be a lot 
easier to design and cheaper. 

 Random vibrations of building’s foundation 
subjected to seismic excitations of earthquake 
ground motions and also randomly fluctuating wind 
pressure fields acting on a building surface are 
analyzed.     
 
Nomenclature 
Cp Aerodynamic pressure factor (-) 
E Kinetic energy of the system (J) 
Ed Soil dynamic modulus of elasticity (kp/m3)  
F1H, F1V Spring and damping forces at C or E in 
 horizontal and vertical direction (kp) 
F2H, F2V Spring  and  damping  forces  at  D or F in 
   horizontal  and  vertical  direction  (kp) 
FEH, FEV Spring    and   damping   forces   at   s1    
in    horizontal  and  vertical  direction  due   
to    earthquake effect (kp) 
H(iΩ)  imaginary  transformation  function  (-)  
J1, J2  Mass moment of Inertia of foundation 
with    its   accompanied  vibrated soil and 
tall    building  (kg.s2.m)  
JF, JS  Mass moment of Inertia of foundation and 
   accompanied vibrated soil with it (kg.s2.m)  
kEH, kEV Linear  horizontal  and  vertical 
equivalent    spring  stiffness of earth (kp/m) 
kEK   Rotational  equivalent  spring  stiffness  
of    earth  (kp.m/rad) 
kH, kV  Linear  horizontal  and  vertical 
equivalent    spring   stiffness of building-
foundation    connection  (kp/m) 
L  Lagrangian function (-) 
m1, m2 Total      mass     of     foundation    with     its 
  accompanied    vibrated    soil   (mF+ mS)  and 
  tall building (kg) 
mF, mS Foundation    and    Vibrating   soil   mass (kg) 
MW(t) Total turbulent wind moment as a function 
   of time (kp.m) 



Journal of American Science, 2012;8(3)                                                     http://www.americanscience.org  

http://www.americanscience.org                                                                 editor@americanscience.org 586

Kq  General   coordinates  

and ,y ,z , ,y ,z *
2

*
2

*
1

*
1

*
1   

  *
2 (m, m, rad, m, m, rad) 

 )(R
ji QQ   Cross     correlation      function     of    

the 
   excitations  (m2) 

)(R),(R
srsr XXqq   Cross correlation function of  

   response  with respect to general and 
original   coordinates  (m2) 
   Rayleigh’s dissipation function (kp.m/s)  
rb  Vertical   embedding  damping  constant  : 
the   damping constant of radiation (kp.s/m3) 
rEK  Rotational  equivalent  damping coefficient 
of   earth (kp.m.s/rad) 
rEH, rEV Linear   horizontal   and   vertical   equivalent 
  damping  coefficient of earth (kp.s/m) 
rH, rV Linear horizontal, vertical equivalent 
damping   coefficient of building-foundation 
connection   (kp.s/m) 
rS  Damping  coefficient  of   the  elastic soil  
bed   (kp.s/m3) 
s1, s2 Centre  of  gravity  of  the  foundation  and 
tall   building (-) 

 )(S),(S
srii qqqq  Auto  and  cross  power  

spectral   density  function  of  response w.r.t. 
general   coordinates (m2.s/rad) 

 )(S),(S
srii QQQQ  Auto  and   cross  power 

spectral   density function of excitations 
(m2.s/rad) 

)(S),(S
srnn XXXX  Auto and cross power 

spectral   density   function   of  response w.r.t. 
original   coordinates (m2.s/rad) 
t  Time (s) 
TEK  Spring   and   damping   torques   about   s1  
in   rotational  direction (kp.m) 
U  Potential energy of the system (J) 

)H(U Average   wind   velocity   along   the 

building   height  H (m/s) 

)t(U),t(U zy  Random   displacement   excitation  

of   earthquake in horizontal and vertical 
direction   (m)  

)t,z(U Wind  speed  as a  function  of space and 

time   (m/s) 

)z(U  Constant   part   of   wind  speed  as  a 

function   of space (m/s) 

)t,z(U'  Turbulent part of wind speed as a 

function    of space and time (m/s) 

SV    Vertical wave velocity (m/s) 

)t(W   Total  turbulent  wind force in y*-

direction    as a function of time (kp) 

)t,z(W  Wind load as a function of space and time 

   (kp) 

)z(W   Constant part of wind load as a function 

of    space (kp) 

)t,z(W'  Turbulent  part  of  wind  load as a 

function    of space and time (kp) 
x


   Amplitude   of   exponential   solution   of 

   motion differential equations (m) 

)t(z ),t(y *
o

*
o  Displacement of point O in the 

direction    of axisz and y *
o

*
o  (m) 

)( ),(z ),(y ),( ),(z ),(y 222111              

non-   dimensional   Displacements (-) 

)( ),(z ),(y ),( ),(z ),(y '
2

'
2

'
2

'
1

'
1

'
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non-   dimensional   velocities (-) 
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2

"
2

"
1

"
1

"
1             

non-   dimensional  accelerations (-) 

)t(z),t(y *
1

*
1 Displacement  of  gravity   centre   s1  of 

   foundation in *
1

*
1 z and  y - axis (m) 

)t(z),t(y *
2

*
2 Displacement of gravity centre s2 of 

high    tower building in *
2

*
2 z and  y - axis (m) 

)t(z ),t(y *
C

*
C Displacement of point C in the 

direction    of   axisz and y *
C

*
C   (m) 

)t(z ),t(y *
C

*
C   Velocity  of  point  C in the direction 

of    axisz and y *
C

*
C  (m/s) 

)t(z ),t(y *
C

*
C   Acceleration of point C in the 

direction    of  axisz and y *
C

*
C  (m/s2) 

)t(z ),t(y *
D

*
D

 Displacement    of   point   D   in   the 

   direction  of  axisz and y *
D

*
D   (m) 

)t(z ),t(y *
D

*
D   Velocity  of  point D in the direction 

of    axisz and y *
D

*
D  (m/s) 

)t(z ),t(y *
D

*
D   Acceleration of point D in the 

direction    of  axisz and y *
D

*
D   (m/s2) 

)t(z ),t(y *
E

*
E  Displacement    of    point    E   in   

the    direction of  axisz and y *
E

*
E  (m) 

)t(z ),t(y *
E

*
E   Velocity of point  E  in  the direction 

of     axisz and y EE ** (m/s) 

)t(z ),t(y *
E

*
E  Acceleration of point E in the direction 

   of axisz and y *
E

*
E  (m/s2) 
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)t(z ),t(y *
F

*
F Displacement   of   point    F    in    the 

    direction of axisz and y *
F

*
F  (m) 

)t(z ),t(y *
F

*
F  Velocity  of  point F in the direction of 

   axisz and y *
F

*
F  (m/s) 

)(),( ** tz ty FF   Acceleration of point F in the 

direction    of axisz and y *
F

*
F  (m/s2) 

    Profile constant (-) 

 B   Specific   weight   of   the   high  tower 

    building (kp/m3) 

21  and,,   Density  of  air , foundation ,  and  

high    tower  building  respectively (kg/m3) 
    non-dimensional time [-] 

)t(*
o , )t(*

1 , )t(*
2 Angular   displacements   

about    axisx and,x,x *
2

*
1

*
o   [rad] 

)t(o , )(t1 , )t(2     non  -  dimensional     

angular    displacement about 

axisx and,x,x *
2

*
1

*
o  [-] 

 
References 

[1]- Ahearn, E.B.(2010) ; "Reduction of wind-induced 
vibrations in high-mast light poles." 
M.S., University of Wyoming, 167 pages; AAT 
1491655. 

[2]- Antonyuk, E.Ya. and Timokhin, V.V. (2007) ; 
"Dynamic response of objects with shock-absorbers 
to seismic loads." International Applied Mechanics, 
Vol. 43, No. 12.  

[3]- Auersch, L. (2008) ; "Dynamic stiffness of 
foundations on inhomogeneous soils for a realistic 
prediction of vertical building resonance." J. of 
Geotechnical and Geoenvironmental Engineering, 
ASCE.  

[4]- Balendra, T., Koh, C.G., and Ho, Y.C. (1991) ; 
"Dynamic response of buildings due to trains in 
underground tunnels." Earthquake Eng. Struct. Dyn., 
20(3), pp. 275–29. 

[5]- Belakroum, R., Mai, T.H., Kadja, M. et al. (2008) ; 
"Numerical simulation of dynamic wind loads on 
rectangular tall buildings." Inter. Review of 
Mechanical Engineering (I. RE. M.E), Vol. 2, N. 6. 

[6]- Clouteau, D., Arnst, M., and Al-Hussaini, T.M. et 
al. (2005) ; "Freefield vibrations due to dynamic 
loading on a tunnel embedded in a stratified 
medium." J. Sound Vib., 283(1–2), pp. 173–199. 

[7]- Davoodi, M., Mahmud Abadi, M., and   Hessan, M. 
(2008) ; "Modal identification of 1:2 scaled model 
of a 4-story steel structure by impulse excitation." 
Seismic Eng. Conf. Commemorating the 1908 
Messina and Reggio Calabria Earthquake. 

[8]- Degrande, G., Schevenels, M., Chatterjee, P. et al. 
(2006a) ; "Vibration due to a test train at variable 

speeds in a deep bored tunnel embedded in London 
clay." J. Sound Vib., 293(3–5), pp. 626–644. 

[9]- Degrande, G., Clouteau, D., Othman, R. et al. 
(2006b) ; "A numerical model for ground-borne 
vibrations from underground railway traffic based 
on a periodic finite element—Boundary element 
formulation." J. Sound Vib., 293(3–5), pp. 645–666. 

[10]-Forrest, J. A., and Hunt, H. E. M. (2006a) ; "Ground 
vibration generated by trains in underground 
tunnels." J. Sound Vib., 294(4–5), pp. 706–736. 

[11]-Ghafari Oskoei, S.A. (2011) ; "Earthquake-resistant 
design procedures for tall guyed telecommunication 
masts." Ph.D., McGill University (Canada), 235 
pages; AAT NR74516. 

[12]-Gong, Y. (2010) ; "A New free vibration analysis 
method for space mega frames of super tall 
buildings." Materials Science and Engineering 10, 
012002 doi:10.1088/1757-899X/10/1/012002. 

[13]-Gouasmia, A. and Djeghaba, K. (2009) ; "Direct 
approach to seismic soil-structure-interaction 
analysis: Building group case." Inter. Review of 
Mechanical Engineering (I.RE.M.E.), vol. 3, M. 5. 

[14]-Gupta, S., Hussein, M., Degrande, G. et al. (2007) ; 
"A comparison of two numerical models for the 
prediction of vibrations from underground railway 
traffic." Soil Dyn. Earthquake Eng., 27(7), pp. 608–
624. 

[15]-Kim, S.J. (2008) ; "Seismic assessment of RC 
structures considering vertical ground motion." 
University of Illinois at Urbana-Champaign, ISBN: 
9781109026320. 
[16]-Kliukas, R. Jaras, A.,  and Kacianauskas, R. 
   (2008)  ;   Investigation   of    traffic-induced 
   vibration in Vilnius Arch-Cathedral Belfry.    
Transport 23(4), pp. 323–329. 

[17]-Krier, D. (2009) ; "Modeling of integral abutment 
bridges considering soil-structure interaction 
effects." The University of Oklahoma, ISBN: 
9781109451252. 

[18]-Kurzweil, L.G. (1979) ; "Ground-borne noise and 
vibration from underground rail systems." J. Sound 
Vib., 66(3), pp. 363–370. 

[19]-Kuźniar, K. and Waszczyszyn, Z. (2006) ; "Neural 
networks and principal component analysis for 
identification of building natural periods." J. of 
Computing in Civil Engineering 20, ASCE, pp.431-
436. 

[20]-Lorenz, H. (1955) ; "Dynamik im Grundbau." 
Grundbau Taschenbuch, B.I. Berlin., pp. 205. 

[21]-Melke, J. (1988) ; "Noise and vibration from 
underground railway lines : proposals for a 
prediction procedure." J. Sound Vib., 120(2), pp. 
391–406. 

[22]-Metrikine, A.V., and Vrouwenvelder, A. C. W. M. 
(2000) ; "Surface ground vibration due to moving 



Journal of American Science, 2012;8(3)                                                     http://www.americanscience.org  

http://www.americanscience.org                                                                 editor@americanscience.org 588

train in a tunnel: Two-dimensional model." J. Sound 
Vib., 234(1), pp. 43–66. 

[23]-Panagiotou, M.: Seismic design, testing and analysis 
of reinforced concrete wall buildings. University of 
California, San Diego, ISBN: 9780549561705, 
2008. 

[24]-Prowell, I.: An Experimental and Numerical Study 
of Wind Turbine Seismic Behavior. 
Ph.D., University of California, San Diego, 309 
pages; AAT 3449912, 2011. 

[25]-Shyu, R. J., et. al.: The characteristics of structural 
and ground vibration caused by the TRTS trains. 
Metro’s Impact on Urban Living, Proc., World 
Metro Symp., Taipei, Taiwan, 610, 2002. 

[26]-Sonmez, E.: Deterministic and stochastic responses 
of smart variable stiffness and damping systems and 
smart tuned mass dampers. Ph.D., Rice University, 
318 pages; AAT 3421186, 2010. 

[27]-Soudkhah, M.: Development of engineering 
continuum models for seismic soil-foundation 
interaction. Ph.D., University of Colorado at 
Boulder, 676 pages; AAT 3433347, 2010. 

[28]-Trochides,A.: Ground-borne vibrations in buildings 
near subways.Appl. Acoustics, 32, 1991, pp.289–
296. 

[29]-Turner, J.: Vibration isolation: Harmonic and 
seismic forcing using the Wilson Theta method. 
ASHRAE Transactions: Symposia, 2004. 

[30]-Ulusoy, H.S.: Applications of System Identification 
in Structural Dynamics: A Realization Approach. 
Ph.D., University of California, Irvine, 119 pages; 
AAT 3444318, 2011. 

[31]-Uzdin, A.M., Doronin, F.M., Davydova, G.V. et al. 
(2009) ; "Performance analysis of seismic-insulating 
kinematic foundations on support elements with 
negative stiffness." Soil Mechanics and Foundation 
Engineering, Vol. 46, No. 3.   

[32]-Weng, S.: A new substructuring method for model 
updating of large-scale structures. Ph.D., Hong 
Kong Polytechnic University (Hong Kong), 319 
pages; AAT 3448510, 2010. 

[33]-Wieser, J. : Assessment of Floor Accelerations in 
Yielding Buildings. M.Sc., University of Nevada, 
Reno, 272 pages; AAT 1494267, 2011. 

[34]-Vadillo, E. G., Herreros, J., and Walker, J. G.: 
Subjective reaction to structurally radiated sound 
from underground railways: Field studies. J. Sound 
Vib., 193(1), 1996, pp. 65–74. 

[35]-Yang, Y.B. et al.: Soil vibrations caused by 
underground moving trains. J. of Geotechnical and 
Geoenvironmental Engineering, ASCE, 2008. 

[36]-Yao, M.M.: Earthquake Wave-Soil-Structure 
Interaction Analysis of Tall Buildings. 
Ph.D., University of Victoria (Canada), 95 pages; 
AAT NR74121, 2010. 

[37]-Yun, C. B. et al.: Analytical frequency dependent 
infinite elements for soil- structure interaction 
analysis in two-dimensional medium. Eng. Struct., 
22(3), 2000, pp. 258–271. 

[38]-Zhong, P.: Sensitivity of building response to 
variation in integration time step of response history 
analysis. M.S., University of California, Irvine, 70 
pages; AAT 1490700, 2011. 

 
APPENDIX 

FFF V.m   , Foundation weight gmW FF . , 

Lorenz, H. (1955) calculated the weight of the 
accompanied vibrating soil with the foundation 
using the equation 
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Fig. 4 Foundation with its accompanied vibrating 

toned sand 
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Vertical embedding damping constant: the damping 

constant of radiation is Sdb VEr /  

Mass of the high tower: the density of high tower 
can be assumed as 1/10 of that of the foundation, i.e. 
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