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Abstract: A model has been presented to predict the thermal conductivity of CNT nanofluid systems based on 
several dimensionless groups including thermal conductivity of base fluid, CNTs and dimensions of nanotubes. 
According to the investigations, the thermal conductivity of CNT nanofluids increases nonlinearly when the 
concentration of CNTs are increased. The new model showed to have a great agreement with experimental data for a 
series of CNT–R113 (Cl2FC-CClF2) nanofluids. 
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1. Introduction: 
Nowadays nanofluids have shown to play a great 

role in many processes such as power generation, 
chemical production, refrigeration, transportation and 
many other sectors. An enhancement to thermal 
conductivity of these fluids makes industry more 
efficient and permits smaller devices and systems to 
be manufactured. Many investigations have been 
conducted to improve the thermal conductivity of 
heat transfer fluids (Lee et al., 1999; Wang et al., 
1999; Xie et al., 2002; Murshed et al., 2005; Hwang 
et al., 2007; Michael et al., 2007). 

One technique is to add particles with different 
materials which their size ranges from micrometer to 
millimeters to the base fluid which has shown 
improved thermal properties. Unfortunately, 
instability and  clogging characteristics of these 
suspensions has been observed (Xuan and Li, 2000; 
Eastman et al., 2001; Das et al., 2003; Patel et al., 
2003; Murshed et al., 2005). 

Nano fluids have been developed by advances in 
nanotechnology. These fluids are suspensions of 
nanometer sized materials, in comparison with the 
base fluid, nanofluids have been shown to have 
higher thermal conductivities, more stability and the 
ability to not to clog even in micro sized channels. 
Because of their great heat transfer conductivity they 
are under investigation to increase heat transfer of a 
system (Lee et al., 1999; Wang et al., 1999; Xie et al., 
2002; Murshed et al., 2005; Hwang et al., 2007; 
Michael et al., 2007). 

As the result of recent studies carbon nanotubes 
were proved to have the capability to enhance the 
effective thermal conductivity of base fluid heat 

transfer (Choi et al., 2001; Xie et al., 2003; Liu et al., 
2005; Ding et al., 2006; Hwang et al., 2006). 

CNTs were observed to have relatively high 
thermal conductivity ranging from 600 to 6000 
W/(mK) (Kim et al., 2001; Xue, 2005; Hwang et al., 
2006). 

The recent models developed by researchers 
could not predict the behavior of CNT nano fluids 
(Maxwell, 1904; Hamilton and Crosser, 1962). The 
reason why those models predict values that are far 
from experimental data is most probably because 
they neglect the effect of particle size and the solid -
liquid interfacial properties. However these factors 
are proved to influence the thermal conductivity of 
nanofluids (Keblinski et al, 2002). 

At the solid interface a layer of molecules have 
been formed which acts as an interfacial shell which 
possess a greater thermal conductivity with respect to 
bulk liquid, which leads to more heat transfer. 

In this study a model has been developed based 
on dimensionless groups which are able to predict the 
thermal conductivity of CNT based nanofluids. 
 
2. Thermal conductivity modeling: 

Many models have been presented for effective 
thermal conductivity of nanofluids, the most relevant 
are as follows: 
 
Maxwell model: 

Maxwell model predicts the effective thermal 
conductivity of dilute solutions and is the basis of 
subsequent models. That is the classical theory of 
conduction to a sphere which was developed by 
Maxwell 1904. 
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Where ݇௘௙௙ and ݇௠ are the thermal conductivities of 
nanofluid and base fluid respectively. ߙ is the ratio of 
thermal conductivity of the particle to that of the base 
fluid, and ݒ is the volume fraction of the dispersed 
particles. 
 
Hamilton & Crosser (H-C) model: 

This model which is a modification of Maxwell 
equation, can predict non-spherical particles behavior 
(Hamilton and Crosser, 1962). 
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(2)   

 
n is shape factor and is equal to 3 for spherical 
particles. 
 
Xue model: 

Thermal conductivity of CNT nano tubes is 
expressed by Xue model.(Xue,2006) 
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(3) 

 
Where ݇௖ is thermal conductivity of CNTs. L and d 
are length and diameter of the CNTs, respectively, 
and ܴ௞is the thermal resistance of the nanotube-fluid 
interface. For the recent study ܴ௞ is considered as 
13.9E-7 ݉ଶKܹିଵ. 

In this section an expression has been derived by 
appropriate dimensionless groups to study the 
effective thermal conductivity of CNTs nanofluids. 
This model relates effective thermal conductivity of 
the base fluid, CNT shell and also physical 
dimensions of the CNTs. 

 
݇௘௙௙=f(݇௠,݇௖,d,L,ݒ௖,)        (4)   
 

Where ݇௠ is the therml conductivity of the 
suspending fluid, ݇௖ is the thermal conuctivity of the 
CNTs, d is the diameter of the CNTs, L is the length 
of the CNTs and ݒ௖ is the volume fraction of CNTs. 
Following dimensionless groups obtained from 
dimensional analysis: 
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 ଷ is considered to be a function of the otherߨ     
dimensionless groups as follows: 
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The effective thermal conductivity of the nanofluid is 
supposed to be considerably larger than that for the 
pure fluid as Moghadasi et al. 2009 mentioned: 
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Where R is an enhancement factor which is presented 
in the following: 
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ௗ
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By combining equations (10) and (11), a general 

expression including dimensionless groups for the 
effective conductivity of nanofluids is obtained: 
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It is hypothesized that the function is in the 
following form: 
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(14)   

A multidimensional curve fitting program has been 
used to fit the equation (11) on experimental data 
obtained from literature (Jiang et al., 2009).The 
parameters ߙ, ,ߚ  calculated by the program are  ߛ
listed in Table 1. 

The results derived from previous models are 
compared with the new model and experimental data 
from literature. In order to compare the results, mean 
average relative errors are calculated and listed in 
Table 2. 
Thermal conductivities of CNTs and R113 
considered to be 6000 W/(mK) and 0.06726 W/(mK) 
respectively (Jiang et al., 2009). 
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