
Journal of American Science, 2012;8(4) http://www.americanscience.org

http://www.americanscience.org editor@americanscience.org 757

Reduction and modification of Test Cases in Web Applications by Using Multi Objective Genetic Algorithm

Alireza Souri 1, Mohammad esmaeel Akbari 2, Arash Salehpour 3

1,3 Department of Computer Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran

2Department of Electrical Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran
E-mail: a-souri@iau-Ahar.ac.ir, m-Akbari@iau-Ahar.ac.ir, a-salehpour@iau-Ahar.ac.ir

Abstract: Web applications have countless constraints. Cost, time, and space constraints restrict us to execute all the
test cases. We need to reduce the test cases to an appropriate amount so the efficient testing of web application can
be done. Test case reduction is the process to extract the valid solutions eliminating redundancy and invalid
solutions. This paper presents an idea to induce the intelligent aspect in automated testing by applying Multi
Objective Genetic algorithm (MOGA). The term Multi objective here suggests multiple tasks to be achieved with
efficiency. The multi-objective factors being considered here are cost and coverage. The cost at the end will be
reduced cause of the prioritized test cases and coverage will be maximized as we will select the test cases with
highest fitness. As per Genetic algorithm the initial population is the test cases extracted from web application.
Fitness criterion applied is made on the basis of test case length i.e. the number of ids in each test case and then the
test cases with the more length are selected for genetic operations. Pairs for cross over are made on the basis of their
affinity. Mutation is applied for the diversity or to extract the right solution. It is not mandatory if required solutions
are obtained. The system made for reduction of test cases is efficiently giving the accurate results and with
maximum objectives being achieved.
[Alireza Souri, Mohammad esmaeel Akbari. Reduction and modification of Test Cases in Web Applications by
Using Multi Objective Genetic Algorithm. Journal of American Science. 2012; 8(4):757-762]. (ISSN: 1545-
1003). http://www.americanscience.org. 100

Keywords: Test suite prioritization, Multi objective genetic algorithm, Web applications, test case

1. Introduction

Web applications have distributed and
heterogeneous properties which make them more
interactive with users and also dominant than
traditional ones. [1] Web applications are now
responsible for performing the crucial tasks and it is
not reliable until or unless secure systems are
ensured. Apart from security other quality attributes
like functionality are also necessary for the efficient
systems. The field of web development is expanding
day by day and in parallel to this the need of testing
is also being increased. “Software Testing is the
process of executing a program or system with the
intent of finding errors.”[2].

Software testing is the process of finding the
defects and faults. By removing these defects we can
avoid maximum risks possible. Fault free
implementation with the required functionality and
specification is the foremost demand of the customers
and this is only possible when you apply best testing
techniques. Before the modern techniques of testing
it was only applied at the later stages and was
considered to be as a single stage of software
development life cycle (SDLC) but now testing is
applied at each phase for the required output. Finding
out the errors in the initial stages saves 80% of time
and cost as compared to the errors found in the end.
Considering the test adequacy criteria’s for the
testing, it can provide coverage through statement

decision or paths. It follows the hierarchy on the top
is multiple condition coverage and at the bottom is
functions i.e. functions are not being repeated. Path
testing is considered effective of all but that is bit
impossible. Testing of decisions might be more
complex than others. Before Automated testing, it
was done manually. Manual testing is a lengthy and
complex method. 60-40 percent of the project time is
consumed by this process. A simple program may
have many different behaviors and testing that
program can turn out to be very expensive and time
consuming.

 If we consider testing huge software by manual
testing it will be very exhausting and can be never
ending task cause in such cases you are not sure
when to stop testing. Human testing has more
chances that some errors remain unidentified and it
takes twice the resources as compared to automated
testing. To take the work load off your hands and to
do it in more efficient way we use automated testing.
Automated testing is the process of record and run. It
lowers the cost and time and provides more of the
test coverage. It tests the program we feed in it. We
give the proper input and look for expected output.
Once the test case is give human work is over,
through automated testing all the processing will be
done.

User will just have to check the results in the by
examining the successful and failed test cases.[3]

Journal of American Science, 2012;8(4) http://www.americanscience.org

http://www.americanscience.org editor@americanscience.org 758

Automated testing has become vast field and much
work has been done until now. Different web
application testing software with modified versions
are being released every next day.

 Automated web application testing with respect
to artificial intelligence is still an emerging field and
not many liable and authentic testing frameworks
have been made yet. This paper presents an AI based
testing technique for the testing of web applications.
AI techniques evolved from the natural phenomena’s
are most renowned and reliable in the field of
automated testing. Genetic algorithm, Simulated
annealing, PSO etc are some of the examples. The
technique used in this paper is Multi Objective
Genetic Algorithm (MOGA). This technique is used
for the reduction of test cases .

Reduction of test cases means to trim down the
test cases i.e. eliminate invalid and repeating test
cases and also to extract the favorable valid test cases
from the valid ones. Reduction has the benefit that it
saves many resources as in time cost and effort and to
save maximum of these resources we have made our
algorithm multi objective.

After a decade since the pioneering work by
Schaffer (1984), a number of studies on
multiobjective genetic algorithms (GAs) have
emerged. Most of these studies were motivated by a
suggestion of a non-dominated GA outlined in
Goldberg (1989). The primary reason for these
studies is a unique feature of GAs—a population
approach—that is highly suitable for use in multi-
objective optimization. Since GAs work with a
population of solutions, multiple Pareto-optimal
solutions can be found in a GA population in a single
simulation run. During the years 1993-95, a number
of independent GA implementations (Fonseca and
Fleming, 1993; Horn et al., 1994; Srinivas and Deb,
1995)[9] emerged. Later, other researchers
successfully used these implementations in
variousmulti-objective optimization applications
(Cunha et al., 1997; Eheart et al., 1993; Mitra et al.,
1998; Parks and Miller, 1998; Weile et al., 1996). A
number of studies have also concentrated on
developing new GA implementations (Kursawe,
1990; Laumanns et al., 1998; Zitzler and Thiele,
1998). Fonseca and Fleming (1995)[10] and Horn
(1997) presented overviews of different
multiobjective GA implementations, and Van
Veldhuizen and Lamont (1998) made a survey of test
problems that exist in the literature.
2. Related Works

Xu et.al.[1] Testing process for web application
is explained in the given paper and has the following
phases. Testing requirements i.e. developer should be
well aware of its goal, method being used and object.
After this, test cases are generated based on

information provided by the previous phase
combined with web application. These test cases are
then reduced to relevant ones; selected test cases are
then given the input information for the required
output keeping the track of test steps. Then these
cases are executed and monitored and the results
deduced are then analyzed. If the results are like the
original ones as expected, it is considered to be
correct. Feedback is given after that.

Srivastava et.al. in [4], The main idea discussed
in this paper is to find the most critical path and make
test cases according to that. Critical suggests such
paths which have most probability of errors. The
approach used in this paper is weighted CFG. Critical
paths are here found by assigning 80-20 rule. Genetic
algorithm is then applied. In the process of selection
fitness value is calculated by adding weights of each
path. Random values are then generated and
compared with cumulative probability Ci. Random
number which is just lowest to the corresponding Ci
that test data number is assigned to Ns column.
Mating pool is the parent pool.

Test cases in the mating pool are crossover with
the input test data cases if their random number is
less than 0.8. For mutation each bit having random
number less than 0.3 is flipped for new data entry.
This technique can be used to produce optimal results
also saving us from exhaustive testing by finding the
critical paths in advance.

C. Michael et.al in [5], This paper uses the
combinatorial optimization techniques such as
genetic algorithm for the generation and prioritization
of test cases. To start the implementation test
adequacy criteria must be satisfied. Test adequacy
criteria can be any coverage, criteria set in this paper
is decision condition coverage. The test data
generation method used is dynamic; it finds the
desired location and applies function minimization.
Genetic algorithms applied with function
minimization follows its iterative process of
initialization, fitness function, selection and genetic
operators. All the results are then evaluated giving a
clear margin that genetic search is more effective
than random test data generation.
3. Genetic algorithms

The concept of GA was developed by Holland
and his colleagues in the 1960s and 1970s [6]. GA
are inspired by the evolutionist theory explaining the
origin of species. In nature, weak and unfit species
within their environment are faced with extinction by
natural selection. The strong ones have greater
opportunity to pass their genes to future generations
via reproduction. In the long run, species carrying the
correct combination in their genes become dominant
in their population. Sometimes, during the slow
process of evolution, random changes may occur in

Journal of American Science, 2012;8(4) http://www.americanscience.org

http://www.americanscience.org editor@americanscience.org 759

genes. If these changes provide additional advantages
in the challenge for survival, new species evolve
from the old ones. Unsuccessful changes are
eliminated by natural selection.

In GA terminology, a solution vector xAX is
called an individual or a chromosome. Chromosomes
are made of discrete units called genes. Each gene
controls one or more features of the chromosome. In
the original implementation of GA by Holland, genes
are assumed to be binary digits. In later
implementations, more varied gene types have been
introduced. Normally, a chromosome corresponds to
a unique solution x in the solution space. This
requires a mapping mechanism between the solution
space and the chromosomes. This mapping is called
an encoding. In fact, GA work on the encoding of a
problem, not on the problem itself. GA operate with a
collection of chromosomes, called a population. The
population is normally randomly initialized. As the
search evolves, the population includes fitter A.
Konak et al. / Reliability Engineering and System
Safety 91 (2006) 992–1007 993 and fitter solutions,
and eventually it converges, meaning that it is
dominated by a single solution. Holland also
presented a proof of convergence (the schema
theorem) to the global optimum where chromosomes
are binary vectors. GA use two operators to generate
new solutions from existing ones: crossover and
mutation. The crossover operator is the most
important operator of GA. In crossover, generally
two chromosomes, called parents, are combined
together to form new chromosomes, called offspring.
The parents are selected among existing
chromosomes in the population with preference
towards fitness so that offspring is expected to inherit
good genes which make the parents fitter. By
iteratively applying the crossover operator, genes of
good chromosomes are expected to appear more
frequently in the population, eventually leading to
convergence to an overall good solution. The
mutation operator introduces random changes into
characteristics of chromosomes. Mutation is
generally applied at the gene level. In typical GA
implementations, the mutation rate (probability of
changing the properties of a gene) is very small and
depends on the length of the chromosome. Therefore,
the new chromosome produced by mutation will not
be very different from the original one. Mutation
plays a critical role in GA. As discussed earlier,
crossover leads the population to converge by making
the chromosomes in the population alike. Mutation
reintroduces genetic diversity back into population
and assists the search escape from local optima.

Reproduction involves selection of chromosomes
for the next generation. In the most general case, the
fitness of an individual determines the probability of

its survival for the next generation. There are
different selection procedures in GA depending on
how the fitness values are used.

Proportional selection, ranking, and tournament
selection are the most popular selection procedures.
The procedure of a generic GA [7] is given as
follows:
Step 1: Set t ¼ 1. Randomly generate N solutions to
form the first population, P1. Evaluate the fitness of
solutions in P1.
Step 2: Crossover: Generate an offspring population
Qt as follows:
2.1. Choose two solutions x and y from Pt based on
the fitness values.
2.2. Using a crossover operator, generate offspring
and add them to Qt.
Step 3: Mutation: Mutate each solution xAQt with a
predefined mutation rate.
Step 4: Fitness assignment: Evaluate and assign a
fitness value to each solution xAQt based on its
objective function value and infeasibility.
Step 5: Selection: Select N solutions from Qt based
on their fitness and copy them to Pt+1. Step 6: If the
stopping criterion is satisfied, terminate the search
and return to the current population, else, set t ¼ t+1
go to Step 2.
4. Multi-objective GA

Being a population-based approach, GA are well
suited to solve multi-objective optimization
problems. A generic single-objective GA can be
modified to find a set of multiple non-dominated
solutions in a single run. The ability of GA to
simultaneously search different regions of a solution
space makes it possible to find a diverse set of
solutions for difficult problems with non-convex,
discontinuous, and multi-modal solutions spaces. The
crossover operator of GA may exploit structures of
good solutions with respect to different objectives to
create new nondominated solutions in unexplored
parts of the Pareto front. In addition, most multi-
objective GA do not require the user to prioritize,
scale, or weigh objectives. Therefore, GA have been
the most popular heuristic approach to multi-
objective design and optimization problems. Jones et
al. [4] reported that 90% of the approaches to
multiobjective optimization aimed to approximate the
true Pareto front for the underlying problem. A
majority of these used a meta-heuristic technique,
and 70% of all metaheuristics approaches were based
on evolutionary approaches.

The first multi-objective GA, called vector
evaluated GA (or VEGA), was proposed by Schaffer
[5]. Afterwards, several multi-objective evolutionary
algorithms were developed including Multi-objective
Genetic Algorithm (MOGA) , Niched Pareto Genetic
Algorithm (NPGA), Weight-based Genetic

Journal of American Science, 2012;8(4) http://www.americanscience.org

http://www.americanscience.org editor@americanscience.org 760

Algorithm (WBGA), Random Weighted Genetic
Algorithm (RWGA), Nondominated Sorting Genetic
Algorithm (NSGA), Strength Pareto Evolutionary
Algorithm (SPEA), improved SPEA (SPEA2),
Pareto-Archived Evolution Strategy (PAES), Pareto
Envelope-based Selection Algorithm (PESA),
Region-based Selection in Evolutionary
Multiobjective Optimization (PESA-II), Fast
Nondominated Sorting Genetic Algorithm (NSGA-
II), Multi-objective Evolutionary Algorithm (MEA),
Micro-GA, Rank-Density Based Genetic Algorithm
(RDGA), and Dynamic Multi-objective Evolutionary
Algorithm (DMOEA). Note that although there are
many variations of multi-objective GA in the
literature, these cited GA are well-known and
credible algorithms that have been used in many
applications and their performances were tested in
several comparative studies. Several survey papers
have been published on evolutionary multi-objective
optimization. Coello lists more than 2000 references
in his website. Generally, multi-objective GA differ
based on their fitness assignment procedure, elitisim,
or diversification approaches. In Table 1, highlights
of the well-known multi-objective with their
advantages and disadvantages are given. Most survey
papers on multi-objective evolutionary approaches
introduce and compare different algorithms. This
paper takes a different course and focuses on
important issues while designing a multi-objective
GA and describes common techniques used in multi-
objective GA to attain the three goals in multi-
objective optimization. This approach is also taken in
the survey paper by Zitzler et al. [1]. However, the
discussion in this paper is aimed at introducing the
components of multi-objective GA to researchers and
practitioners without a background on the multi-
objective GA. It is also import to note that although
several of the state-of-the-art algorithms exist as cited
above, many researchers that applied multi-objective
GA to their problems have preferred to design their
own customized algorithms by adapting strategies
from various multiobjective GA. This observation is
another motivation for introducing the components of
multi-objective GA rather than focusing on several
algorithms. However, the pseudocode for some of the
well-known multi-objective GA are also provided in
order to demonstrate how these procedures are
incorporated within a multi-objective GA[8].
5. System Design and Implementation

Our proposed model uses multi objective genetic
algorithm for the reduction of test cases. The phases
and design of our system is elaborated below in
detail.
Statement of the Modeling Problem:

In order to achieve the accurate results for the
reduction of test cases it is has become necessary to

design and implement the general and efficient
system. Web applications have dynamic properties.
Testing whole website can be an exhaustive process
and you may end up having uncountable test suites so
to avoid that we will reduce the test cases to the
appropriate amount. It will save the time, cost ad
effort also giving the best coverage. The equation
given below explains all the steps that will be applied
on the ids generated after transactions.
Prioritized test cases=(M(C(S(F(E(v(ip(ids))))))))
Where the symbols are described in the table given
below:

Table 1: List of Factors

Symbols Description

ip Inputs

ids Id generated after each transaction

v Validation

E Eliminating repeating test cases

F Fitness

S Selection

C Cross over

M Mutation

Before the start of implementation for such

system real world problem needs to be considered.
Problems that should be kept in mind while using
multi objective genetic algorithm are that which
quality attribute to focus for the testing of web
application, what will be test adequacy criteria, On
what basis fitness will be calculated, which selected
test cases to crossover and which bits to mutate in
chromosomes after cross over. All these queries are
entertained in the proposed model given below.

Proposed solution Algorithm:
Initialization of population
Validation
Eliminating redundancy
While (termination condition not met)
{
Fitness Evaluation
Selection
Cross over
Mutation
}

Proposed solution Model:
A. Transaction

This phase deals with the input of the
system. The web application we have considered for
the testing is Yahoo mail beta. When the user will
select the certain action ids corresponding to that will
be generated. Number of test cases will depend on
the transactions that user will make. Each transaction

Journal of American Science, 2012;8(4) http://www.americanscience.org

http://www.americanscience.org editor@americanscience.org 761

on completion makes a test case. We can consider ids
as genes and genes altogether makes a chromosome.
To perform any action it is necessary to be logged in.
User will first open the yahoo mail page, enter an
email address, password and logged in. Ids assigned
to such actions are 000, 001, 002 and 003, test case
made according to that will be [000, 001, 002, 003].

Figure:1 Flow Graph of MOGA

We have assumed this test case to be always
true. Other test cases are made with the actions on the
yahoo beta home page. Considering one of the other
test cases for example to print an email, the
respective transactions that user will make will be
inbox, select an email, go to actions and print. Test
case generated will be [200, 201, 260, 261]. Total
actions we are considering from yahoo mail beta
home page are 33. These 33 actions make 22 valid
test cases.
B. Path Coverage

Path coverage is the test adequacy criteria
we have use for the development of our system. It
validates the path or test cases user enters. It verifies
that whether user has entered the right test cases; if

yes it adds it into the population and if not it removes
it from the chromosome set. If the test case seems
nearer to any valid test cases; but some of it ids are
not correct it modifies it into the valid ones.
Eliminating invalid test cases from the start helps in
efficient reduction. Ai based multi objective genetic
algorithm will then only be applied on valid test cases
this will for surely produce the best population.
C. Eliminating Repetition:

This step eradicates all the repeating test
cases to extract more valid test cases. Repetition can
make the population less optimal. If same test cases
are being used again and again and all the genetic
operations are applied on them, then there is very less
probability of producing the best population.
D. Fitness Evaluation:

Fitness calculation is problem specific i.e. it is
calculated according to the domain needs. In our
model fitness is calculated on the basis of no. of
steps. e.g. if u have to send an email, you need to
login this is the basic requirement. We have assumed
it to be true always.

Once you are logged in you go to compose
message, fill the address field and then send. These
all transactions total make the length three n this is
then multiplied with random number. This gives the
fitness of test case send an email. This is how the
fitness of all test cases is calculated. If the length of
first test case is greater than other test cases then it
will have more fitness value. It depends on the
number of steps each test case is covering and then
given priority according to that.
E. Selection

As the name suggests selection is the
process of choosing the best chromosomes.
Chromosomes are selected on the basis of the fitness
criteria. Chromosomes with greater fitness are
considered best and are nominated for the further
genetic operations.
F. Cross over

Cross over is the main genetic operation that
swaps the half chromosome of the first best parent
chromosome with the other best parent and produces
the off springs. This is an iterative process and it
continues until the best population is found. The
criterion we have set for the cross over is on the basis
of affinity i.e. the test cases that are somehow
familiar with one and other are most likely to
crossover. Affinity here suggests similar ids .The test
cases with same starting ids will swap with each
other. Cross over point is not specific it’s up to the
developer to set any point.

The cross over point set here is 2. Swapping the
chromosomes of similar ids has the probability to
produce some valid paths after exchange. If the
selected population for cross over is in odd number;

Journal of American Science, 2012;8(4) http://www.americanscience.org

http://www.americanscience.org editor@americanscience.org 762

the chromosomes should be converted into even
number to make optimal pairs. The chromosomes
with the lower length should be discarded as we have
the coverage objective to achieve. Chromosome with
the larger length will give maximum coverage as it
covers more actions. When population is in even
number chromosomes with their favorable match ups
will make pairs and exchange their ids.
G. Mutation

Mutation brings the biological diversity in the
population. If required solution is not being produced
from recombination, mutation criteria can be used to
bring the change in the produced population and
transform it into the desired one. It is not mandatory
to perform mutation; it can be omitted if the results
are obtained without it.
H. Prioritized Test Cases

Prioritized test cases are the output of the
system. These reduced test cases will give the
advantage of saving the time, cost of the system and
with maximum coverage when testing is done. These
reduced test cases are with the valid ids and paths.
These are the optimal solutions produced after
applying genetic operations.

4. Result and Conclusion

The results gathered after experimentation is as
follows. 46 test cases of yahoo mail beta were given
as an input to the system and after applying MOGA
they were reduced to 18 test cases. 16 of the test
cases were invalid; test cases nearer to valid ones
were modified. 9 test cases were discarded cause of
redundancy and 3 were reduced because they didn’t
find any pair for cross over. So on the whole 46 test
cases were reduced to 18 giving efficient results as it
covers the other objectives also. At the end of the
implementation the multi objective factors achieved
are cost and coverage.

As this project aims to ease the process of testing
by reducing the test cases and saving the resources
hence it achieves this objective. It saves the cost on
testing, as the test cases are prioritized in the end.
Fewer test cases to test save the cost and time. Apart
from cost the other factor that is achieved is
maximum coverage. Test cases are selected on the
basis of fitness criteria.

Fitness criteria used in this paper is on the basis
of number of steps. Test cases with larger steps are
most optimal to be selected. As there are larger steps
so it gives the maximum coverage. So on the whole
maximum coverage and reduced cost is achieved by
prioritizing the test cases.

Although the system made is producing the
accurate results with the given criterion but to make it
more efficient number of objectives can be enhanced.

We are considering cost and coverage; Research with
the time factor needs to be covered.

We have chosen the criteria for fitness evaluation
i.e. on the basis of length of test case, the other
criteria which has the possibility to produce best
results is on the basis of actions priority.

Corresponding Author:
Alireza Souri
Department of Computer Engineering,
Ahar Branch, Islamic Azad University,
Ahar, Iran
E-mail: a-souri@iau-Ahar.ac.ir

References
1. Lei Xu, Boawen Xu, “A frame work for web

application and testing”, International Conference on
Cyberworlds, 2004.

2. Myers G. J., The Art of Software Testing, 1st edition,
John Wiley and Sons, NY, USA, 1979.

3. Eugene Volokh, VESOFT, “AUTOMATED
TESTING -- WHY AND HOW”, INTEREX
Conference, Published by INTERACT Magazine,
Dec 1990.

4. Praveen Ranjan Srivastava, Tai-hoon Kim,
“Application of Genetic Algorithm in Software
Testing”, International Journal of Software
Engineering and Its Applications Vol. 3, No.4,
October 2009.

5. Christopher C. Michael, Ginput E. McGraw.
Michael A. Schatz, and Curtis C. Walton, GA for
Dynamic Test. Data Generation”, National Science
Foundation, 1997/05/23.

6. Holland JH. Adaptation in natural and artificial
systems. Ann Arbor: University of Michigan Press;
1975.

7. Goldberg DE. Genetic algorithms in search,
optimization, and machine learning. Reading, MA:
Addison-Wesley; 1989.

8. Abdollah Konak, David W.Coit, Alice Smite “Multi-
objective optimization using genetic algorithms: A
tutorial” . Reliability Engineering and System Safety
91 (2006) 992–1007

9. Deb, K. and Kumar, A. (1995). Real-coded genetic
algorithms with simulated binary crossover: Studies
on multi-modal and multi-objective problems.
Complex Systems, 9:431–454.

10. Parks, G. T. and Miller, I. (1998). Selective breeding
in a multi-objective genetic algorithm. In Eiben, A.
E., B¨ack, T., Schoenauer, M. and Schwefel, H.-P.,
editors, Proceedings of the Parallel Problem Solving
from Nature, V, pages 250–259, Springer, Berlin,
Germany.

3/12/2012

