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Abstract: Web applications have countless constraints. Cost, time, and space constraints restrict us to execute all the 
test cases. We need to reduce the test cases to an appropriate amount so the efficient testing of web application can 
be done. Test case reduction is the process to extract the valid solutions eliminating  redundancy and invalid 
solutions. This paper presents an idea to induce the intelligent aspect in automated testing by applying Multi 
Objective Genetic algorithm (MOGA). The term Multi objective here suggests multiple tasks to be achieved with 
efficiency. The multi-objective factors being considered here are cost and coverage. The cost at the end will be 
reduced cause of the prioritized test cases and coverage will be maximized as we will select the test cases with 
highest fitness. As per Genetic algorithm the initial population is the test cases extracted from web application. 
Fitness criterion applied is made on the basis of test case length i.e. the number of ids in each test case and then the 
test cases with the more length are selected for genetic operations. Pairs for cross over are made on the basis of their 
affinity. Mutation is applied for the diversity or to extract the right solution. It is not mandatory if required solutions 
are obtained. The system made for reduction of test cases is efficiently giving the accurate results and with 
maximum objectives being achieved. 
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1. Introduction 

Web applications have distributed and 
heterogeneous properties which make them more 
interactive with users and also dominant than 
traditional ones. [1] Web applications are now 
responsible for performing the crucial tasks and it is 
not reliable until or unless secure systems are 
ensured. Apart from security other quality attributes 
like functionality are also necessary for the efficient 
systems. The field of web development is expanding 
day by day and in parallel to this the need of testing 
is also being increased. “Software Testing is the 
process of executing a program or system with the 
intent of finding errors.”[2].  

Software testing is the process of finding the 
defects and faults. By removing these defects we can 
avoid maximum risks possible. Fault free 
implementation with the required functionality and 
specification is the foremost demand of the customers 
and this is only possible when you apply best testing 
techniques. Before the modern techniques of testing 
it was only applied at the later stages and was 
considered to be as a single stage of software 
development life cycle (SDLC) but now testing is 
applied at each phase for the required output. Finding 
out the errors in the initial stages saves 80% of time 
and cost as compared to the errors found in the end. 
Considering the test adequacy criteria’s for the 
testing, it can provide coverage through statement 

decision or paths. It follows the hierarchy on the top 
is multiple condition coverage and at the bottom is 
functions i.e. functions are not being repeated. Path 
testing is considered effective of all but that is bit 
impossible. Testing of decisions might be more 
complex than others. Before Automated testing, it 
was done manually. Manual testing is a lengthy and 
complex method. 60-40 percent of the project time is 
consumed by this process. A simple program may 
have many different behaviors and testing that 
program can turn out to be very expensive and time 
consuming. 

 If we consider testing huge software by manual 
testing it will be very exhausting and can be never 
ending task cause in such cases you are not sure 
when to stop testing. Human testing has more 
chances that some errors remain unidentified and it 
takes twice the resources as compared to automated 
testing. To take the work load off your hands and to 
do it in more efficient way we use automated testing. 
Automated testing is the process of record and run. It 
lowers the cost and time and provides more of the 
test coverage. It tests the program we feed in it. We 
give the proper input and look for expected output. 
Once the test case is give human work is over, 
through automated testing all the processing will be 
done.  

User will just have to check the results in the by 
examining the successful and failed test cases.[3] 
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Automated testing has become vast field and much 
work has been done until now. Different web 
application testing software with modified versions 
are being released every next day. 

 Automated web application testing with respect 
to artificial intelligence is still an emerging field and 
not many liable and authentic testing frameworks 
have been made yet. This paper presents an AI based 
testing technique for the testing of web applications. 
AI techniques evolved from the natural phenomena’s 
are most renowned and reliable in the field of 
automated testing. Genetic algorithm, Simulated 
annealing, PSO etc are some of the examples. The 
technique used in this paper is Multi Objective 
Genetic Algorithm (MOGA). This technique is used 
for the reduction of test cases .  

Reduction of test cases means to trim down the 
test cases i.e. eliminate invalid and repeating test 
cases and also to extract the favorable valid test cases 
from the valid ones. Reduction has the benefit that it 
saves many resources as in time cost and effort and to 
save maximum of these resources we have made our 
algorithm multi objective. 

After a decade since the pioneering work by 
Schaffer (1984), a number of studies on 
multiobjective genetic algorithms (GAs) have 
emerged. Most of these studies were motivated by a 
suggestion of a non-dominated GA outlined in 
Goldberg (1989). The primary reason for these 
studies is a unique feature of GAs—a population 
approach—that is highly suitable for use in multi-
objective optimization. Since GAs work with a 
population of solutions, multiple Pareto-optimal 
solutions can be found in a GA population in a single 
simulation run. During the years 1993-95, a number 
of independent GA implementations (Fonseca and 
Fleming, 1993; Horn et al., 1994; Srinivas and Deb, 
1995)[9] emerged. Later, other researchers 
successfully used these implementations in 
variousmulti-objective optimization applications 
(Cunha et al., 1997; Eheart et al., 1993; Mitra et al., 
1998; Parks and Miller, 1998; Weile et al., 1996). A 
number of studies have also concentrated on 
developing new GA implementations (Kursawe, 
1990; Laumanns et al., 1998; Zitzler and Thiele, 
1998). Fonseca and Fleming (1995)[10] and Horn 
(1997) presented overviews of different 
multiobjective GA implementations, and Van 
Veldhuizen and Lamont (1998) made a survey of test 
problems that exist in the literature. 
2. Related Works 

Xu et.al.[1] Testing process for web application 
is explained in the given paper and has the following 
phases. Testing requirements i.e. developer should be 
well aware of its goal, method being used and object. 
After this, test cases are generated based on 

information provided by the previous phase 
combined with web application. These test cases are 
then reduced to relevant ones; selected test cases are 
then given the input information for the required 
output keeping the track of test steps. Then these 
cases are executed and monitored and the results 
deduced are then analyzed. If the results are like the 
original ones as expected, it is considered to be 
correct. Feedback is given after that. 

Srivastava et.al. in [4], The main idea discussed 
in this paper is to find the most critical path and make 
test cases according to that. Critical suggests such 
paths which have most probability of errors. The 
approach used in this paper is weighted CFG. Critical 
paths are here found by assigning 80-20 rule. Genetic 
algorithm is then applied. In the process of selection 
fitness value is calculated by adding weights of each 
path. Random values are then generated and 
compared with cumulative probability Ci. Random 
number which is just lowest to the corresponding Ci 
that test data number is assigned to Ns column. 
Mating pool is the parent pool.  

Test cases in the mating pool are crossover with 
the input test data cases if their random number is 
less than 0.8. For mutation each bit having random 
number less than 0.3 is flipped for new data entry. 
This technique can be used to produce optimal results 
also saving us from exhaustive testing by finding the 
critical paths in advance. 

C. Michael et.al in [5], This paper uses the 
combinatorial optimization techniques such as 
genetic algorithm for the generation and prioritization 
of test cases. To start the implementation test 
adequacy criteria must be satisfied. Test adequacy 
criteria can be any coverage, criteria set in this paper 
is decision condition coverage. The test data 
generation method used is dynamic; it finds the 
desired location and applies function minimization. 
Genetic algorithms applied with function 
minimization follows its iterative process of 
initialization, fitness function, selection and genetic 
operators. All the results are then evaluated giving a 
clear margin that genetic search is more effective 
than random test data generation. 
3. Genetic algorithms 

The concept of GA was developed by Holland 
and his colleagues in the 1960s and 1970s [6]. GA 
are inspired by the evolutionist theory explaining the 
origin of species. In nature, weak and unfit species 
within their environment are faced with extinction by 
natural selection. The strong ones have greater 
opportunity to pass their genes to future generations 
via reproduction. In the long run, species carrying the 
correct combination in their genes become dominant 
in their population. Sometimes, during the slow 
process of evolution, random changes may occur in 
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genes. If these changes provide additional advantages 
in the challenge for survival, new species evolve 
from the old ones. Unsuccessful changes are 
eliminated by natural selection. 

In GA terminology, a solution vector xAX is 
called an individual or a chromosome. Chromosomes 
are made of discrete units called genes. Each gene 
controls one or more features of the chromosome. In 
the original implementation of GA by Holland, genes 
are assumed to be binary digits. In later 
implementations, more varied gene types have been 
introduced. Normally, a chromosome corresponds to 
a unique solution x in the solution space. This 
requires a mapping mechanism between the solution 
space and the chromosomes. This mapping is called 
an encoding. In fact, GA work on the encoding of a 
problem, not on the problem itself. GA operate with a 
collection of chromosomes, called a population. The 
population is normally randomly initialized. As the 
search evolves, the population includes fitter A. 
Konak et al. / Reliability Engineering and System 
Safety 91 (2006) 992–1007 993 and fitter solutions, 
and eventually it converges, meaning that it is 
dominated by a single solution. Holland also 
presented a proof of convergence (the schema 
theorem) to the global optimum where chromosomes 
are binary vectors. GA use two operators to generate 
new solutions from existing ones: crossover and 
mutation. The crossover operator is the most 
important operator of GA. In crossover, generally 
two chromosomes, called parents, are combined 
together to form new chromosomes, called offspring. 
The parents are selected among existing 
chromosomes in the population with preference 
towards fitness so that offspring is expected to inherit 
good genes which make the parents fitter. By 
iteratively applying the crossover operator, genes of 
good chromosomes are expected to appear more 
frequently in the population, eventually leading to 
convergence to an overall good solution. The 
mutation operator introduces random changes into 
characteristics of chromosomes. Mutation is 
generally applied at the gene level. In typical GA 
implementations, the mutation rate (probability of 
changing the properties of a gene) is very small and 
depends on the length of the chromosome. Therefore, 
the new chromosome produced by mutation will not 
be very different from the original one. Mutation 
plays a critical role in GA. As discussed earlier, 
crossover leads the population to converge by making 
the chromosomes in the population alike. Mutation 
reintroduces genetic diversity back into population 
and assists the search escape from local optima. 

Reproduction involves selection of chromosomes 
for the next generation. In the most general case, the 
fitness of an individual determines the probability of 

its survival for the next generation. There are 
different selection procedures in GA depending on 
how the fitness values are used. 

Proportional selection, ranking, and tournament 
selection are the most popular selection procedures. 
The procedure of a generic GA [7] is given as 
follows:  
Step 1: Set t ¼ 1. Randomly generate N solutions to 
form the first population, P1. Evaluate the fitness of 
solutions in P1. 
Step 2: Crossover: Generate an offspring population 
Qt as follows: 
2.1. Choose two solutions x and y from Pt based on 
the fitness values. 
2.2. Using a crossover operator, generate offspring 
and add them to Qt. 
Step 3: Mutation: Mutate each solution xAQt with a 
predefined mutation rate. 
Step 4: Fitness assignment: Evaluate and assign a 
fitness value to each solution xAQt based on its 
objective function value and infeasibility. 
Step 5: Selection: Select N solutions from Qt based 
on their fitness and copy them to Pt+1. Step 6: If the 
stopping criterion is satisfied, terminate the search 
and return to the current population, else, set t ¼ t+1 
go to Step 2. 
4. Multi-objective GA 

Being a population-based approach, GA are well 
suited to solve multi-objective optimization 
problems. A generic single-objective GA can be 
modified to find a set of multiple non-dominated 
solutions in a single run. The ability of GA to 
simultaneously search different regions of a solution 
space makes it possible to find a diverse set of 
solutions for difficult problems with non-convex, 
discontinuous, and multi-modal solutions spaces. The 
crossover operator of GA may exploit structures of 
good solutions with respect to different objectives to 
create new nondominated solutions in unexplored 
parts of the Pareto front. In addition, most multi-
objective GA do not require the user to prioritize, 
scale, or weigh objectives. Therefore, GA have been 
the most popular heuristic approach to multi-
objective design and optimization problems. Jones et 
al. [4] reported that 90% of the approaches to 
multiobjective optimization aimed to approximate the 
true Pareto front for the underlying problem. A 
majority of these used a meta-heuristic technique, 
and 70% of all metaheuristics approaches were based 
on evolutionary approaches. 

The first multi-objective GA, called vector 
evaluated GA (or VEGA), was proposed by Schaffer 
[5]. Afterwards, several multi-objective evolutionary 
algorithms were developed including Multi-objective 
Genetic Algorithm (MOGA) , Niched Pareto Genetic 
Algorithm (NPGA), Weight-based Genetic 
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Algorithm (WBGA), Random Weighted Genetic 
Algorithm (RWGA), Nondominated Sorting Genetic 
Algorithm (NSGA), Strength Pareto Evolutionary 
Algorithm (SPEA), improved SPEA (SPEA2), 
Pareto-Archived Evolution Strategy (PAES), Pareto 
Envelope-based Selection Algorithm (PESA), 
Region-based Selection in Evolutionary 
Multiobjective Optimization (PESA-II), Fast 
Nondominated Sorting Genetic Algorithm (NSGA-
II), Multi-objective Evolutionary Algorithm (MEA), 
Micro-GA, Rank-Density Based Genetic Algorithm 
(RDGA), and Dynamic Multi-objective Evolutionary 
Algorithm (DMOEA). Note that although there are 
many variations of multi-objective GA in the 
literature, these cited GA are well-known and 
credible algorithms that have been used in many 
applications and their performances were tested in 
several comparative studies. Several survey papers 
have been published on evolutionary multi-objective 
optimization. Coello lists more than 2000 references 
in his website. Generally, multi-objective GA differ 
based on their fitness assignment procedure, elitisim, 
or diversification approaches. In Table 1, highlights 
of the well-known multi-objective with their 
advantages and disadvantages are given. Most survey 
papers on multi-objective evolutionary approaches 
introduce and compare different algorithms. This 
paper takes a different course and focuses on 
important issues while designing a multi-objective 
GA and describes common techniques used in multi-
objective GA to attain the three goals in multi-
objective optimization. This approach is also taken in 
the survey paper by Zitzler et al. [1]. However, the 
discussion in this paper is aimed at introducing the 
components of multi-objective GA to researchers and 
practitioners without a background on the multi-
objective GA. It is also import to note that although 
several of the state-of-the-art algorithms exist as cited 
above, many researchers that applied multi-objective 
GA to their problems have preferred to design their 
own customized algorithms by adapting strategies 
from various multiobjective GA. This observation is 
another motivation for introducing the components of 
multi-objective GA rather than focusing on several 
algorithms. However, the pseudocode for some of the 
well-known multi-objective GA are also provided in 
order to demonstrate how these procedures are 
incorporated within a multi-objective GA[8]. 
5. System Design and Implementation 

Our proposed model uses multi objective genetic 
algorithm for the reduction of test cases. The phases 
and design of our system is elaborated below in 
detail. 
Statement of the Modeling Problem: 

In order to achieve the accurate results for the 
reduction of test cases it is has become necessary to 

design and implement the general and efficient 
system. Web applications have dynamic properties. 
Testing whole website can be an exhaustive process 
and you may end up having uncountable test suites so 
to avoid that we will reduce the test cases to the 
appropriate amount. It will save the time, cost ad 
effort also giving the best coverage. The equation 
given below explains all the steps that will be applied 
on the ids generated after transactions. 
Prioritized test cases=(M(C(S(F(E(v(ip(ids)))))))) 
Where the symbols are described in the table given 
below: 
 
Table 1: List of Factors 

Symbols Description 

ip Inputs 

ids Id generated after each transaction 

v Validation 

E Eliminating repeating test cases 

F Fitness 

S Selection 

C Cross over 

M Mutation 

 
Before the start of implementation for such 

system real world problem needs to be considered. 
Problems that should be kept in mind while using 
multi objective genetic algorithm are that which 
quality attribute to focus for the testing of web 
application, what will be test adequacy criteria, On 
what basis fitness will be calculated, which selected 
test cases to crossover and which bits to mutate in 
chromosomes after cross over. All these queries are 
entertained in the proposed model given below. 
 
Proposed solution Algorithm: 
Initialization of population 
Validation 
Eliminating redundancy 
While (termination condition not met) 
{ 
Fitness Evaluation 
Selection 
Cross over 
Mutation 
} 
 
Proposed solution Model: 
A. Transaction 

This phase deals with the input of the 
system. The web application we have considered for 
the testing is Yahoo mail beta. When the user will 
select the certain action ids corresponding to that will 
be generated. Number of test cases will depend on 
the transactions that user will make. Each transaction 
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on completion makes a test case. We can consider ids 
as genes and genes altogether makes a chromosome. 
To perform any action it is necessary to be logged in. 
User will first open the yahoo mail page, enter an 
email address, password and logged in. Ids assigned 
to such actions are 000, 001, 002 and 003, test case 
made according to that will be [000, 001, 002, 003].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure:1 Flow Graph of MOGA 
 

We have assumed this test case to be always 
true. Other test cases are made with the actions on the 
yahoo beta home page. Considering one of the other 
test cases for example to print an email, the 
respective transactions that user will make will be 
inbox, select an email, go to actions and print. Test 
case generated will be [200, 201, 260, 261]. Total 
actions we are considering from yahoo mail beta 
home page are 33. These 33 actions make 22 valid 
test cases. 
B. Path Coverage 

Path coverage is the test adequacy criteria 
we have use for the development of our system. It 
validates the path or test cases user enters. It verifies 
that whether user has entered the right test cases; if 

yes it adds it into the population and if not it removes 
it from the chromosome set. If the test case seems 
nearer to any valid test cases; but some of it ids are 
not correct it modifies it into the valid ones. 
Eliminating invalid test cases from the start helps in 
efficient reduction. Ai based multi objective genetic 
algorithm will then only be applied on valid test cases 
this will for surely produce the best population. 
C. Eliminating Repetition: 

This step eradicates all the repeating test 
cases to extract more valid test cases. Repetition can 
make the population less optimal. If same test cases 
are being used again and again and all the genetic 
operations are applied on them, then there is very less 
probability of producing the best population. 
D. Fitness Evaluation: 

Fitness calculation is problem specific i.e. it is 
calculated according to the domain needs. In our 
model fitness is calculated on the basis of no. of 
steps. e.g. if u have to send an email, you need to 
login this is the basic requirement. We have assumed 
it to be true always.  

Once you are logged in you go to compose 
message, fill the address field and then send. These 
all transactions total make the length three n this is 
then multiplied with random number. This gives the 
fitness of test case send an email. This is how the 
fitness of all test cases is calculated. If the length of 
first test case is greater than other test cases then it 
will have more fitness value. It depends on the 
number of steps each test case is covering and then 
given priority according to that. 
E. Selection 

As the name suggests selection is the 
process of choosing the best chromosomes. 
Chromosomes are selected on the basis of the fitness 
criteria. Chromosomes with greater fitness are 
considered best and are nominated for the further 
genetic operations. 
F. Cross over 

Cross over is the main genetic operation that 
swaps the half chromosome of the first best parent 
chromosome with the other best parent and produces 
the off springs. This is an iterative process and it 
continues until the best population is found. The 
criterion we have set for the cross over is on the basis 
of affinity i.e. the test cases that are somehow 
familiar with one and other are most likely to 
crossover. Affinity here suggests similar ids .The test 
cases with same starting ids will swap with each 
other. Cross over point is not specific it’s up to the 
developer to set any point.  

The cross over point set here is 2. Swapping the 
chromosomes of similar ids has the probability to 
produce some valid paths after exchange. If the 
selected population for cross over is in odd number; 
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the chromosomes should be converted into even 
number to make optimal pairs. The chromosomes 
with the lower length should be discarded as we have 
the coverage objective to achieve. Chromosome with 
the larger length will give maximum coverage as it 
covers more actions. When population is in even 
number chromosomes with their favorable match ups 
will make pairs and exchange their ids. 
G. Mutation 

Mutation brings the biological diversity in the 
population. If required solution is not being produced 
from recombination, mutation criteria can be used to 
bring the change in the produced population and 
transform it into the desired one. It is not mandatory 
to perform mutation; it can be omitted if the results 
are obtained without it. 
H. Prioritized Test Cases 

Prioritized test cases are the output of the 
system. These reduced test cases will give the 
advantage of saving the time, cost of the system and 
with maximum coverage when testing is done. These 
reduced test cases are with the valid ids and paths. 
These are the optimal solutions produced after 
applying genetic operations. 

 
4. Result and Conclusion 

The results gathered after experimentation is as 
follows. 46 test cases of yahoo mail beta were given 
as an input to the system and after applying MOGA 
they were reduced to 18 test cases. 16 of the test 
cases were invalid; test cases nearer to valid ones 
were modified. 9 test cases were discarded cause of 
redundancy and 3 were reduced because they didn’t 
find any pair for cross over. So on the whole 46 test 
cases were reduced to 18 giving efficient results as it 
covers the other objectives also. At the end of the 
implementation the multi objective factors achieved 
are cost and coverage. 

As this project aims to ease the process of testing 
by reducing the test cases and saving the resources 
hence it achieves this objective. It saves the cost on 
testing, as the test cases are prioritized in the end. 
Fewer test cases to test save the cost and time. Apart 
from cost the other factor that is achieved is 
maximum coverage. Test cases are selected on the 
basis of fitness criteria.  

Fitness criteria used in this paper is on the basis 
of number of steps. Test cases with larger steps are 
most optimal to be selected. As there are larger steps 
so it gives the maximum coverage. So on the whole 
maximum coverage and reduced cost is achieved by 
prioritizing the test cases. 

Although the system made is producing the 
accurate results with the given criterion but to make it 
more efficient number of objectives can be enhanced. 

We are considering cost and coverage; Research with 
the time factor needs to be covered.  

We have chosen the criteria for fitness evaluation 
i.e. on the basis of length of test case, the other 
criteria which has the possibility to produce best 
results is on the basis of actions priority. 
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