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Abstract: In the present study, an n-element array is introduced in order to present a parallel algorithm for 

generating Cartesian trees. Furthermore, required time, space, and operations of the algorithm are investigated. The 

all nearest smaller values problem is explained briefly because it influences on the problems of Cartesian trees. Two 

applications of Cartesian trees in generating suffix and separating trees are explored. Suffix trees and separating 

trees are among the most important data structures in processing fields. 
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1. Introduction 

Introduced by Vuillemin, Cartesian tree is a 

data structure on an n-position sequence like A where 

A = {a1, a2, …, an} which is a binary tree and it has 

two attributes: (1) Tree is generated in a heap-sort 
way; (2) Inorder tree traversal generates an ordered 
sequence. The root of the tree is the minimum value 

of (ai) in the sequence. There is a Cartesian tree with 

nodes of {a1, a2, …, ai-1} under the left tree and one 

with nodes of {ai+1, ai+2, …, an}  under the right tree. 

If the positions of the sequence are different, the 
generated Cartesian tree will be a unique one, 
otherwise it cannot be unique. Generating a Cartesian 
tree, in a sequential form on a processor, is 
accomplished using  an  n-position  sequence  in  the 

time of O(n) and a free tree in the time of O(nlogn) [1]. 

In   this   article,   a   parallel   algorithm   is 
introduced for generating Cartesian trees, which is in 

multi-algorithmic time, linear space, and linear 

operations [2]. This algorithm is based on the method 

of   division  and  solution  and  presented  in   two 

versions. The difference between these two versions 

is related to the operation of “merging” which can be 

in  two  forms  of  sequential  or  parallel.  The  first 

version which applies “sequential merge” runs on 

CREW PRAM model in the time of O(min{dlogn, 

n}) where “d” is the depth of the tree. The second 

version is a more complicated and it runs on CREW 

PRAM model in the time of O(log
2
n). Space and 

operations are linear in both versions. The algorithm 

generating Cartesian trees in linear form is located on 

a core with a speed of about 3x but in parallel form it 

is located on 32 cores with a speed of 30x. By adding 

multi-threaded attribute and  using  32  cores, speed 

can be increased to 45x. In the following paragraphs, 

the application of Cartesian trees in generating 

separate and suffix trees is briefly explained and their 

time order is specified. Moreover, there is a short 

review of  the  problem of  all  nearest  value  which 

helps solve the problems. 

 
2. The Parallel Algorithm of Cartesian Trees 

The parallel algorithm for generating 

Cartesian trees is based on the method of division and 

solution and it acts in a reversal way. The algorithm 

receives the n-position array of A as the input and 

divides  it  into  two  sub-arrays,  then  generates  a 

Cartesian tree for each sub-array and finally merges 

the results in order to construct the final Cartesian 

tree  for  the  input  array  of  A.  Concepts  of  “right 

spine”  and  “left  spine”  for  a  Cartesian  tree  are 
defined as follow: 

Right spine (left spine) includes all of the 

nodes located on a path which begins from the root 

and continues to the most right (left) part of the tree 

node. It is vivid that the most left and the most right 

elements are the first and the last elements in the 

ordered sequence, respectively. Merging operation is 

carried out by combining the right spine in the left 

sub-tree with the left spine in the right sub-tree. The 

first  version  of  the  algorithm  (Algorithm  1)  is 

partially performed in a linear way; however, the 

second version is quite parallel. Algorithm 1 is 

performed in the time of where “d” is the depth of the 

optimal tree. In most cases; however, the algorithm 

takes less time. For instance, in the sequence of {1 , 

2, 3 , … , n} the algorithm is carried out in the time 

of O(lign) although the depth of the resulted tree is 
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“n”. This algorithm receives an array with n positions 

(nodes)  and  divides  it  into  two  sub-arrays  in  a 

reversal way. It generates a Cartesian tree for each 

sub-array and afterwards combines the right and left 

Cartesian trees together. The algorithm carries on 

breaking the array into two sub-arrays till there are 

less than two positions in each sub-array. The 

complete code of the algorithm in C language is 

presented in [2]. An important point about the 

algorithm is that heap and inorder attributes remain in 

all steps and phases of the algorithm. In its basic 

form, a Cartesian tree with a node holds both 

attributes. This algorithm need the space of O(n) and 

the operation of O(n). Another point is that the 

algorithm applies a sequential merging although it 

carries  out  the  operation  of  reversal  recall  in  a 

parallel way. In its worst form, this type of merging 

can have an equal time to the depth of the tree. To 

solve  this  problem,  the  second  version  was 

introduced which performs a binary search on every 

spine, divides the spine into two sub-trees base on a 

specific value, and replaces the sequential merge with 

a parallel merge. The second algorithm carries out the 

breaking   operations   on   the   spines.   The   second 

version of the algorithm is used to generate Cartesian 

trees with the operation order of O(n), space O(n), 

and   time of O(log
2
n) on CREW PRAM model. In 

this algorithm, all of the parallel breakings and 

combinations are carried out in the time of O(logn). 
The algorithm does the parallel combining operation 
in the time of O(logn) and the reversal recall depth of 
the  algorithm  is  of  order  O(logn);  therefore,  the 

whole time of the algorithm is of order O(log
2
n). 

 
3.The   All   Nearest   Smaller   Values   Problem 

(ANSV) 

For   each   position   in   a   sequence,   this 

problem  finds  the  nearest  smaller  position  than  it 

from   right   and   left   hand.   This   problem   was 

introduced by Berkman as a subroutine to help solve 

a lot of problems in parallel computations [5]. 

Berkman‟s algorithm for the problem of ANSV has 

the   operation   order   of   O(n)   and   the   time   of 

O(loglogn) on CREW PRAM model. ANSV can be 

used to generate Cartesian trees. The root of the tree 

is the minimum value of the sequence and for every 

other node; the parent is the closest previous or 

following smaller value provided that these values 

are available. If both values are available, the bigger 

value  is  placed  in  the  root.  Therefore,  by  using 

ANSV  problem  it  is  likely  to  construct  Cartesian 

trees in linear time base. 

 
5. Separating trees 

In the pattern matching permutations 

problem, a permutation T = (t1, t2, ..., tn) of 1, 2, ..., 

n is considered as the main text and another 
permutation P = (p1, p2, ..., pk) of 1, 2, ..., k, k ≤ n is 
taken as a pattern. The problem is to find a 

subsequence with length k like T
„ 
of the sequence of 

T, where T = (ti1, ti2 , ..., tik) with i1 < i2 < ... < ik, and 

all  the  elements  of  T
„  

are  ordered  based  on  the 

permutation of P and also tir < tis iff pr < ps. This 

problem was proposed by Wilf. If T
„ 
is available, it 

can be said that T contains P or P matches in T. 

When P = (1, 2, ..., k) is a sequence of numbers, then 

the problems finds an increasing subsequence of 

length k in T [3]. According to the source definition, 

P is separable if it does not contain the sub-pattern (3 

, 1 , 4 , 2) or its reverse that is (2 , 4 , 1 , 3). Separable 

permutation is defined as follow: 

Consider a subsequence of consecutive 

elements. This subsequence is located in a special 

order in the sequence. Any consecutive subsequence 

of elements can be reversed in the main sequence. 

This is a separable permutation if it can be ordered 

using the ordering algorithm mentioned in [3]. 

A separating tree for a separable permutation P is a 

binary tree T with leaves (p1, p2, …, pk) such that a 

contiguous range will be generated in the main 
sequence for each node of the tree if the leaves of the 

sub-tree  with  the  root  v  are  pi,  pi+1,   …,   pi+j. 

Yugandhar and Saxena have presented parallel 
algorithm for generating separating trees. The firs 

algorithm runs in O(logn) time and uses O(n
2
) 

operations. This algorithm is not efficient compared 
to the sequential algorithm which uses O(n) 
operations. They have introduced another parallel 
algorithm  which  is  more  efficient.  This  algorithm 
runs in O(dlogn) time and uses O(nd) operations, 
where “d” is the depth of the optimal tree. This 
algorithm is efficient when “d” is not big. 

The  main  difficulty  in  generating  a 
separating tree is to find the node v which if 
considered as the root of a sub-tree, its leaves are a 

contiguous and ordered range in the permutation. To 
efficiently solve this problem, ANSV concepts which 
were referred above can be applied so that 
construction time and operations will be optimized. 

In this case, the algorithm needs O(log
2
n) time and 

O(nlog
1.5

n) operation on CREW PRAM model and 

O(log2n) time and O(nlognloglogn) operation on 
CRCW PRAM mode.To build a Cartesian tree, the 
smallest value should be put in the root, and ANSV 
concept is used in finding that value. And due to this 

attribute of Cartesian trees that inorder tree traversal 
displays an ordered sub-tree, these concepts can be 
used in generating separating trees to optimize the 
order of the algorithm. 
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6. Suffix Trees 

For a string s of length n in a character set  ∑ 

≤ {1 , 2 , … , n}
1  

the suffix tree is a data structure 

that stores all the suffixes of s in a pat tree [2] and in 

O(|t|) time supports searching operation for any string 

t є ∑
*  

in s. In addition, suffix trees support many 

other string-related operations like longest common 

substring, maximal repeats, longest repeated 

substrings, and so on. To construct a suffix tree, first 

a suffix array should be generated and then it should 

be converted to a suffix tree. The suffix array is built 

using  a parallel  algorithm called “Skew”  which  is 

administered in a partially linear way for an input 

range of length n in an alphabetical sequence. Suffix 

and  algorithm  trees  with  linear  time  were  first 

introduced by Wiener. Wiener‟s algorithm on an n- 

member sequence of characters works in linear time. 

This algorithm is naturally a sequential one. 
The first linear algorithm for generating suffix trees 

was   first   proposed   by   Apostolico   et   al.   This 

algorithm uses a parameter 0 < є ≤ 1 in O(           ) 

time,  order  operations  O(             ),  and  O(log
1+є

) 
 

space on CREW PRAM model. 

The later algorithm improved the order of 
the previous algorithm and was administered in 

operations, linear space, and time of O(log
4
n) on 

CREW PRAM model. The optimal linear algorithm 
for building suffix trees could reduce administering 

time to O(log
2
n)  by using the concepts of ANSV and 

Cartesian trees. The explained attributes of ANSV 
and Cartesian trees are extremely effective in 
generating a suffix tree [2] and they can reduce the 
order of the algorithm to an optimized value. 

 
7. Conclusion 

In this brief article, Cartesian trees and a 

linear algorithm to construct them were introduced. 

This algorithm has two versions. In the first version, 

combination operation is carried out sequentially in 

O(min { dlogn , n})   time and with order operation 

and space of O(n). In the second version one, the 
algorithm is applied in a completely parallel way 
because it uses parallel combination operation and 

changes the administering time to O(log
2
n). Both 

versions are administered on CREW PRAM model. 
Then separating and suffix trees were introduced 
briefly. The time of this algorithm can be optimized 
using the attributes of Cartesian trees. 
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