
Journal of American Science 2012;8(6) http://www.jofamericanscience.org

http://www.americanscience.org 811 editor@americanscience.org

Presenting a Parallel Algorithm for Constructing Cartesian Trees and its Application in Generating Separate

and Free Trees

Azad Shojaei *
1
, Abdoljabar Asadi

2

1 Department of Computer, Saghez Branch, Islamic Azad University, Saghez, Iran

 2Department of Computer, Sanandaj Branch, Islamic Azad University, Sanandaj,Iran
*Azad.Shojaei@gmail.com

Abstract: In the present study, an n-element array is introduced in order to present a parallel algorithm for

generating Cartesian trees. Furthermore, required time, space, and operations of the algorithm are investigated. The

all nearest smaller values problem is explained briefly because it influences on the problems of Cartesian trees. Two

applications of Cartesian trees in generating suffix and separating trees are explored. Suffix trees and separating

trees are among the most important data structures in processing fields.

[Azad Shojaei, Abdoljabar Asadi. Presenting a Parallel Algorithm for Constructing Cartesian

Trees and its Application in Generating Separate and Free Trees. J Am Sci 2012;8(6):811-813]. (ISSN: 1545-

1003). http://www.jofamericanscience.org. 103

Key words: Parallel algorithm, Cartesian tree, ANSV, Separating tree, Suffix tree

1. Introduction

Introduced by Vuillemin, Cartesian tree is a

data structure on an n-position sequence like A where

A = {a1, a2, …, an} which is a binary tree and it has

two attributes: (1) Tree is generated in a heap-sort
way; (2) Inorder tree traversal generates an ordered
sequence. The root of the tree is the minimum value

of (ai) in the sequence. There is a Cartesian tree with

nodes of {a1, a2, …, ai-1} under the left tree and one

with nodes of {ai+1, ai+2, …, an} under the right tree.

If the positions of the sequence are different, the
generated Cartesian tree will be a unique one,
otherwise it cannot be unique. Generating a Cartesian
tree, in a sequential form on a processor, is
accomplished using an n-position sequence in the

time of O(n) and a free tree in the time of O(nlogn) [1].

In this article, a parallel algorithm is
introduced for generating Cartesian trees, which is in

multi-algorithmic time, linear space, and linear

operations [2]. This algorithm is based on the method

of division and solution and presented in two

versions. The difference between these two versions

is related to the operation of “merging” which can be

in two forms of sequential or parallel. The first

version which applies “sequential merge” runs on

CREW PRAM model in the time of O(min{dlogn,

n}) where “d” is the depth of the tree. The second

version is a more complicated and it runs on CREW

PRAM model in the time of O(log
2
n). Space and

operations are linear in both versions. The algorithm

generating Cartesian trees in linear form is located on

a core with a speed of about 3x but in parallel form it

is located on 32 cores with a speed of 30x. By adding

multi-threaded attribute and using 32 cores, speed

can be increased to 45x. In the following paragraphs,

the application of Cartesian trees in generating

separate and suffix trees is briefly explained and their

time order is specified. Moreover, there is a short

review of the problem of all nearest value which

helps solve the problems.

2. The Parallel Algorithm of Cartesian Trees

The parallel algorithm for generating

Cartesian trees is based on the method of division and

solution and it acts in a reversal way. The algorithm

receives the n-position array of A as the input and

divides it into two sub-arrays, then generates a

Cartesian tree for each sub-array and finally merges

the results in order to construct the final Cartesian

tree for the input array of A. Concepts of “right

spine” and “left spine” for a Cartesian tree are
defined as follow:

Right spine (left spine) includes all of the

nodes located on a path which begins from the root

and continues to the most right (left) part of the tree

node. It is vivid that the most left and the most right

elements are the first and the last elements in the

ordered sequence, respectively. Merging operation is

carried out by combining the right spine in the left

sub-tree with the left spine in the right sub-tree. The

first version of the algorithm (Algorithm 1) is

partially performed in a linear way; however, the

second version is quite parallel. Algorithm 1 is

performed in the time of where “d” is the depth of the

optimal tree. In most cases; however, the algorithm

takes less time. For instance, in the sequence of {1 ,

2, 3 , … , n} the algorithm is carried out in the time

of O(lign) although the depth of the resulted tree is

mailto:Azad.Shojaei@gmail.com
http://www.jofamericanscience.org/

Journal of American Science 2012;8(6) http://www.jofamericanscience.org

http://www.americanscience.org 812 editor@americanscience.org

“n”. This algorithm receives an array with n positions

(nodes) and divides it into two sub-arrays in a

reversal way. It generates a Cartesian tree for each

sub-array and afterwards combines the right and left

Cartesian trees together. The algorithm carries on

breaking the array into two sub-arrays till there are

less than two positions in each sub-array. The

complete code of the algorithm in C language is

presented in [2]. An important point about the

algorithm is that heap and inorder attributes remain in

all steps and phases of the algorithm. In its basic

form, a Cartesian tree with a node holds both

attributes. This algorithm need the space of O(n) and

the operation of O(n). Another point is that the

algorithm applies a sequential merging although it

carries out the operation of reversal recall in a

parallel way. In its worst form, this type of merging

can have an equal time to the depth of the tree. To

solve this problem, the second version was

introduced which performs a binary search on every

spine, divides the spine into two sub-trees base on a

specific value, and replaces the sequential merge with

a parallel merge. The second algorithm carries out the

breaking operations on the spines. The second

version of the algorithm is used to generate Cartesian

trees with the operation order of O(n), space O(n),

and time of O(log
2
n) on CREW PRAM model. In

this algorithm, all of the parallel breakings and

combinations are carried out in the time of O(logn).
The algorithm does the parallel combining operation
in the time of O(logn) and the reversal recall depth of
the algorithm is of order O(logn); therefore, the

whole time of the algorithm is of order O(log
2
n).

3.The All Nearest Smaller Values Problem

(ANSV)

For each position in a sequence, this

problem finds the nearest smaller position than it

from right and left hand. This problem was

introduced by Berkman as a subroutine to help solve

a lot of problems in parallel computations [5].

Berkman‟s algorithm for the problem of ANSV has

the operation order of O(n) and the time of

O(loglogn) on CREW PRAM model. ANSV can be

used to generate Cartesian trees. The root of the tree

is the minimum value of the sequence and for every

other node; the parent is the closest previous or

following smaller value provided that these values

are available. If both values are available, the bigger

value is placed in the root. Therefore, by using

ANSV problem it is likely to construct Cartesian

trees in linear time base.

5. Separating trees

In the pattern matching permutations

problem, a permutation T = (t1, t2, ..., tn) of 1, 2, ...,

n is considered as the main text and another
permutation P = (p1, p2, ..., pk) of 1, 2, ..., k, k ≤ n is
taken as a pattern. The problem is to find a

subsequence with length k like T
„
of the sequence of

T, where T = (ti1, ti2 , ..., tik) with i1 < i2 < ... < ik, and

all the elements of T
„

are ordered based on the

permutation of P and also tir < tis iff pr < ps. This

problem was proposed by Wilf. If T
„
is available, it

can be said that T contains P or P matches in T.

When P = (1, 2, ..., k) is a sequence of numbers, then

the problems finds an increasing subsequence of

length k in T [3]. According to the source definition,

P is separable if it does not contain the sub-pattern (3

, 1 , 4 , 2) or its reverse that is (2 , 4 , 1 , 3). Separable

permutation is defined as follow:

Consider a subsequence of consecutive

elements. This subsequence is located in a special

order in the sequence. Any consecutive subsequence

of elements can be reversed in the main sequence.

This is a separable permutation if it can be ordered

using the ordering algorithm mentioned in [3].

A separating tree for a separable permutation P is a

binary tree T with leaves (p1, p2, …, pk) such that a

contiguous range will be generated in the main
sequence for each node of the tree if the leaves of the

sub-tree with the root v are pi, pi+1, …, pi+j.

Yugandhar and Saxena have presented parallel
algorithm for generating separating trees. The firs

algorithm runs in O(logn) time and uses O(n
2
)

operations. This algorithm is not efficient compared
to the sequential algorithm which uses O(n)
operations. They have introduced another parallel
algorithm which is more efficient. This algorithm
runs in O(dlogn) time and uses O(nd) operations,
where “d” is the depth of the optimal tree. This
algorithm is efficient when “d” is not big.

The main difficulty in generating a
separating tree is to find the node v which if
considered as the root of a sub-tree, its leaves are a

contiguous and ordered range in the permutation. To
efficiently solve this problem, ANSV concepts which
were referred above can be applied so that
construction time and operations will be optimized.

In this case, the algorithm needs O(log
2
n) time and

O(nlog
1.5

n) operation on CREW PRAM model and

O(log2n) time and O(nlognloglogn) operation on
CRCW PRAM mode.To build a Cartesian tree, the
smallest value should be put in the root, and ANSV
concept is used in finding that value. And due to this

attribute of Cartesian trees that inorder tree traversal
displays an ordered sub-tree, these concepts can be
used in generating separating trees to optimize the
order of the algorithm.

Journal of American Science 2012;8(6) http://www.jofamericanscience.org

http://www.americanscience.org 813 editor@americanscience.org

6. Suffix Trees

For a string s of length n in a character set ∑

≤ {1 , 2 , … , n}
1

the suffix tree is a data structure

that stores all the suffixes of s in a pat tree [2] and in

O(|t|) time supports searching operation for any string

t є ∑
*

in s. In addition, suffix trees support many

other string-related operations like longest common

substring, maximal repeats, longest repeated

substrings, and so on. To construct a suffix tree, first

a suffix array should be generated and then it should

be converted to a suffix tree. The suffix array is built

using a parallel algorithm called “Skew” which is

administered in a partially linear way for an input

range of length n in an alphabetical sequence. Suffix

and algorithm trees with linear time were first

introduced by Wiener. Wiener‟s algorithm on an n-

member sequence of characters works in linear time.

This algorithm is naturally a sequential one.
The first linear algorithm for generating suffix trees

was first proposed by Apostolico et al. This

algorithm uses a parameter 0 < є ≤ 1 in O()

time, order operations O(), and O(log
1+є

)

space on CREW PRAM model.

The later algorithm improved the order of
the previous algorithm and was administered in

operations, linear space, and time of O(log
4
n) on

CREW PRAM model. The optimal linear algorithm
for building suffix trees could reduce administering

time to O(log
2
n) by using the concepts of ANSV and

Cartesian trees. The explained attributes of ANSV
and Cartesian trees are extremely effective in
generating a suffix tree [2] and they can reduce the
order of the algorithm to an optimized value.

7. Conclusion

In this brief article, Cartesian trees and a

linear algorithm to construct them were introduced.

This algorithm has two versions. In the first version,

combination operation is carried out sequentially in

O(min { dlogn , n}) time and with order operation

and space of O(n). In the second version one, the
algorithm is applied in a completely parallel way
because it uses parallel combination operation and

changes the administering time to O(log
2
n). Both

versions are administered on CREW PRAM model.
Then separating and suffix trees were introduced
briefly. The time of this algorithm can be optimized
using the attributes of Cartesian trees.

Corresponding Author:

Azad Shojaei

Department of computer, saghez Branch, Islamic

Azad University, Saghez, Iran.

E-mail: Azad.Shojaei@gmail.com

References

[1] Brian, C. D. Raghuveer Mohan, 2010.Building

Cartesian Trees from Free Trees. August 28.

[2] Guy E. Belloch and Julian Shun, 2011. A Simple

Parallel Cartesian Tree Algorithm And its
Application to Suffix Tree Construction.

[3] Yijie Han. Sanjeev Saxena and Xiaojun Shen.

2010. An efficient Parallel Algorithm for

building The Separator Tree. Journal of Parallel

Distribution and Computer 70, 625 – 629.

[4] Weiner, P, 1973. Linear pattern matching

algorithm, 14th Annual IEEE Symposium on

Switching and Automata Theory, pp. 1-11.

[5] Dommelen, L. van and Rundensteiner, E. A,

1989. Fast, adaptive summation of point forces

in the two dimensional Poisson equation.
Journal of Computer and Physics, 83(1):126-

147.

5/5/2012

mailto:Azad.Shojaei@gmail.com

