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1. Introduction 

Strength assessment of concrete is a main and 
probably the most important mechanical property, 
which is usually measured after a standard curing 
time. Concrete strength is influenced by lots of factors 
like concrete ingredients, age, ratio of water to 
cementitious materials, etc. The pore structure 
determines the transport properties of cement paste, 
such as permeability and ion migration. Permeability 
of cement paste is a fundamental property in view of 
the durability of concrete: it represents the ease with 
which water or other fluids can move through 
concrete, thereby transporting aggressive agents. It is 
therefore of utmost importance to investigate the 
quantitative relationships between the pore structure 
and the permeability. Through experimental studies 
and then numerical simulations of the pore structure 
and the permeability of cement-based materials, a 
better understanding of transport phenomena and 
associated degradation mechanisms will hopefully be 
reached [1]. 

Conventional methods of predicting various 
properties of concrete are generally based on either 
water to cement ratio rule or maturity concept of 
concrete [2]. Over the last two decades, a different 
modeling method based on neural networks (NNs) has 
become popular and used by many researchers for a 
wide range of engineering applications. NNs are a 
family of massively parallel architectures that solve 
difficult problems via the cooperation of highly 
interconnected but simple computing elements (or 
artificial neurons). Basically, the processing elements 
of a neural network are analogous to the neurons in the 
brain, which consist of many simple computational 
elements arranged in several layers [3]. The concrete 
properties could be calculated using the models built 
with NNs. It is convenient to use these models for 
numerical experiments to review the effects of each 

variable on the mix proportions [4-6]. The aim of this 
study is to predict flexural strength of several types of 
concrete with and without Fe2O3 nanoparticles by 
ANNs. Totally 144 flexural strength data from 16 
different concrete mixtures were collected, trained and 
tested by means of different models. The obtained 
results have been compared by experimental ones to 
evaluate the software power for predicting the 
properties of concrete. 

 
2. Experimental procedure 
2.1. Materials 

Two series of concrete were made in the 
laboratory. The first was normally vibrated concrete 
(NVC) series with ordinary river sand as aggregates 
and the second self compacting concrete (SCC) series 
with limestone aggregates. The utilized materials are 
as below: 

Ordinary Portland Cement (OPC) conforming to 
ASTM C150 [7] standard was used as received. The 
chemical and physical properties of the cement are 
shown in Table 1. The particle size distribution pattern 
of the used OPC has been illustrated in Fig. 1.  

Fe2O3 nanoparticles with average particle size of 
15 nm and 45 m2/g Blaine fineness producing from 
Suzhou Fuer Import & Export Trade Co., Ltd was 
used as received. The properties of Fe2O3 
nanoparticles are shown in Table 2. Scanning electron 
micrographs (SEM) and powder X-ray diffraction 
(XRD) diagrams of Fe2O3 nanoparticles are shown in 
Figs. 2 and 3. 

Locally available natural sand with particles 
smaller than 0.5 mm and fineness modulus of 2.25 and 
specific gravity of 2.58 g/cm3 was used as fine 
aggregate for NVC series concrete. Crushed basalt 
stored in the laboratory with maximum size of 15 mm 
and specific gravity of 2.96 g/cm³ was used as coarse 
aggregate in NVC series concrete. 

 
Table 1. Chemical and physical properties of Portland cement (Wt. %) 
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Material SiO2  Al2O3  Fe2O3  CaO  MgO  SO3 Na2O K2O Loss on ignition 
Cement  21.89 5.3 3.34 53.27 6.45 3.67 0.18 0.98 3.21 
Specific gravity: 1.7 g/cm3 

 

Table 2. The properties of nano- Fe2O3 

Diameter (nm) Surface Volume ratio (m2/g) Density (g/cm3) Purity (%) 
15 ± 3 155 ± 12 < 0.13 >99.9 

 
Table 3. Physical and chemical characteristics of the polycarboxylate admixture. 

Appearance Yellow-brown liquid 
% solid residue Approximately 36% 
pH 5.2-5.3 
Specific gravity (kg/l) Approximately 1.06 
Rotational Viscosity (MPa) 79.30 
% C 52.25 
ppm Na+ 9150 
ppm K+ 158 
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Fig.1. Particles distribution pattern of ordinary 

Portland cement. 

 
Fig. 2. SEM micrograph of Fe2O3 nanoparticles. 

 
Fig. 3. XRD analysis of Fe2O3 nanoparticles. 

 

Crushed limestone aggregates were used to 
produce self-compacting concretes, with gravel 4/12 
and two types of sand: one coarse 0/4, for fine 
aggregates and the other fine 0/2, with a very high 
fines content (particle size < 0.063 mm) of 19.2%, the 
main function of which was to provide a greater 
volume of fine materials to improve the stability of the 
fresh concrete. A polycarboxylate with a polyethylene 
condensate defoamed based admixture (Glenium C303 
SCC) was used. Table 3 shows some of the physical 
and chemical properties of polycarboxylate admixture 
used in this study.   

 
2.2. Mixture proportions 

Totally 6 series of mixtures were prepared and 
tested experimentally. C0 series mixtures were 
prepared as control specimens. The control mixtures 
were made of natural aggregates, cement and water. 
C0 series mixtures were cured in water (W) and 
saturated limewater (LW) and designated as C0-W and 
C0-LW series, respectively. N series were prepared 
with different contents of Fe2O3 nanoparticles. The 
mixtures were prepared by the cement replacement of 
0.5, 1.0, 1.5 and 2.0 weight percent. N series mixtures 
were also cured in water (W) and saturated limewater 
(LW) and designated as N-W and N-LW series, 
respectively. 

C0-SCC series mixtures were prepared by cement, 
fine and ultra-fine crushed limestone aggregates with 
19.2% by weight of ultra-fine ones and 1.0 weight 
percent of polycarboxylate admixture replaced by 
water. N-SCC series were prepared with different 
contents of Fe2O3 nanoparticles. The mixtures were 
prepared with the cement replacement by Fe2O3 
nanoparticles from 1 to 5 weight percent and 1 weight 
percent polycarboxylate admixture.  

The water to binder ratio for all mixtures was set 
at 0.40. The binder content of all mixtures was 450 
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kg/m3. The proportions of the mixtures are presented 
in Table 4. 

 
2.3. Test procedure 

For NVC series concrete, cubes with 200 mm × 
50 mm × 50 mm edges were cast and compacted in 
two layers on a vibrating table, where each layer was 
vibrated for 10 s. SCC series mixtures were prepared 
without subsequent vibration. The moulds were 
covered with polyethylene sheets and moistened for 24 
h. Then the specimens were demolded and cured in 
water and saturated limewater at a temperature of 20o 
C prior to test days.  

Flexural tests were carried out according to the 
ASTM C 293 [8] standard. After the specified curing 
period was over (7, 28 and 90 days for NVC series and 
2, 28 and 90 days for SCC series), the concrete cubes 
were subjected to flexural test by using universal 
testing machine. The tests were carried out triplicately. 

 
3. Experimental results 

The flexural strength results of the specimens are 
shown in Table 4. Table 4 shows that the flexural 
strength increases with adding nano- Fe2O3 particles 
up to 1.0% in N-W series. It is shown that using 2.0% 
Fe2O3 nanoparticles decreases the flexural strength to 
a value which is near to the control concrete. This may 
be due to the fact that the quantity of nano- Fe2O3 
particles is higher than the amount required to 
combine with the liberated lime during the process of 
hydration thus leading to excess silica leaching out and 
causing a deficiency in strength as it replaces part of 
the cementitious material but does not contribute to 
strength [10]. Also, it may be due to the defects 
generated in dispersion of nanoparticles that causes 
weak zones. The high enhancement of flexural 
strength in the N series blended concrete are due to the 
rapid consuming of Ca(OH)2 which was formed 
during hydration of Portland cement specially at early 
ages related to the high reactivity of nano- Fe2O3 
particles. As a consequence, the hydration of cement is 
accelerated and larger volumes of reaction products 
are formed. Also nano- Fe2O3 particles recover the 
particle packing density of the blended cement, 
directing to a reduced volume of larger pores in the 
cement paste.  

On the other hand, for the specimens saturated in 
limewater, the flexural strength increases by adding up 
to 2.0 weight percent Fe2O3 nanoparticles. Lime reacts 
with water and produces Ca(OH)2 which needs to form 
strengthening gel. When Fe2O3 nanoparticles react 
with Ca(OH)2 produced from saturated limewater, the 
content of strengthening gel is increased because of 
high free energy of nanoparticles which reduces 
significantly when reacts by Ca(OH)2.  

Table 4 also shows the flexural strength of C0-

SCC and N-SCC specimens at 2, 7 and 28 days of 
curing. The results show that the flexural strength 
increases by adding Fe2O3 nanoparticles up to 4.0 
weight percent replacements (N4-SCC series) and then 
it decreases, although adding 5.0 percent Fe2O3 
nanoparticles produces specimens with much higher 
flexural strength with respect to C0-SCC and N-SCC 
specimens with 1.0, 2.0 and 3.0 weight percent Fe2O3 
nanoparticles.  

The mechanism that the nanoparticles improve the 
strength of concrete specimens can be interpreted as 
follows [13]: Suppose that nanoparticles are uniformly 
dispersed in concrete and each particle is contained in 
a cube pattern, therefore the distance between 
nanoparticles can be determined. After the hydration 
begins, hydrate products diffuse and envelop 
nanoparticles as kernel [13]. If the content of 
nanoparticles and the distance between them are 
appropriate, the crystallization will be controlled to be 
a suitable state through restricting the growth of 
Ca(OH)2 crystal by nanoparticles. Moreover, the 
nanoparticles located in cement paste as kernel can 
further promote cement hydration due to their high 
activity. This makes the cement matrix more 
homogeneous and compact. Consequently, the 
strength of concrete is improved evidently such as the 
concrete containing nano- Fe2O3 in the amount of 1% 
by weight of binder [13]. 

With increasing the content of Fe2O3 
nanoparticles more than a specific weight percent 
(based on the concrete type), the improvement on the 
strength is weakened. This can be attributed to that the 
distance between nanoparticles decreases with 
increasing content of nanoparticles, and Ca(OH)2 
crystal cannot grow up enough due to limited space 
and the crystal quantity is decreased, which leads to 
the ratio of crystal to strengthening gel small and the 
shrinkage and creep of cement matrix increased [14], 
thus the strength of cement matrix is looser relatively. 

On the whole, the addition of nanoparticles 
improves the strength of concrete. On the one hand, 
nanoparticles can act as a filler to enhance the density 
of concrete, which leads to the porosity of concrete 
reduced significantly. On the other hand, nanoparticles 
can not only act as an activator to accelerate cement 
hydration due to their high activity, but also act as a 
kernel in cement paste which makes the size of 
Ca(OH)2 crystal smaller and the tropism more 
stochastic. 

 
 
 

4. Artificial Neural Networks 
ANNs were developed to model the human 

brain [15]. Even an ANN fairly simple and small in 
size when compared to the human brain, has some 
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powerful characteristics in knowledge and information 
processing because of its similarity to the human 
brain. Therefore, an ANN can be a powerful tool for 
engineering applications [16]. McCulloch and Pitts 
[17] defined artificial neurons for the first time and 
developed a neuron model as in Fig. 4. McCulloch and 
Pitts’ network [17] formed the basis for almost all later 
neural network models. Afterwards, Rosenblatt [18] 
devised a machine called the perceptron that operated 
much in the same way as the human mind. 
Rosenblatt’s perceptrons [11] consist of ‘‘sensory” 
units connected to a single layer of McCulloch and 

Pitts [12] neurons. Rumelhardt et al. [13] derived a 
learning algorithm for perceptron networks with 
constituted hidden units. Their learning algorithm is 
called back-propagation and is now the most widely 
used learning algorithm. Fig. 5 is shown a typical 
architecture of a multilayer perceptron neural network 
with an input layer, two hidden layer and one output 
layer. As a result of these studies, together with the 
developments in computer technology, using ANN has 
become more efficient after 1980 [14]. 
 

 
Table 4. Average flexural strength of different mixture proportion of concrete specimens 

Sample 
designation   

Fe2O3 
nanoparticles (%)  

PC content 
(%) 

Quantities (kg/m3) Average Flexural Strength 
(MPa) 

 Cement Fe2O3 
nanoparticles 

2 
days 

7 
days 

28 
days 

90 
days 

C0-W 0 0 450.00 0.00 - 4.2 4.4 4.7 
N1-W 0.5 0 447.75 2.25 - 4.9 5.0 5.7 
N2-W 1.0 0 445.50 4.50 - 5.4 5.2 6.0 
N3-W 1.5 0 443.25 6.75 - 5.0 5.0 5.3 
N4-W 2.0 0 441.00 9.00 - 4.3 4.8 5.0 
C0-LW 0 0 450.00 0.00 - 4.0 4.1 4.2 
N1-LW 0.5 0 447.75 2.25 - 5.2 5.5 5.7 
N2-LW 1.0 0 445.50 4.50 - 5.8 5.9 6.0 
N3-LW 1.5 0 443.25 6.75 - 6.3 6.4 6.3 
N4-LW 2.0 0 441.00 9.00 - 6.8 7.0 7.2 
C0-SCC1 0 1.0 450.00 0.00 2.8 3.7 4.2 - 
N1-SCC1 1 1.0 445.50 4.50 3.2 4.3 4.7 - 
N2-SCC1 2 1.0 441.0 9.00 3.5 4.6 5.8 - 
N3-SCC1 3 1.0 437.5 13.50 3.6 5.0 6.7 - 
N4-SCC1 4 1.0 432.0 18.00 3.9 5.7 7.4 - 
N5-SCC1 5 1.0 427.5 22.50 3.7 5.4 7.1 - 

Water to binder [cement + nano- Fe2O3] ratio of 0.40 
W denotes the specimens cured in water and LW denotes to those cured in saturated limewater 

 
As it can be seen from Fig. 4, an artificial 

neuron is composed of five main parts: inputs, 
weights, sum function, activation function and outputs. 
Inputs are information that enters the neuron from 
other neurons of from external world. Weights are 
values that express the outcome of an input set or 
another process element in the preceding layer on this 
process element. Sum function is a function that 
calculates the effect of inputs and weights completely 
on this process element. This function computes the 
net input that approaches to a neuron [15]. The 
weighted sums of the input components (net)j are 
calculated using Eq. (1) as follows: 

          (1) 

where (net)j is the weighted sum of the jth neuron for 
the input received from the preceding layer with n 
neurons, Wij is the weight between the jth neuron in 

the previous layer, xi is the output of the ith neuron in 
the previous layer [14]. b is a fix value as internal 
addition and Ʃ represents sum function. Activation 
function is a function that processes the net input 
obtained from sum function and determines the neuron 
output. In general for multilayer feed-forward models 
as the activation function sigmoid activation function 
is used. The output of the jth neuron (out)j is computed 
using Eq. (2) with a sigmoid activation function as 
follows [16]: 

                        (2) 

where α is constant used to control the slope of the 
semi-linear region. The sigmoid nonlinearity activates 
in every layer except in the input layer [14]. The 
sigmoid activation function represented by Eq. (2) 
gives outputs in (0, 1). If it desired, the outputs of this 
function can be adjusted to (-1,1) interval. As the 
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sigmoid processor represents a continuous function it 
is particularly used in non-linear descriptions. Because 
its derivatives can be determined easily with regard to 
the parameters within (net)j variable [14]. 

LMBP is often the fastest available back-
propagation algorithm, and is highly recommended as 
a first-choice supervised algorithm, although it 
requires more memory than other algorithms. The 
standard LMBP training process can be described in 
the pseudocode of Fig. 6 [17]. 
 

 
Fig. 4. Architecture of applied neural network. 

 

 
Fig. 5. A typical architecture of multilayer perceptron 

neural network. 
 

4.1. Neural network model structure and parameters 
ANN model is carried out in this research has 

eight neurons in the input layer and one neurons in the 
output layer as demonstrated in Fig. 7. The values for 
input layers were cement content (C), nanoparticle 
content (N), aggregate type (AG), water content (W), 
the amount of superplasticizer (S), the type of curing 
medium (CM), Age of curing (AC) and number of 
testing try (NT). The values for output layer were 
flexural strength (fF) in the other set. Two hidden layer 
with ten and eight neurons were used in the 
architecture of multilayer neural network because of 
its minimum absolute percentage error values for 
training and testing sets. The neurons of neighboring 

layers are completely interconnected by weights. 
Finally, the output layer neurons produce the network 
prediction as a result. 

In this study, the back-propagation training 
algorithm has been utilized in feed-forward two 
hidden layers. Back-propagation algorithm, as one of 
the most well-known training algorithms for the 
multilayer perceptron, is a gradient descent technique 
to minimize the error for a particular training pattern 
in which it adjust the weights by a small amount at a 
time [17]. The non-linear sigmoid activation function 
was used in the hidden layer and the neuron outputs at 
the output layer. Momentum rate and learning rate 
values were determined and the model was trained 
through iterations. The trained model was only tested 
with the input values and the predicted results were 
close to experiment results. The values of parameters 
used in neural network model are given in Table 5. 

To make a decision on the completion of the 
training processes, two termination states are declared: 
state 1 (ANN-I model) means that the training of 
neural network was ended when the maximum epoch 
of process reached (1000) while state 2 (ANN-II 
model) means the training ended when minimum error 
norm of network gained.  
 
5. Results 

In this study, the error arose during the 
training and testing in ANN-I and ANN-II models can 
be expressed as absolute fraction of variance (R2) 
which are calculated by Eq. 3 [18]: 

               (3) 

where t is the target value, o is the output value and p 
is the pattern. 

All of the results obtained from experimental 
studies and predicted by using the training and testing 
results of ANN I and ANN II models, are given in 
Figs. 8a and 8b. The linear least square fit line, its 
equation and the R2 values were shown in these figures 
for the training and testing data. Also, inputs values 
and experimental results with testing results obtained 
from ANN-I and ANN-II models were given in Table 
6. As it is visible in Fig. 8 the values obtained from the 
training and testing in ANN-I and ANN-II models are 
very close to the experimental results. The result of 
testing phase in Fig. 7 shows that the ANN-I and 
ANN-II models are capable of generalizing between 
input and output variables with reasonably good 
predictions. 

The performance of the ANN-I and ANN-II 
models for fF is shown in Fig. 8. The best value of R2 
is 96.41% for training set in the ANN-II model, The 
minimum value of R2 is 85.47% for testing set in the 
ANN-I model. All of R2 values show that the proposed 
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ANN-I and ANN-II models are suitable and can 
predict fF values for every age very close to the 
experimental values. 
 

1. Initialize the weights and parameter µ (µ = 
0.01 is appropriate). 

2. Compute the sum of the squared errors over 
all inputs F(w) 

F(w) = eTe      (3) 
Where w = [w1, w2, wn] consists of all weights of 
the network, e is the error vector comprising the 
error for all the training examples. 
3. Solve (5) to obtain the increment of weights 

Δw 
Δw = [JTJ + µI]-1JTe       (4) 
Where J is the Jacobian matrix,  is the learning 

rate which is to be updated using the β depending 
on the outcome. In particular, µ is multiplied by 
decay rate β (0<β<1). 
4. Using w+Δw as the trial w, and judge 

IF trial F(w)<F(w) in step 2 THEN 
W = w + Δw 
µ = µ.β (β = 0.1) 
             go back to step 2 
ELSE 
     µ = µ/β 
     go back to step 4 
END IF  

Fig. 6. Pseudo-code for LMBP algorithm [19] 
 

 
Fig. 7. The system used in the ANN model. 

 
7. Discussion 

Artificial neural networks are capable of 
learning and generalizing from examples and 
experiences. This makes artificial neural networks a 
powerful tool for solving some of the complicated 

civil engineering problems. In this study, using these 
beneficial properties of artificial neural networks in 
order to predict the flexural strength values of 
concretes containing Fe2O3 nanoparticles without 
attempting any experiments were developed two 
different multilayer artificial neural network 
architectures namely ANN-I and ANN-II. In two 
models developed in ANN method, a multilayered 
feed forward neural network with a back propagation 
algorithm was used. The models were trained with 
input and output data. Using only the input data in 
trained models the flexural strength of concrete 
specimenscontaining Fe2O3 nanoparticles were found.  
 

 
(a) 

 
(b) 

Fig. 8. The correlation of the measured and predicted 
flexural strengths in a) training and b) testing phase for 

ANN models 
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Number of input layer units  8 
Number of hidden layer  2 
Number of first hidden layer units  10 
Number of second hidden layer units  8 
Number of output layer units  1 
Momentum rate  0.88 
Learning rate  0.70 
Error after learning  0.000050 
Learning cycle  30.000 

 
Table 6. Testing data sets for comparison of experimental results with testing results predicted from models 

Cement 
(Kg/m3) 

Nano- 
Fe2O3 

(Kg/m3) 

Aggregate 
type 

Water 
(Kg/m3) 

Superplasticizer 
(Kg/m3) 

Curing 
Medium 

Age of 
Curing 

No. 
Test 
try 

Flexural Strength 
(MPa) 

Exp. ANN-
I 

ANN-
II 

450 0 3 0 18 1 7 3 4.6 4.6 4.7 
450 0 3 0 18 1 28 3 4.6 4.8 4.5 
447.75 2.25 3 0 18 1 7 2 4.7 5.4 4.8 
447.75 2.25 3 0 18 1 28 3 5.1 5.2 5.2 
447.75 2.25 3 0 18 1 90 3 5.9 6.5 5.9 
445.5 4.5 3 0 18 1 7 3 5.6 5.6 5.6 
445.5 4.5 3 0 18 1 28 1 5.1 5.3 5.3 
445.5 4.5 3 0 18 1 90 2 5.8 5.9 5.8 
443.25 6.75 3 0 18 1 7 2 5.1 5.1 5.0 
443.25 6.75 3 0 18 1 28 1 5.1 5.0 5.2 
441 9 3 0 18 1 7 1 3.9 3.8 4.0 
441 9 3 0 18 1 90 1 4.8 4.8 4.8 
450 0 3 0 18 2 90 2 4.4 4.2 4.4 
447.75 2.25 3 0 18 2 7 2 5.4 5.3 5.0 
447.75 2.25 3 0 18 2 28 1 5.7 5.6 5.3 
445.5 4.5 3 0 18 2 7 3 5.9 5.8 5.8 
443.25 6.75 3 0 18 2 90 1 5.9 5.9 6.0 
441 9 3 0 18 2 28 2 6.9 6.9 6.9 
450 0 4 0.18 17.82 1 7 2 4.1 3.9 4.0 
445.5 4.5 4 0.18 17.82 1 7 2 4.0 4.2 4.1 
445.5 4.5 4 0.18 17.82 1 28 1 4.3 4.4 4.4 
441 9 4 0.18 17.82 1 7 2 4.6 4.4 4.7 
441 9 4 0.18 17.82 1 28 3 6.2 5.9 6.1 
437.5 13.5 4 0.18 17.82 1 28 1 6.3 6.4 6.4 
432 18 4 0.18 17.82 1 7 2 5.7 5.6 5.6 
427.5 22.5 4 0.18 17.82 1 2 2 3.7 3.8 3.7 
427.5 22.5 4 0.18 17.82 1 28 1 6.6 6.7 7.3 
 

The flexural strength and percentage of water 
absorption values predicted from training and testing, 
for ANN-I and ANN-II models, are very close to the 
experimental results. Furthermore, according to the 
flexural strength and percentage of water absorption 
results predicted by using ANN-I and ANN-II models, 
the results of ANN-II model are closer to the 
experimental results. R2 values that are calculated for 
comparing experimental results with ANN-I and 
ANN-II model results have shown this situation. 
 

8. Conclusions 
1. Fe2O3 nanoparticles showed its influence on flexural 
strength and percentage water absorption up to 1.0 
weight percent in N-W series concrete, up to 2.0 
weight percent in N-LW series concrete and finally up 
to 4.0 weight percent in N-SCC series concrete. The 
deficiency in dispersion of nanoparticles more than the 
mentioned values causes the reduction of nanoparticles 
effects on improving flexural strength results. 
2. ANN can be an alternative approach for the 
evaluation of the effect of cementitious material on the 
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flexural strength. There is an optimum replacement 
ratio of Fe2O3 nanoparticles existed; this value can be 
predicted using ANN models. 
3. ANN efficient for predicting the flexural strength of 
Fe2O3 nanoparticles concrete.  
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