
Journal of American Science 2012;8(7) http://www.jofamericanscience.org

http://www.americanscience.org editor@americanscience.org 471

Parallel Matrix Transposition Using Stream Programming Paradigm

Saeid Yousefpour 1, Azad Shojaei 2*, Rahim Rashidi 3

1 Department of Computer,Boukan Branch, Islamic Azad University, Boukan, Iran
2 Department of Computer, Saghez Branch, Islamic Azad University, Saghez, Iran
3Department of Computer, Boukan Branch,Islamic Azad University, Boukan, Iran

*Azad.Shojaei@gmail.com

Abstract: Parallel computing has become the dominant paradigm in computer science, mainly in the form of multi
core processors. One software approach for parallel programming, is writing programs in streaming model. A stream
program is type of computer program such that the input data is stream of data. In this paper we have used stream
programming model, and developed the parallel version of matrix transposition algorithm. Our source codes are
simple java code and used JStream java library. Matrix transposition is a fundamental matrix operation of linear
algebra and arises in many scientific and engineering applications. For example, matrix transposition is one of the
major tasks in image and signal processing and matrix decompositions. Also matrix transposition is a permutation
frequently performed in various techniques involving systems of liner equations. Partial differential equations are
typically solved using the Alternating Direction Implicit (ADI) method by transposing the data between the solution
phases in different directions. Another example in which data transposition may be advantageous is solving
Poisson's problem using the Fourier Analysis Cyclic Reduction (FACR) method. Also our code shows that writing
parallel programs in streaming model would be very simple.
[Saeid Yousefpour, Azad Shojaei, Rahim rashidi. Parallel Matrix Transposition Using Stream Programming
Paradigm. J Am Sci 2012;8(7):471-475]. (ISSN: 1545-1003). http://www.jofamericanscience.org. 73

Key words: Data Stream; Stream Programming; Parallel Computation; Parallel Matrix Transposition; Multi Core

1. Introduction
 Matrix transposition is a fundamental
matrix operation of linear algebra [1][2] and arises in
many scientific and engineering applications. For
example, matrix transposition is one of the major
tasks in image and signal processing and matrix
decompositions. Also matrix transposition is a
permutation frequently performed in various
techniques involving systems of liner equations.
Partial differential equations are typically solved
using the Alternating Direction Implicit (ADI)
method by transposing the data between the solution
phases in different directions [3]. Another example in
which data transposition may be advantageous is
solving Poisson's problem using the Fourier Analysis
Cyclic Reduction (FACR) method [4].
 On a uniprocessor, an algorithm involving a
transposed matrix may not actually require the matrix
data to be transposed in physical memory. Instead, it
may be accessed simply by exchanging the row and
column indices. However in a distributed memory
multiprocessor environment, we cannot simply
interchange the global row and column indices.
Instead, the data must be physically moved from one
processor to another. On the other hand, the problem
of writing efficient code for parallel computers or
compiling for such architectures is notoriously
difficult, such that there emerged the so-called

"Parallel software crisis". Modern microprocessor
technology has even decided to solve part of this
problem in hardware by analyzing data and control
dependencies at run time and dispatching instructions
to pipeline and parallel functional units on-line,
although this automatic reordering at runtime is only
applicable within the limited scope of a small
window containing a few subsequent instructions in
the code [5].
 But one other software approach, is writing
programs is streaming model, which called stream
processing. The stream processing paradigm
simplifies parallel software by restricting the parallel
computation that can be performed. Given a set of
data (a stream) a series of operations (computational
units) are applied to each element in the stream.
Speech encoding, image processing and signal
processing programs are some examples of stream
programs [6] [7]. Due to the nature of stream
programs, they can be easily mapped to distributed or
multi core architecture [8]. The structure of each
program forms a graph, the nodes are computational
units and the edges are data paths. This is called
stream graph.
 Conceptually a stream computation is a data
transfer in the program. The units that data is
transferred between them are called filters. A filter is
a computational unit such that in each execution time

Journal of American Science 2012;8(7) http://www.jofamericanscience.org

http://www.americanscience.org editor@americanscience.org 472

it reads one or more data from input channel and after
processing sends it to the output channel. Filters are
independent from each other and they contain their
own code there is no global variable or any reference
to the other filters. In a stream program connection
between filters, makes a graph that output of some
filters is connected to the input of other filters [6].
 The structure of stream graph is generally
constant during the execution of program. That is a
certain set of computational units are repeatedly
applied in a regular, predictable order to produce an
output stream that is given function of the input
stream [5]. There are many compilers and tools for
developing stream programs. Some examples are Cg
[9] [10], StreamC [11] [12], Brook [13], StreamIt
[14] [15] [16] [17] [18] and JStream Java library
[19].
 In this paper we have used JStream library to
develop parallel version of matrix transposition
algorithm. More details on JStream can be found in
[19]. The rest of this paper is organized as follow:
section 2 is related works on parallel matrix
transposition problem. Section 3 is a review of
JStream java library. Section 4 explains our work and
matrix transposition algorithm in stream
programming model and section 5 is conclusion.

2.Related works

 Transposition of a matrix is a redistribution
of its elements. Many researchers have considered
the problem for different architectures. Eklundh
considered the problem of directly accessing rows or
columns of a matrix when its size is larger than the
available high-speed storage. The data should be
stored on an external storage device, allowing direct
access. The performance of the algorithm depends on
the size of the main storage, which at least should
hold 2n+1 point. In that case the matrix has to be read
in and out n times [21].
 O'Leary, implemented an algorithm for
transposing an N*N matrix on a one-dimensional

systolic array. This architecture uses switching

processors and bit buffers. Arrays are also given
to take a matrix in by rows and put it out by
diagonals and vice versa [22]. Azari, Bojanczyk, and
Lee [23] developed an algorithm for transposing an
M * N matrix on an N * N mesh-connected array
processor. Johnsson and Ho presented an algorithm
for a Boolean n-cube or hypercube. Their algorithms
make use of the processing elements (PE's) in parallel
[24]. Tsay, Ding and Wang present an algorithm on
mesh that supports wormhole switching [4]. Choi,
Dangarra and Walker presented algorithm based on
the block scattered decomposition. The
communication schemes of the algorithm are

determined by the greatest common divisor (GCD) of
the number of rows and columns of the processor
template [25].

3.A review on JStream Library

The JStream library has base classes for filters
and communication patterns. The library supports
three communication patterns: Pipeline, Split-Join,
Feedback loop. Pipeline is the simplest form of
communication models.

Figure1.Pipeline model of filters communication[19]

 A pipeline has a number of child streams. In
this structure of filters, the output of first stream is
connected to the input of second stream and the
output of second stream is connected to the input of
third stream and so on [19]. Figure 1 shows a pipeline
structure.A feedback loop structure has a body
stream. The output of body stream is sent to a splitter.
One branch of splitter leaves the loop and another
branch is returned back to the body through a joiner.
The joiner joins the input channel of feedback loop
with loop channel. Data type of input channel and
output channel and loop branch should be the same
[19][20]. Figure 2 shows a feedback loop structure.

Stream 1

Stream 2

Stream 3

Stream 4

Journal of American Science 2012;8(7) http://www.jofamericanscience.org

http://www.americanscience.org editor@americanscience.org 473

Figure 2. Feedback loop model of filters
communication[19]

 A split-join structure enables parallel
processing. Each split-join stream has a number of
child streams that we can define them. In the split-
join every input data is distributed to every child and
after process the results is gathered and sent to the
output channel [20]. Figure 3 shows a split-join
structure.

Figure 3. Split Join model of filters
communication[19]

 In a split-join incoming data passes through
a splitter, is distributed to the child streams for
processing and then is fed through a joiner to be
recombined into a single output stream. The split-join
has two splitter, duplicate and round robin splitter.
Duplicate splitters take each incoming item and push
the same item to each of the child stream, duplicating
data. Round robin splitters take each item and send it
to exactly one of the child streams, in order.
 Splitroundrobin() causes one item to be sent
to each output, in order; splitrounribin(2) causes two
items to be sent to the first stream, two to the second

and so on. Round robin joiners are identical to round
robin splitters, except that they read from the input
streams in specified pattern and write data to the
output stream. As mentioned above, authors in [19]
explains these classes and patterns in more details.

4. Matrix transposition with stream programming
model

 In order to transpose a matrix we have to
use a split join structure. We need a filter that passes
input data to the output (without any computation).
We called this filter passing filter. If the matrix is
n*m, then there should be m passing filter as split
join child streams. There for the number of split join
children must be equal with the number of matrix
columns.

 The type of splitter and joiner is round robin
splitter and round robin joiner. The splitter distributes
each data item in rows to each child. The round robin
joiner collects all data of each child. Figure 4 shows
the method.

 Figure 4 - Matrix transpisition method

Figure 5 shows the stream graph for matrix
transposition. Matrix Reader is a filter that reads
matrix elements and Matrix Printer is a simple filter
that prints the transposed matrix.

Joiner

Stream

Splitt

Stream Strea Strea

Journal of American Science 2012;8(7) http://www.jofamericanscience.org

http://www.americanscience.org editor@americanscience.org 474

Figure 5 . Stream graph for matrix tranposition

The code (1) shows the passing filter.

import JStream.*;
public class PassingFilter extends
Filter<Integer,Integer>
{
 public PassingFilter()
 {
 Pop=2;
 }
 public static PassingFilter
PassingFilterConstruct()
 {
 PassingFilter Obj=new
PassingFilter();
 return Obj;
 }
 public void run()
 {
 Push(Pop());
 Push(Pop());
 }
}

Code 1 – Passing Filter

Code (2) shows split joins JStream Code.

import JStream.*;
public class Transposer extends
SplitJoin<Integer,Integer>

{
 public Transposer()
 {
 SplitRoundRobin();
 Add(PassingFilter.
PassingFilterConstruct());
 Add(PassingFilter.
PassingFilterConstruct());
 Add(PassingFilter.
PassingFilterConstruct());
 JoinRoundRobin(2);
 }
 public static Transposer TransConstruct()
 {
 Transposer Obj=new Transposer();
 return Obj;
 }

}

Code 2 – Split join Construction for matrix
transposition

5. Conclusion

 Parallel computing is a form of computation
in which many calculations are carried
simultaneously. It is now well established that
parallel computing is moving into the mainstream
with a rapid increase in the adoption of multi core
processors. Unlike previous generations of
mainstream hardware evolution, this shift will have a
major impact on existing and future software.
 In this paper we have developed parallel
matrix transposition algorithm with stream
programming paradigm. Stream programs can be
easily mapped to distribute or multi core architecture.
In our algorithm, we construct a simple passing filter
that passes data items without any computations and
one split join structure. If our matrix is n*m matrix
then we have to have m passing filter as child of split
join. The splitter and joiner type is round robin. Also
because of using java library, there is no need to learn
other parallel language or syntax.

Corresponding Author:
Azad Shojaei
Department of computer, saghez Branch,
Islamic Azad University, Saghez, Iran.
E-mail: Azad.Shojaei@gmail.com

References
[1] Golub, G.H and Van Loan, C.V, 1989. Matrix

Computations. The Johns Hopkins University
Press, Baltimore, MD. Second Edition.

Journal of American Science 2012;8(7) http://www.jofamericanscience.org

http://www.americanscience.org editor@americanscience.org 475

[2] Strang, G,1988. Linear Algebra and Its
Applications. Harcourt Brace Jovanovich, Inc.,
San Diego, CA, Third Edition.

[3] Johnsson, S. L and HO, C.T, 1990. Optimizing
tridiagonal solvers for alternating direction
methods on Boolean cube multiprocessors,
SIAM Journal on Scientific and Statistical
Computing, Vol. 11, pp. 563-592

[4] Tsay, J.J., Ding K. S and Wang W.T, 2003.
Optimal Algorithm for Matrix Transposing on
Wormhole-Switched Meshes, Journal of
Information Science and Engineering, Vol. 19,
pp. 167-177.

[5] Christoph W. Kessler., Parallelism and
Compilers, 2000. MSc Theses, Trier University.

[6] William Thies, 2009. Language and compile
support for stream programs, PhD theses, MIT.

[7] Elliot, L and Waingold, SIFt, 2000. A Compiler
for Streaming Applications, MSc Theses, MIT.

[8] Jasper, H. S., Jean Privat., Rechid Guerraoui and
Jan Vitek, 2007. StreamFlex: High-Throughput
Stream Programming in java, Proceedings of the
22nd annual ACM SIGPLAN conference on
Object-Oriented programming systems and
applications, OOPSLA07, Montreal, Canada.

[9] William, R., Mark, R., Steven Glanvile., Kurt
Akeley., Mark, J and Kilgard, Cg, 2003. A
system for Programming Graphics Hardware in
C-Like Language. Proceedings of the
International Conference on Computer Graphics
and Interactive Techniques, San Diego,
California.

[10] Randima Fernando and Mark J. Kilgard, 2003.
The CG tutorial: the definitive guide to
programmable real-time. Addison Wesley,
Boston, USA.

[11] Abhishek Das, William J. Dally and Peter
Mattson, 2006. Compiling for stream processing,
proceedings of the l5 international conference on
parallel architectures and compilation
techniques, Seattle, Washington, USA.

[12] Xuejun Yang, Ying Zhang, Jingling Xue, Ian
Rogers, Gen Li, Guibin Wang, Exploiting loop-
dependent stream reuse for stream processors,
proceedings of the 17th international conference
on parallel architectures and compilation
techniques, New York, USA, 2008.

[13] Shin-Wei Lio, Zhaohui Du, Ganasha Wu and
Guei-Yuan Lueh, 2006. Data and computation
transformation for brook streaming applications
on multi processors, proceedings of the
international symposium on code generation and
optimization.

[14] Streamlt: a language for streaming application,
online resource: http: csail.mit.edu.

[15] Michel Karczmarek, William Thies., Saman
Amarasinghe,2003. Phased scheduling of Stream
programs, proceedings of the 2003 ACM
SIGPLAN conference on language. Compiler
and tool for embedded systems, San Diego,
California, USA.

[16] Michel I. Gordon., William Thies, Saman
Amarasinghe, 2006. Exploiting coarse-grained
task, data, and pipeline h parallelism in stream
programs, proceedings of the l2 international
conference on architectural support for
programming languages and operating systems,
San Jose, California, USA.

[17] Andrew A. Lamb., William Thies and Saman
Amarasinghe,2003. Linear analysis and
optimization of stream programs, San Diego,
California, USA.

[18] Streamlt language specification, online resource;
http: csail.mit.edu.

[19] Yousefpour, S and Mahjur, Ali, 2010. Object
Oriented Stream Programming with Java,
proceedings of the 2010 international conference
on intelligent network and computing (ICINC
2010), kuala Lumpur, Malaysia.

[20] Rashidi, R and Yousefpour, S, 2011. Parallel
Bubble Sort Using Stream Programming
Paradigm, The 5th International on Application
of Information and Communication
Technologies, Baku, Azarbayjan.

[21] Eklundh, J. O, 1972. A Fast Computer Method
for Matrix Transposition. IEEE Transactions on
Computers, Vol. 21, pp. 801-803.

[22] O'Leary, D. P. 1987. Systolic Arrays for Matrix
Transpose and Other Reordering, IEEE
Transactions on Computers, Vol. 36, pp. 117-
122.

[23] Azari, N. G., Bojanczyk, A. W., and Lee, S. Y,
1988. Synchronous and Asynchronous
Algorithms for Matrix Transposition on MCAP.
In SPIE Vol. 975, Advanced Algorithms and
Architecture for Signal Processing III, pp. 277-
288.

[24] Johnsson, S. L., and Ho, C. T, 1988. Algorithms
for Matrix Transposition on Boolean n-Cube
Configured Ensemble Architecture. SIAM J.
Matrix Anal. Vol. 9, pp. 419-454.

[25] Choi, J., Dongarra J. J and Walker, D. W,1993.
Parallel Matrix Transpose Algorithms on
Distributed Memory Concurrent Computers,
Rice University.

6/6/2012

