Molecular Analysis of Signal Peptidase I Gene in *Streptococcus pneumoniae*

¹Muharram, M M; ¹Alqasoumi, S I; ²Abulelhamd, A T

¹Department of Pharmacognosy, College of Pharmacy, Salman Bin Abdulaziz University, 11942 Alkharj, KSA ²Department of Medical Laboratories, College of Applied Medical Sciences, Salman Bin Abdulaziz University, 11942 Alkharj, KSA

Abstract: A central event in protein secretion is the type I signal peptidase-mediated cleavage of the N-terminal signal peptide that targets a protein for its destination. In this study, the gene of the signal peptidase I of gram-positive *Streptococcus pneumoniae* (*Spi*) was cloned, expressed and its protein was purified. Switching trial for the proteolytic processing of the outer membrane (OmpA) protein by *Spi* peptidase has drawn attention for the existence of a substrate specificity difference between gram-negative and gram-positive signal peptidases. Analysis of a constructed hybrid protein (pre*OmpA-Skc*-His6) along with site-directed mutagenesis in the same construct confirmed the critical role of the -1 and -3 amino acid residues for cleavage by signal peptidase I in *streptococcus pneumoniae*, consistent with the idea that this peptidase contains a serine-lysine catalytic dyad.

[Muharram, M M; Alqasoumi, S I; Abulelhamd, A T. Molecular Analysis of Signal Peptidase I Gene in *Streptococcus pneumonia. J Am Sci* 2012;8(9):276-281]. (ISSN: 1545-1003). http://www.jofamericanscience.org. 40

Key words: signal peptidase gene, Streptococcus pneumoniae, streptokinase, OmpA, catalytic dyad

1. Introduction

Most proteins that are completely translocated across the bacterial cytoplasmic membrane, or across the eukaryotic mitochondrial and endoplasmic reticulum, are synthesized as precursors (preproteins) with signal sequence at their N-terminal. This signal sequence is involved in guiding the protein into the targeting and translocating pathway by interacting with the membrane and other components of the cellular secretory machinery (Böhni et al. 1988; Greenburg et al. 1989; Behrens et al. 1991; Wickner et al. 1991; Sung and Dalbey, 1992). Release of the mature part of the protein from the membrane requires proteolytic removal of the signal peptide. This proteolytic processing occurs during or shortly after the translocation event and is catalyzed in both prokaryotes and eukarvotes by enzymes known as signal peptidases. Two major bacterial signal peptidases (signal peptidase I and signal peptidase II) have been identified. Signal peptidase II is specific for precursors of glyceride-modified lipoproteins (Hussain et al. 1982; Innis et al. 1984), whereas signal peptidase I is required for processing of nearly all secreted proteins (Wolfe et al. 1983; Tschantz and Dalbey, 1994; Dalbey et al. 1997).

A number of bacterial genes encoding signal peptidase I have been cloned and sequenced from both gram-negative and gram-positive bacteria, including *Escherichia coli* (Wolfe et al. 11982), *Salmonella enterica* serovar Typhimurium (van Dijl et al. 1990), *Haemophilus influenzae* (Fleischmann et al. 1995), *Staphylococcus aureus* (Cregg et al. 1996), *Bacillus subtilis* (van Dijl et al. 1992; Meijer et al. 1995; Tjalsma et al. 1997 and *Streptococcus pneumoniae* (Zhang et al. 1997). Genes from Gram-negative bacteria generally encode larger proteins, approximately 300 amino acids in size, as typified by leader peptidase (*lepB*) of *Escherichia coli* (Wolfe et al. 1983). Genes from Gram-positive bacteria as typified by *sipS* of *Bacillus subtilis* (van Dijl et al. 1992) and *spi* of *Streptococcus pneumoniae* generally encode smaller proteins that are about 200 amino acids in size. Secreted proteins play a central role in the interaction of bacteria with their environment (Wooldridge, 2009).

Despite extensive efforts to predict or experimentally detect proteins that are secreted, the characterization of the bacterial secretome has remained challenging. Until recently, the biochemical characterization of signal peptidase I have concentrated on the enzyme from *E. coli* while biochemical characterization of gram positive signal peptidase I was very limited. In this work, we focused on the expression and purification of signal peptidase I of *Streptococcus pneumoniae*. The substrate specificity difference between gram negative and gram positive signal peptidases was investigated.

2, Materials and Methods

Cloning and expression of signal peptidase I (Spi) gene

Two oligonucleotide primers designed to contain *PstI* (5'-AAATACTGCAGAAGCGAAAAACGCTT-3') and *Bam*HI (5'-GGATCCTTAAAATGTTCCGATACGGGTGAT-3') restriction sites were used to specifically amplify the *Spi* gene using genomic DNA of *S. pneumoniae* (strain NZ303). The expression vector YEp352-*Spi*-His6 was constructed by introducing the PCR-amplified fragment into the YEp352 vector. For expression of *Spi*, *E. coli* strain (XL1-Blue) was transformed by YEp352-*Spi*-His6 and induced with IPTG (1 mM) and then tested for expression by Western analysis. For expression of *Skc*, recombinant clone pQE-30-Az10 (Muharram et al. 2010) was used for the transformation of *E. coli* cells.

Purification of S. pneumoniae signal peptidase I

200 mg of the extracted proteins were mixed with ten volumes of chloroform/methanol (1:1). The mixture was stirred at RT for 18 h. and centrifuged at 3000 g for 5 min. The organic extract was washed by addition of Chloroform, methanol and water to a final ratio of chloroform/methanol/water (8/4/3). The mixture was gently stirred and centrifuged at 14000 rpm for 10 minutes. For the immunoprecepitation, one liter of IPTG-induced E. coli cells harboring YEp352-Spi-His6 were harvested and resuspended in 20 ml of lysis buffer containing 50 mM Na₂HPO₄ and 300 mM NaCl (pH 8.0) and sonicated for 5 min on ice. The lysate was then centrifuged at 50,000 \times g for 1 h at 4°C. The resulting supernatant was discarded, and the pellet was resuspended and sonicated for 5 min in 20 ml of lysis buffer with 1% Triton X-100. After centrifugation at 50,000 \times g for 1 h at 4°C, the supernatant was diluted with 80 ml of lysis buffer and loaded onto a protein A sepharose (PAS) column by the procedure detailed in (Niogret et al. 1996).

Hybrid protein construct and site directed mutagenesis

PCR-amplified fragment of the presequence of *OmpA* gene was fused to the amplified fragment corresponding to the mature part of *Skc* gene. The product was inserted between the *Bam*HI and *Eco*RI sites of YEp352 immediately downstream of the *ADH1* promoter. Site-directed mutagenesis reactions were performed as described in Van Valkenburgh *et al* (1999).

Purification of leader peptidase from E. coli

Cells of E. coli (SZ130) were grown to mid-log phase in LB broth. Cells were harvested by centrifugation, washed once with 5 volumes of ice cold cell buffer containing (10 mM Tris.CI (pH7.5), 22 mM NH₄CH₃COO, 10 mM Mg (CH₃COO)₂, 1 mM dithiothreitol), and suspended in an equal weight of cell buffer in liquid nitrogen. Protein of the leader peptidase was then purified by the procedure detailed in ZwizinskiS and Wicknerfj (1980).

Assay for processing of prestreptokinase and the hybrid protein

Reaction mixture (20 μ l) containing 0.1 μ g of signal peptidase I (*Spi*) was incubated at 37°C for 1 h with 2 μ l of purified prestreptokinase (or the hybrid protein) in 20 mM Tris-HCl (pH 8.0), 0.02% Triton X-100, 5% glycerol and 100 μ g of phospholipid. Typically, the reactions were terminated by the addition of SDS sample buffer. Products of the reaction were separated on 12% SDS-PAGE followed by Western analysis.

Miscellaneous

Protein and DNA manipulation were carried out by standard methods Sambrook *et al.* (1989). PCR amplification was carried out using the protocol of Innis *et al.* (1990). Western Blot analysis was conducted according to the procedure of Towbin *et al.* (1979). Cells of *E. coli* were transformed as described in Inoue *et al.* (1990).

3. Results

Expression of *Spi* and *Skc* Genes and Purification of their proteins

Chromosomal DNA of S. pneumoniae was used to amplify the ORF of the signal peptidase I gene by PCR. E. coli cells harboring the vector YEp352-Spi-His6 were grown to an A_{600} of 0.7 at 30°C. After induction with IPTG, a protein band at the expected molecular mass of about 20 kDa was visualized by and western analysis using anti-His6 antibody (Fig.1, lane 1). IPTG-induced E. coli cells that harboring the recombinant clone pQE-30-Az10 were screened for their expression of streptokinase gene bv immunoblotting using anti-His6 antibody where a protein band of 47 kDa was developed (Fig.1, lane 2). Three different procedures were adopted to purify recombinant proteins of Spi and Skc genes. These protocols were chloroform and methanol extraction, ammonium salt precipitation, and immunoprecipitation. Expressed proteins of Spi and Skc could not be purified either by chloroform and methanol extraction (Fig. 2. lanes 2, 3) or ammonium salt precipitation (Fig.2. lanes 4, 5). However, immunoprecipitation technique using the column of protein A sepharose (PAS) succeeded in the purification of the expressed Spi and Skc genes as shown in (Fig.2. lanes 6, 7). Pure single protein bands were visualized by SDS-PAGE and western analysis at the expected molecular masses of 20 kDa and 47 kDa for Spi and Skc, respectively.

	1	2	3	
-			11	200 116 97
			-	66
		-	-	45
			-	31
	-		-	21
			-	14

Fig.1: Cloned *S. pneumoniae* signal peptidase I (*Spi*) and streptokinase (*Skc*) genes. Total proteins were extracted from transformed *E. coli* cells (Xl1-Blue), subjected to 12% SDS-PAGE and immunoblotted by Western analysis using anti-His6 antibody. Lane, 1: *expressed Spi*; Lane, 2: *Skc* expressed from clone pQE-30-Az10; Lane, 3: protein marker.

Fig. 2: Purification of recombinant *Spi and Skc* proteins. Expressed proteins of both genes *were extracted* from transformed cells of *E. coli*. Lane, 1: protein marker; Lanes, 2 and 3: chloroform- methanol extracted proteins of recombinant *Spi* and *Skc*, respectively. Lanes, 4 and 5: precipitated proteins of recombinant *Spi* and *Skc* with ammonium sulfate, respectively. Lanes, 6 and 7: precipitated proteins of recombinant *Spi* and *Skc* with protein A sepharose (PAS) and anti-His6, respectively. Proteins were dissolved in SDS loading buffer, loaded onto 12% SDS-PAGE and stained by Coomassie blue, R-250. Molecular masses of the purified proteins from both recombinant clones were compared by protein marker placed in lane 1.

Comparative analysis of signal peptidases in grampositive and gram-negative bacteria

The proteolytic processing of prestreptokinase protein by purified Lep (Fig. 3a. lane, 2) instead of Spi and OmpA protein by Spi instead of Lep was conducted. As observed in Fig.3b, Spi and Lep peptidases were able to cleave the signal peptide from the protein of prestreptokinase yielding the mature form of 41 kDa (lanes, 4, 5). In case of OmpA protein, the mature protein form was developed with a molecular mass of about 32 kDa with the Lep peptidase only (Lane, 7), whereas the precursor form (35 kDa) was developed with the Spi enzyme (lane, 6). This means that the processing of OmpA could not be switched from the Lep to Spi enzyme. This result has shed light on the presence of the substrate specificity difference between signal peptidases from both bacterial groups. To address this point, a hybrid protein was constructed in which the signal peptide of the OmpA protein was fused to the mature part of the protein (pre*Omp*A-*Skc*-His6) streptokinase and appended with six histidine residues at its C-terminus. Expressed protein of this hybrid yielded a band of 46 kDa (Fig. 4. Lane, 3). This constructed protein was

analyzed as a substrate for *Spi* peptidase. This is to investigate if the amino acid residues in the signal peptide are enough for the protein maturation with *Spi* or if it needs extra molecular information in the mature part of the protein. Processing results of the hybrid protein with *Spi* developed a protein band of the precursor form at 46 kDa (Fig. 4. Lane, 5). On the other hand, a faint protein band developed at 41 kDa which corresponding to that of the mature form of streptokinase indicating a partial processing of this protein by *Spi*. Appearance of extra protein band at 10kDa (Lanes 4, 5) maybe interpreted as a self-cleavge activity of *Spi* peptidase

Fig. 3: a. Purification of leader peptidase (*Lep*) of *E. coli.* Lane, 1: protein marker; lane, 2: purified *Lep* peptidase with a molecular mass at 39 kDa. **b.** Proteolytic processing analysis of prestreptokinase and *OmpA* proteins by *Spi* and *Lep* peptidases. Lane, 1: protein marker; Lane, 2: purified *Spi*; Lane, 3: purified prestreptokinase with a molecular mass at 47 kDa; Lane, 4: *Spi* peptidase with prestreptokinase; lane, 5: *Lep* peptidase; Lane, 7: OmpA with *Lep* peptidase. In Lanes, 2-7: Total proteins extracted from transformed *E. coli* cells (XI1-Blue), subjected to SDS-PAGE and immunoblotted by Wesern analysis using anti-His6 antibody.

Fig. 4: Proteolytic processing analysis of pre*OmpA*-*Skc*-His6 by *Spi*. Lane, 1: protein marker; Lane, 2: purified *Spi*; Lane, 3: Expressed precursor of pre*OmpA*-*Skc*-His6 with a molecular mass of 46 kDa; Lane, 4: *Spi* peptidase with native prestreptokinase; lane, 5: *Spi* peptidase with pre*OmpA*-*Skc*-His6. Extracted total proteins were analyzed by 12% SDS-PAGE and immunodetected by Western analysis using anti-His6 antibody.

Site directed mutagenesis of the hybrid protein

The alanine residues at -1 and -3 in the signature sequence of the signal peptide of the OmpA in the hybrid protein were substituted by serine and lysine (A18S and A20K) using site directed mutagenesis. This was carried out to let this hybrid protein have the same amino acid residues at the -1 and -3 as in the native protein of streptokinase. The new protein construct preOmpA-Skc $A^{18S} A^{20K}$ -His6 containing the mutated signature sequence of Spi was incubated for testing its proteolytic processing by Spi enzyme (Fig. 5). In this figure, a strong mature protein band of 41 kDa (Lane, 2) was appeared compared to the faint one appeared previously. This result indicates the role of the two amino acid residues in the -1 and -3 for processing by Spi. The Development of three protein bands with molecular masses ranged between 4 and 10 kDa (Fig. 5, lanes, 2, 3) confirmed the self-cleavage activity of Spi that reported previously in (Fig.4).

Fig. 5: Proteolytic processing analysis of pre*Omp*A-*Skc* A^{188} A^{20K} -His6 by *Spi*. Lane, 1: protein marker; Lane, 2: pre*Omp*A-*Skc* A^{188} A^{20K} -His6 with *Spi*; Lane, 3: native precursor of streptokinase with *Spi*; Lane, 4: native precursor of streptokinase alone. Extracted total proteins were immunodetected by anti-His6 antibody.

4. Discussion

Bacterial protein secretion is a highly orchestrated process that is essential for bacterial survival, infection, and virulence and in the interaction with their environment ((Wooldridge, 2009). Steps of protein insertion into membranes involve topographic changes such as binding to a membrane or transit of polypeptides across the bilayer. Many membrane proteins in both prokaryotic and eukaryotic cells are synthesized in precursor form with an NH2-terminal leader sequence of 15 to 30 amino acid residues. Leader sequences are removed during, or shortly after, the assembly event by enzymes termed leader peptidases. The study of leader peptidases may provide clues to the mechanism of membrane protein assembly (Behrens et al. 1991; Sung and Dalbey, 1992; Zhang et al. 1997; von Heijne, 1983). Generally, the secretion of many of proteins in both Gram-positive and Gramnegative bacteria is mediated by the evolutionarily conserved general secretory (Sec) system (Powers et al. 2011).

A number of genes encoding signal peptidases I have been cloned and sequenced from both grampositive and gram-negative bacteria (Wolfe et al. 1982; van Dijl et al.1990; Fleischmann et al. 1995; Cregg et al. 1996; van Dijl et al. 1992; Meijer et al. 1995; Tjalsma et al. 1997; Zhang et al. 1997). In fact, some of the conserved regions and critical residues involved in active sites are present in the enzymes of both bacterial groups. However, considerable differences also exist. These differences include the primary sequences, the size, and the topology of the enzymes. Why are signal peptidases from two bacterial groups so different although they catalyze a similar reaction?

Our data addressed that signal peptidases in both bacterial groups of gram-negative and gram-positive show a substrate specificity difference. This is indicated by the protein of the OmpA (known substrate of E. coli signal peptidase I) was not cleaved in vitro by purified Spi peptidase, although both enzymes were able to process prestreptokinase in vitro (Fig. 3b). This result, along with the presence of some conserved and critical residues in the active sites of the peptidase from both bacterial groups (van Dijl et al. 1988; Wang and Dalbey, 2010) allowed for a comparative analysis between gram-positive and gram-negative enzymes. This analysis implied the construction of a hybrid protein (preOmpA-Skc-His6). Partial proteolytic processing of this hybrid protein appeared with Spi enzyme as indicated by the appearance of faint band (Fig. 4) corresponding to the mature form of streptokinase (41 kDa).

A main goal of the comparative analysis was to understand why Spi and Lep peptidases exhibit nonoverlapping substrate specificities. Studies in eubacterial systems have shown that the type I signature consists of a serine, lysine, arginine, and two aspartic acid residues that are important for the function of leader peptidase from E. coli and SipS from B. subtilis (Tschantz et al. 1993; van Dijl et al. 1995). Therefore, a new form of the preOmpA-Skc-His6 protein was constructed in which the amino acid residues at -1 and -3 were substituted to be the same as in the native protein of streptokinase. The new construct was then examined with the purified Spi peptidase I. Incubation of the purified Spi peptidase I with the new construct increased the intensity of the faint protein band that appeared with the first construct. These data revealed that the -1 and -3 amino acids probably help to position the signal peptide relative to the active site through their interactions with distinct binding pockets on the enzyme's surface (Paetzel et al. 1998; Chen et al. 1999).

Another striking common feature of *S. pneumoniae* signal peptidase that was noticed in this study is self-cleavage activity (Fig. 5) that developed

products with molecular masses of 4, 8 and 10 kDa. Self-cleavage has been found to be a unique property among LexA-like proteases. Sequence analysis demonstrated that the regions around self-cleavage sites of signal peptidase I and LexA-like proteases have some common properties (von Heijne,1983; van Dijl et al. 1995; Perlman and Halvorson, 1983; Jain et al. 1994). We have shown that amino acids at the -1 and -3 positions are important for recognition and proper cleavage of the signal peptida by *Spi* peptidase. Whether all bacterial signal peptidases catalyze self-cleavage like LexA-like proteases remains to be addressed. Also, identifying factors that govern the substrate specificities exhibited by *Spi* need to be identified.

Acknowledgments

This work was kindly supported by University of Salman bin Abdulaziz, KSA (Grant No. 9/S/1432).

Corresponding author

Muharram, M M. Department of Pharmacognosy, College of Pharmacy, Salman Bin Abdul Aziz University, 11942 Alkharj, KSA. magdimohamed72@yahoo.com

References

- Behrens M, Michaelis G, Pratje E (1991) Mitochondrial inner membrane protease I of *Saccharomyces cerevisiae* shows sequence similarity to the Escherichia coli leader peptidase. Mol Gen Genet 228: 167–176.
- Böhni P C, Deshaies, R J, Schekman R W (1988) SEC11 is required for signal peptide processing and yeast cell growth. J Cell Biol 106:1035–1042.
- Chen X, Valkenburgh C V, Fang H, Green N (1999) Signal peptides having standard and nonstandard cleavage sites can be processed by Imp1p of the mitochondrial inner membrane protease. *J Biol Chem* 274:37750-37754.
- Cregg K M, Wilding E I, Black M T (1996) Molecular cloning and expression of the *spsB* gene encoding an essential type I signal peptidase from *Staphylococcus aureus*. J Bacteriol 178:5712-5718
- Dalbey R E, Lively M O, Bron S, van Dijl J M (1997) The chemistry and enzymology of type I signal peptidase Protein. Sci 6:1129-1138.
- Fleischmann R D, Adams M D, White O, Clayton R A, Kirkness E F, Kerlavage A R, Bult C J, omb J T, Dougherty B A, Merrick J M, Mckenny K, Sutton G, Fitzhugh W, Fields C, Gocayne J D, Scott J, Shirley R, Liu L, Glodek A, Kelly J M, Weidman J F, Phillips C A, Spriggs T, Hedblom E, Cotton M D, Utterback T R, Hanna M C, Nguyen D T, Saudek D M, Brandon R C, Fine L D, Fritchman J L, Fuhrmann J L, Geoghagen N S M, Gnehm C L, McDonald L A, Small K V, Fraser C M, Smith H

O, Verter J C (1995) Whole genome random sequencing and assembly of *Haemophilus influenzae*. Science 269: 496-512.

- Greenburg G, Shelness G S, Blobel G (1989) A subunit of mammalian signal peptidase is homologous to yeast SEC11 protein. J Biol Chem 264: 15762– 15765.
- Hussain M, Ichihara S, Mizushima S (1982) Mechanism of signal peptide cleavage in the biosynthesis of the major lipoprotein of the *Escherichia coli* outer membrane. J Biol Chem 257:5177–5182.
- Innis M A, Tokunaga M, Williams M E, Loranger J M, Chang S Y, Wu H C (1984) Nucleotide sequence of the *Escherichia coli* prolipoprotein signal peptidase. (*lsp*) gene Proc Natl Acad Sci USA 81:3708-3712
- Innis M A; Gelfand D H; Sninsky, J J, White T J (1990) PCR Protocols A Guide to Methods and Applications. *Academic press, Inc, San Diego*.
- Inoue H, Nojima H, Okayama H, (1990) High efficiency transformation *of Escherichia coli* with plasmids. *Gene* 96: 23-28.
- Jain R G, Rusch S L, Kendall D A (1994) Signal peptide cleavage regions Functional limits on length and topological implication. J Biol Chem 269:16305–16310.
- Meijer W J J, Jong A de, Bea G, Wiseman A, Tjalsma H, Venema G, Bron S, van Dijl J M (1995) The endogenous *B. subtilis* plasmids pTA1015 and pTA1040 contain signal peptidase-encoding genes: identification of a new structural module on cryptic plasmids. Mol Microbiol 17: 621-631.
- Muharram M, Salem-Bekhet M (2010) Activation of plasminogen by streptokinase is a species-specific event. BTAIJ, 4: 111-118.
- Niogret M F, Culiáñez-Macià F A, Goday A, Mar Albà M, Pagès M (1996) Expression and cellular localization of rab28 mRNA and Rab28 protein during maize embryogenesis Plant J. ;9: 549-57.
- Paetzel M, Dalbey R E, Strynadka N C. J (1998) Crystal structure of a bacterial signal peptidase in complex with a beta-lactam inhibitor. Nature 396:186-190.
- Perlman D, Halvorson H O (1983) A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. J Mol Biol 167:391–409.
- Powers M E, Smith P A, Roberts T C, Fowler B J, King C C, Trauger S A, Siuzdak G, Romesberg F E (2011) Type I Signal Peptidase and Protein Secretion in *Staphylococcus epidermidis* j of bacteriol 193: 340–348.
- Sambrook J, Fritsch E F, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd ed Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

- Sung M, Dalbey R E (1992) Identification of potential active-site residues in the *Escherichia coli* leader peptidase. J Biol Chem 267: 13154–13159.
- Tjalsma H, Noback M A, Bron S, Venema G, Yamane K, van Dijl J M (1997) *Bacillus subtilis* contains four closely related type I signal peptidase with overlapping substrate specificities. J Biol Chem 272: 25983-25992.
- Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. *Proc Natl Acad Sci USA* 76: 4350-4354.
- Tschantz W R, Dalbey R E (1994) Bacterial leader peptidase. I Methods Enzymol 244: 285-301.
- Tschantz W R, Sung M, Delgado-Partin V M, Dalbey R E (1993) A serine and a lysine residue implicated in the catalytic mechanism of the *Escherichia coli* leader peptidase. J Biol Chem 268: 27349–27354
- van Dijl J M, Bergh R, Reversma T, Smith H, Bron S, Venema G (1990) Molecular cloning of the *Salmonella typhimurium lep* gene in *Escherichia coli*. Mol Gen Genet 223: 233-240.
- van Dijl J M, Jong A de, Vehmaanpera J, Venema G, Bron S (1992) Signal peptidase I of *B. subtilis*: patterns of conserved amino acids in prokaryotic and eukaryotic type I signal peptidases. EMBO J 11: 2819-2828.
- van Dijl J M, Jong A de, Venema G, Bron S (1995) Identification of the potential active site of the signal peptidase SipS of *Bacillus subtilis*: structural and functional similarities with LexA-like proteases. J Biol Chem 270: 3611–3618.
- van Dijl J M, Smith H, Bron S, Venema G (1988) Synthesis and processing of *Escherichia coli* TEMbeta-lactamase and *Bacillus licheniformis* alphaamylase in E coli: the role of signal peptidase. I Mol Gen Genet 214: 55–61.

7/22/2012

- Van Valkenburgh C, Chen X, Mullins C, Fang H, Green N (1999) The Catalytic Mechanism of Endoplasmic Reticulum Signal Peptidase Appears to Be Distinct from Most Eubacterial Signal Peptidases. J Biol Chem 274: 11519–11525.
- von Heijne G (1983) Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem 116: 17–21.
- Wang P Dalbey R E (2010) In vitro and in vivo approaches to studying the bacterial signal peptide processing Methods. Mol Biol 619: 21–37.
- Wickner W, Driessen A J M, Hartl F U (1991) The enzymology of protein translocation across the *Escherichia coli* plasma membrane. Annu Rev Biochem 60: 101-124.
- Wolfe P B, Silver P, Wickner W (1982) The isolation of homogeneous leader peptidase from a strain of *Escherichia coli* which overproduces the enzyme. J Biol Chem 257: 7898-7902.
- Wolfe P B, Wickner W, Goodman J M (1983) Sequence of the leader peptidase gene of *Escherichia coli* and the orientation of leader peptidase in the bacterial envelope. J Biol Chem 258: 12073-12080.
- Wooldridge K (2009) Bacterial secreted proteins: secretory mechanisms and role in pathogenesis Caister. Academic Press, Norwich, United Kingdom.
- Zhang Y, Greenberg B, Lacks S A (1997) Analysis of a *Streptococcus pneumoniae* gene encoding signal peptidase I and overproduction of the enzyme. Gene 194: 249-255.
- Zwizinski C, Wickner W (1980) Purification and characterization of leader (signal) peptidase from *Escherichia coli*. J Biol Chem 255: 7973-7977.