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Abstract: Many real-world optimisation problems are constrained. Solving such problems is somehow challenging 
for optimisation techniques. Among various optimisation techniques, heuristics have demonstrated more efficiency 
in tackling constrained problems. In this paper, different strategies in heuristics for handling constrained 
optimisation problems are analyzed in details and the advantages and disadvantages of each strategy is discussed.  
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handling strategy for their certain problem. 
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1. Introduction 
     There are so many optimisation problems in various 
areas of science and engineering. For solving them, 
there exist twofold approaches; classical approaches 
and heuristic approaches. Classical approaches are not 
efficient enough in solving optimisation problems. 
Since they suffer from curse of dimensionality and also 
require preconditions such as continuity and 
differentiability of objective function that usually are 
not met. 
     Heuristic approaches which are usually bio-inspired 
include a lot of approaches such as genetic algorithms, 
evolution strategies, differential evolution, ant colony 
algorithm and so on. Heuristics do not expose most of 
the drawbacks of classical and technical approaches. 
Therefore, they are very commonplace in solving 
optimisation problems. 
     However, many real-world optimisation problems 
are constrained while typical heuristic variants are 
supposed to handle unconstrained problems. Therefore, 
for enhancing them to be able to handle constrained 
problems, appropriate modifications should be applied 
to them. In this paper existing strategies in heuristics for 
tackling constraints are analysed deeply. Moreover, in 
order to provide a better understanding for reader, the 
capability of classic optimisation techniques in 
constraint handling is discussed concisely. The paper is 
organised as follows; in section 2, general framework 
of a constrained optimisation problem is presented and 
also classic optimisation techniques are investigated 
from constraint-handling capability point of view. In 
section 3, strategies in heuristic techniques for dealing 
with constrained problems are analysed. Finally, 
drawing conclusions and proposing some directions for 
future research is implemented in section 4.  
 
 

2. Generalities of Constrained Optimisation 
         Most of real-world optimization problems are 
constrained.  General form of a constrained 
optimization problem (COP) is: 
Minimize �(�)                                              
Subject to                                              (1)    

 
ℎ�(�) = 0,      � = 1,2, … , � 

 
��(�) ≤ 0,      � = 1,2, … , � 

 
     Where  � is the number of equality constraints and 
� is the number of inequality constraints. Each point � 
which satisfies all equality and inequality constraints is 
called a feasible point. 
     However, most of existing optimization techniques 
are merely devised for unconstrained problems. Thus, 
efficient constraint handling mechanisms should be 
incorporated to make them capable of dealing with 
constrained optimization problems. In this section, 
firstly, most common constraint handling strategies in 
classic optimization are explained, then constraint 
handling strategies existent in EA literature will be 
analysed and eventually, constraint handling strategies 
adopted in PSO will be explored in depth.  
 
2.1 Constraint Handling Mechanisms in Classic 
Optimization Methods 
2.1.1 Lagrangian Algorithm 
    In this method, constrained problem in (1), is 
converted to an unconstrained problem via creating 
lagrangian function as follows (Chong and Zak, 2008). 
�(�, �) = �(�) + ���(�) + ���(�)                    (2) 
 
     Where � = [��, ��, … , ��]  and � = [��, ��, … , ��] 

are its multipliers. �(�) = [ℎ�(�), ℎ�(�), … , ℎ�(�)] , 
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and �(�) = [��(�), ��(�), … , ��(�)] . By applying 
first order necessity conditions and second order 
sufficiency condition, the value of �∗  (minimizer), � 
and � are calculated holding following two constraints. 
 

�
� ≥ �            

���(�∗) = 0
�                                                                  (3)  

 
2.1.2 Projection Technique 
     In this method, each infeasible point is transferred to 
its closest feasible point in search space. For example in 
feasible direction methods that use �(� + 1) = �(�) +
���� to find optimal solution (�� is step size and �� is 
feasible direction), projection method uses �(� + 1) =
∏[�(�) + ����]   instead, where ∏(�)  is the closest 
point in feasible region to � . Most common form of 
projection method is the gradient projection method, in 

which  �(� + 1) = ∏��(�) − ��∇���(�)�� (Chong and 

Zak, 2008). 
2.1.3 Sequential Unconstrained Technique 
      This technique solves a non-linear optimization 
problem by transforming it into a sequence of 
optimization problems so that each sub-problem has a 
quadratic objective function with linear constraints 
(Chong and Zak, 2008). 
2.1.4 Overall View on Constraint Handling with 
Classic Methods 
     Overally, classic optimization techniques are not 
appropriate enough for solving constrained problems. 
The main reasons are: 

 They need pre-requisites such as 
differentiability and continuity of objective 
functions and constraints that are not met in 
most of problems especially real-world 
problems. 

 They give out local optimum not global one. 
 They are complex and inflexible. 

 
3. Constraint-Handling Strategies in Heuristics  
3.1 Penalty Functions  
    This technique transforms a constrained optimization 
problem into an unconstrained one by adding a certain 
value to the objective function based on the amount of 
constraint violation or the number of constraint 
violations in a certain individual. Mainly due to its 
simplicity and ease of implementation, it is the most 
commonly used technique for dealing with COP’s. 
There are two types of penalty functions; exterior and 
interior. In exterior paradigm, the optimization is 
started with an infeasible individual; afterwards 
individuals are attracted to feasible regions of search 
space due to the effect caused by penalties. On the other 
hand, in interior models, a penalty function is defined 
whose values at points away from constraint boundaries 
are small and tend to infinity when the constraint 

boundaries are approached. So, if the search starts with 
a feasible individual, the subsequent generated 
individuals all lie within feasible region since the 
constraint boundaries act as barriers during 
optimization process (Rao, 1996). Since finding an 
initial feasible individual is itself a NP-hard problem, 
the exterior penalty approach is commonly used (Back, 
Fogel and Michalewics, 1997). 
    The general form of a penalised (or expanded) 
objective function is: 
 

�(�) = �(�) + �� ��

���

���

�� + � ��

���

���

���                  (4) 

 
     Where �(�) is called expanded objective function,  

�� = max�0, ��(�)�
�

 and  �� = |ℎ�(�)|� . ��’s and �� 

are called penalty factors. � and � are commonly set as 
1 or 2. The right hand term, which is in bracket, called 
penalty function. 
    The value of penalty factors is crucial and strongly 
affects the performance of penalty function approach. If 
they are chosen too small, too much search effort is put 
on infeasible regions of search space while feasible 
regions are not explored efficiently and even the 
algorithm is likely to not converge to a feasible 
solution. On the other hand, if they are too large, 
infeasible regions may not be explored enough and the 
valuable information existent in infeasible regions may 
not be extracted. 
     It should be noted that, normally equality constraints 
are transformed into inequality ones. That is ℎ�(�) = 0 
is transformed to |ℎ�(�)| ≤ �  where �  is a tolerance 
allowed. 
 
3.1.1 Static Penalty Functions 
     In this category, penalty functions do not change 
during the evolutionary process. In (Homaifar, Lai, and 
Qi, 1994) a static penalty function is introduced 
wherein several levels of violation are defined by user 
and a penalty factor is chosen for each level so that the 
penalty factor is increased when higher levels of 
violation are approached. The expanded objective 
function is: 
 

�(�) = �(�) + � ���

���

���

��                                           (5) 

 

     Where �� = max�0, ��(�)�
�

 and k=1,2,…,� where � 

is the number of levels of violation. Here, all equality 
constraints have been transformed to inequality ones. 
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     In (Morales and Quezada, 1998) another static 
penalty function with following expanded objective 
function has been introduced: 
 

�(�) = �

�(�)    if � is feasible

� − � �
�

�
�

���

���

otherwise�            ( 6) 

 
      Where �  represents the number of constraints 
satisfied, �  is the number of constraints (note that 
equality constrains are transformed to inequality ones) 
and � is a large constant. Indeed, in this mechanism all 
infeasible individuals are penalised according to the 
number of constraints they have satisfied regardless of 
their distance to feasible region. 
      In (Hoffmeister and Sprave, 1996) the following 
expanded objective function has been utilised wherein 
like most other penalty functions, infeasible individuals 
are penalised according to their distance to feasible 
region. 
 

�(�) = �(�) + �� � �−��(�)�

�

���

��(�)�             (7) 

 

Where   �(�) = �
1         if  � > 0
0      otherwise

� 

 
3.1.1.1 Overall View on Static Penalty Functions 
     Overally speaking about the static penalty functions, 
although they can successfully solve some constrained 
problems, but their main disadvantage is that they 
commonly contain some parameters to be tuned by user 
and their performance is too sensitive to these 
parameters. 
 
3.1.2 Dynamic Penalty Functions 
     Dynamic penalty functions are the functions which 
vary according to the iteration number. In (Jones and 
Houck, 1994) following dynamic expanded objective 
function is proposed in which the penalty increases with 
increasing iteration number. 
 
�(�) = �(�) + (�. �)�. ���(�, �)                           (8) 
 
Where: 
 

���(�, �) = � ��(�)

���

���

+ � ���(�)�
�

�

���

                (9) 

 

��(�) = �
0    if � ≤ ��(�) ≤ �
|��(�)|     otherwise

�     � =

1,2, … , �            (10)   

 
��(�) = max�0, ��(�)�    � = 1,2, … , �                 (11) 

 
3.1.2.1 Overall View on Dynamic Penalty Functions 
    Although some researchers claim that dynamic 
penalty functions outperform static ones, but the 
process of setting their parameters is as difficult as that 
of static penalty functions. 
 
3.1.3 Adaptive Penalty Functions 
      These penalty functions penalise infeasible 
individuals according to the feedback taken from search 
process. For example in (Alouane and Bean, 1997). 
 

�(�) = �(�) + �(�) ��|��(�)|

���

���

+ � ���(�)�
�

�

���

�    (12) 

 
Where  �(�) is updated via: 
 

�(� + 1) =

⎩
⎨

⎧
�(�)

��
          If case I occur�

��. �(�)    If case II occurs

�(�)                 Otherwise

�                (13) 

 
     Where cases I and II represent situations in which 
the best individual in last K iterations was always 
feasible (in case I) or was never feasible (in case II). �� 
>  �� > 1. Indeed, (13) implies that if the algorithm is 
searching mainly in feasible regions, the penalty is 
decreased to increase exploring infeasible regions and 
conversely, if the search is being conducted 
insufficiently in feasible regions, the penalty is reduced 
to attract individuals more toward feasible regions. The 
main drawback of this adaptive method is the difficulty 
of setting K, �� and �� . 
 
3.1.4 Annealing-Based Penalty Functions  
     In (Scalak, et. al) a multiplicative penalty function 
inspired from simulated annealing is introduced as: 
 
�(�) = �. �(�)                                                           (14) 
 
In this equation � is given by: 
 

  � = ���
��                                                                      (15)  

 
    Where � represents the amount of constraint 
violation and  � is temperature that decreases during the 
run according to: 
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� =
1

√�
                                                                         (16)  

 
    That is, with increasing iteration number, the 
temperature decreases that leads to increase in penalty, 
so the search is propelled toward feasible regions of 
search space. 
 
3.1.5 Co-Evolutionary-Based Penalty Functions  
     In co-evolutionary method, the population is 
partitioned into two subpopulation with sizes ��  and 
��, where the function of first population is to evolve 
solutions and second population evolves penalty factors 
�� and ��. Here also the main concern is the setting of  
��  and �� . The expanded objective function is as 
follows (Coello, 2000). 
 

�(�) = �(�) + ��. � ���

���

���

�� + ��. �               (17) 

 
Where N represents the number of constraint violations 
and 
 

�� = max�0, ��(�)�
�

 

 
     That is, both the information about amount of 
constraint violation and number of violations are 
considered in computation of penalty function.  
 
3.1.6 Death Penalty  
      This method can be considered as the static penalty 
function approach whose penalty factors are all infinity, 
so all the infeasible solutions are rejected and just 
feasible regions are explored. The search is started with 
feasible solutions and also continues with feasible 
solutions. 
      The main advantage of this method is the lack of the 
necessity to set penalty factors and its main drawbacks 
are the followings: 

 Generating initial feasible solutions may be 
difficult or so time-consuming. 

 Since infeasible regions of search space are 
not explored, the valuable information present 
in those regions cannot be exploited, even in 
cases where the algorithm cannot reach global 
optimum, especially in problems which search 
space contains many scattered disjoined 
regions. 

 
3.2 Repair Approaches  
     In this approach, at each iteration the feasible 
individuals are converted to feasible ones in a repair 
process (Michalewics and Nazhiyath, 1995), (Xiao, 
Michalewics and Trojanowski, 1997). The repaired 

individual can either be used just for evaluation or may 
replace the original individual. This approach is suitable 
for problems wherein repairing infeasible individuals 
can be conducted easily. Furthermore, each repair 
process merely behaves well in certain environments.  
 
3.3 Separatist Approaches 
     These approaches do not combine objective function 
and constraints, but handle them separately. 
 
3.3.1 MO-Based Separatist Approaches 
     In this approach, the minimization of the single-
objective constrained problem in (1) is translated to the 
minimization of the following unconstrained multi-
objective function (Surry, Radcliffe and Boyd, 1995). 
 

�(�) = ��(�), ��(�), ��(�), … , ����(�)�         (18)  

   Where ��(�) represents the violation amount related 
to �th constraint. 
     Then, this MO problem can be solved by various 
MO techniques present in literature. 
 
3.3.2 Co-Evolutionary-Based Separatist Approaches  
     In this approach, the population is partitioned into 
two sub-populations. The first sub-population contains 
constraints while the second one contains potential 
solutions of problem. Using an analogy with predator-
prey model, the selection pressure on members of one 
sub-population relies on the members of the other sub-
population (Paredis, 1994). The outcomes of this 
approach are promising and efficient mainly because 
there is no need to check all constraints at each 
iteration. 
 
3.3.3 Separatists Based on Deb’s Comparison Rules  
      This is the most commonly-used constraint-
handling mechanism in EA’s. In this approach, the 
following rules are applied for pairwise comparison of 
individuals (Deb, 2000): 
 

1. A feasible individual always wins an infeasible 
one. 

2. Between two feasible individuals, the one with 
better fitness value wins. 

3. Between two infeasible individuals, the one 
with less amount of constraint violation wins. 
They are evaluated via: 

 

�(�) = ������ + � Max �0,  ��(�)�

���

���

                    (19) 

 
     Where all constraints have been transformed to 
inequality constraints and  ������ represents the fitness 
of the worst feasible individual. In computing sum of 
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the constraints, each constraint is normalised with 
respect to the worst amount of its violation. 
       Indeed, Deb’s approach represents a lexicographic 
ordering wherein first, the sum of constraint violation in 
two individuals is compared. If the violation of one of 
them is lower than the other one, it wins. Otherwise, if 
their violations are equal, their objective function is 
compared to determine the winner individual. 
    Due to the following reasons, Deb’s approach is 
considered as the best and most-commonly used 
approach for constraint handling. 
 

 It is so simple. 
 It is parameter-free, unlike most other 

constraint handling approaches wherein the 
main concern is to set their parameters. 

 Unlike approaches like death penalty 
approach, Deb’s approach explores infeasible 
regions of search space. Therefore valuable 
information extracted in infeasible regions can 
be extracted. 

      However, in this approach, there is an overpressure 
for selecting feasible individuals, so the exploration of 
infeasible regions may not be implemented sufficiently. 
As a result, premature convergence issue is more acute 
here. So, in this approach, the incorporation of efficient 
diversity-enhancement strategies is of higher 
importance with respect to other constraint-handling 
mechanisms.  

 
3.3.4 Stochastic Ranking  
       In this approach which does not require any penalty 
factor, the balance between objective and penalty 
function is attained through a stochastic ranking 
procedure based on the bubble-sort algorithm. For any 
pair of two adjacent individuals, if both individuals are 
feasible, the probability of comparing them according 
to the objective function is unity, otherwise the 
probability is set to ��  . �  individuals are ranked by 

comparing adjacent individuals in at least �  sweeps. 
The procedure is halted when no change in the rank 
happens within a complete sweep. The experiments 
reveal that 0.4 < �� < 0.5 works well is most problems 

(Runarsson and Yao, 2000). The massive advantage of 
this approach is the lack of necessity to set penalty 
factors. 
 
3.4 Hybrid Approaches   
     In some cases, two different EA’s or an EA with 
another optimization technique are hybridised to solve 
COP’s more efficiently (Le, 1995), (Adeli and Cheng, 
1994). For example in (Le, 1995) EA is hybridised with 
fuzzy logic to handle constraints. This technique puts 
the constraints in the form of  ��(�) ≤ ��  and then 
fuzzifies them via: 
 

���(�) = ��(��, ��). ��(�)      �
= 1,2, … �                      (20) 

 
 
   Where �� represents the allowable tolerance of 
violation in constraint � and: 
 
��(�, �)(�)

=

⎩
⎪
⎨

⎪
⎧

1                                                                          ��� � ≤ �

��� �−� �
� − �

�
�

�

� − ���(−�)

1 − ���(−�)
      � < � ≤ � + �      (21)

0                                                                                ��� � ≤ �

� 

    The new objective function is defined by: 
 

�(�)

= �(�). min ����(�), ���(�), … , ���(�)�       (22) 

 
 
      Like most other constraint handling mechanisms, 
the main drawback in this method is the necessity to set 
parameters �� and ��. 
 
4. Conclusions and Future Research Directions  
         In this paper, different strategies in heuristics for 
handling constrained problems are analysed deeply. 
Based on conducted analysis, the followings are 
proposed as some directions for future research on this 
area. Moreover, despite all the research effort has been 
put on and all the existent achievements, there is still 
room for improvement especially in the following 
terms. 
 Devising diversity-enhancement mechanisms 

specific to constrained environments. 
 Devising constraint-handling mechanisms for 

dynamic and/or multi-objective problems. 
 Devising mechanisms for handling dynamic 

constraints ( that is when the constraints vary over 
time) 

 Dividing the population into some subpopulations 
and using a different constraint handling mechanism 
for each subpopulation has been scarcely used while 
it may be so promising. 

 Using different constraint handling mechanisms in 
different stages of optimisation process (it has not 
been implemented yet). 
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