
Journal of American Science 2012;8(10) http://www.jofamericanscience.org

345

Analysis of the Strategies in Heuristic Techniques for Solving Constrained Optimisation Problems

Ahmad Rezaee Jordehi 1 , Nouradin Hashemi 1 , Hamid Nilsaz Dezfouli2

1Department of Electrical Engineering, University Putra Malaysia
2Department of mathematics, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran

Abstract: Many real-world optimisation problems are constrained. Solving such problems is somehow challenging
for optimisation techniques. Among various optimisation techniques, heuristics have demonstrated more efficiency
in tackling constrained problems. In this paper, different strategies in heuristics for handling constrained
optimisation problems are analyzed in details and the advantages and disadvantages of each strategy is discussed.
The paper can provide a broad view to researchers in related area and help them to recognize the best constraint
handling strategy for their certain problem.
[Jordehi AR, Hashemi N, Nilsaz Dezfouli H. Analysis of the Strategies in Heuristic Techniques for Solving
Constrained Optimisation Problems. J Am Sci 2012;8(10):345-350]. (ISSN: 1545-1003).
http://www.jofamericanscience.org. 51

Keywords: optimisation; heuristics; constraint handling; classic optimisation techniques.

1. Introduction
 There are so many optimisation problems in various
areas of science and engineering. For solving them,
there exist twofold approaches; classical approaches
and heuristic approaches. Classical approaches are not
efficient enough in solving optimisation problems.
Since they suffer from curse of dimensionality and also
require preconditions such as continuity and
differentiability of objective function that usually are
not met.
 Heuristic approaches which are usually bio-inspired
include a lot of approaches such as genetic algorithms,
evolution strategies, differential evolution, ant colony
algorithm and so on. Heuristics do not expose most of
the drawbacks of classical and technical approaches.
Therefore, they are very commonplace in solving
optimisation problems.
 However, many real-world optimisation problems
are constrained while typical heuristic variants are
supposed to handle unconstrained problems. Therefore,
for enhancing them to be able to handle constrained
problems, appropriate modifications should be applied
to them. In this paper existing strategies in heuristics for
tackling constraints are analysed deeply. Moreover, in
order to provide a better understanding for reader, the
capability of classic optimisation techniques in
constraint handling is discussed concisely. The paper is
organised as follows; in section 2, general framework
of a constrained optimisation problem is presented and
also classic optimisation techniques are investigated
from constraint-handling capability point of view. In
section 3, strategies in heuristic techniques for dealing
with constrained problems are analysed. Finally,
drawing conclusions and proposing some directions for
future research is implemented in section 4.

2. Generalities of Constrained Optimisation
 Most of real-world optimization problems are
constrained. General form of a constrained
optimization problem (COP) is:
Minimize �(�)
Subject to (1)

ℎ�(�) = 0, � = 1,2, … , �

��(�) ≤ 0, � = 1,2, … , �

 Where � is the number of equality constraints and
� is the number of inequality constraints. Each point �
which satisfies all equality and inequality constraints is
called a feasible point.
 However, most of existing optimization techniques
are merely devised for unconstrained problems. Thus,
efficient constraint handling mechanisms should be
incorporated to make them capable of dealing with
constrained optimization problems. In this section,
firstly, most common constraint handling strategies in
classic optimization are explained, then constraint
handling strategies existent in EA literature will be
analysed and eventually, constraint handling strategies
adopted in PSO will be explored in depth.

2.1 Constraint Handling Mechanisms in Classic
Optimization Methods
2.1.1 Lagrangian Algorithm
 In this method, constrained problem in (1), is
converted to an unconstrained problem via creating
lagrangian function as follows (Chong and Zak, 2008).
�(�, �) = �(�) + ���(�) + ���(�) (2)

 Where � = [��, ��, … , ��] and � = [��, ��, … , ��]

are its multipliers. �(�) = [ℎ�(�), ℎ�(�), … , ℎ�(�)] ,

Journal of American Science 2012;8(10) http://www.jofamericanscience.org

346

and �(�) = [��(�), ��(�), … , ��(�)] . By applying
first order necessity conditions and second order
sufficiency condition, the value of �∗ (minimizer), �
and � are calculated holding following two constraints.

�
� ≥ �

���(�∗) = 0
� (3)

2.1.2 Projection Technique
 In this method, each infeasible point is transferred to
its closest feasible point in search space. For example in
feasible direction methods that use �(� + 1) = �(�) +
���� to find optimal solution (�� is step size and �� is
feasible direction), projection method uses �(� + 1) =
∏[�(�) + ����] instead, where ∏(�) is the closest
point in feasible region to � . Most common form of
projection method is the gradient projection method, in

which �(� + 1) = ∏��(�) − ��∇���(�)�� (Chong and

Zak, 2008).
2.1.3 Sequential Unconstrained Technique
 This technique solves a non-linear optimization
problem by transforming it into a sequence of
optimization problems so that each sub-problem has a
quadratic objective function with linear constraints
(Chong and Zak, 2008).
2.1.4 Overall View on Constraint Handling with
Classic Methods
 Overally, classic optimization techniques are not
appropriate enough for solving constrained problems.
The main reasons are:

 They need pre-requisites such as
differentiability and continuity of objective
functions and constraints that are not met in
most of problems especially real-world
problems.

 They give out local optimum not global one.
 They are complex and inflexible.

3. Constraint-Handling Strategies in Heuristics
3.1 Penalty Functions
 This technique transforms a constrained optimization
problem into an unconstrained one by adding a certain
value to the objective function based on the amount of
constraint violation or the number of constraint
violations in a certain individual. Mainly due to its
simplicity and ease of implementation, it is the most
commonly used technique for dealing with COP’s.
There are two types of penalty functions; exterior and
interior. In exterior paradigm, the optimization is
started with an infeasible individual; afterwards
individuals are attracted to feasible regions of search
space due to the effect caused by penalties. On the other
hand, in interior models, a penalty function is defined
whose values at points away from constraint boundaries
are small and tend to infinity when the constraint

boundaries are approached. So, if the search starts with
a feasible individual, the subsequent generated
individuals all lie within feasible region since the
constraint boundaries act as barriers during
optimization process (Rao, 1996). Since finding an
initial feasible individual is itself a NP-hard problem,
the exterior penalty approach is commonly used (Back,
Fogel and Michalewics, 1997).
 The general form of a penalised (or expanded)
objective function is:

�(�) = �(�) + �� ��

���

���

�� + � ��

���

���

��� (4)

 Where �(�) is called expanded objective function,

�� = max�0, ��(�)�
�

 and �� = |ℎ�(�)|� . ��’s and ��

are called penalty factors. � and � are commonly set as
1 or 2. The right hand term, which is in bracket, called
penalty function.
 The value of penalty factors is crucial and strongly
affects the performance of penalty function approach. If
they are chosen too small, too much search effort is put
on infeasible regions of search space while feasible
regions are not explored efficiently and even the
algorithm is likely to not converge to a feasible
solution. On the other hand, if they are too large,
infeasible regions may not be explored enough and the
valuable information existent in infeasible regions may
not be extracted.
 It should be noted that, normally equality constraints
are transformed into inequality ones. That is ℎ�(�) = 0
is transformed to |ℎ�(�)| ≤ � where � is a tolerance
allowed.

3.1.1 Static Penalty Functions
 In this category, penalty functions do not change
during the evolutionary process. In (Homaifar, Lai, and
Qi, 1994) a static penalty function is introduced
wherein several levels of violation are defined by user
and a penalty factor is chosen for each level so that the
penalty factor is increased when higher levels of
violation are approached. The expanded objective
function is:

�(�) = �(�) + � ���

���

���

�� (5)

 Where �� = max�0, ��(�)�
�

 and k=1,2,…,� where �

is the number of levels of violation. Here, all equality
constraints have been transformed to inequality ones.

Journal of American Science 2012;8(10) http://www.jofamericanscience.org

347

 In (Morales and Quezada, 1998) another static
penalty function with following expanded objective
function has been introduced:

�(�) = �

�(�) if � is feasible

� − � �
�

�
�

���

���

otherwise� (6)

 Where � represents the number of constraints
satisfied, � is the number of constraints (note that
equality constrains are transformed to inequality ones)
and � is a large constant. Indeed, in this mechanism all
infeasible individuals are penalised according to the
number of constraints they have satisfied regardless of
their distance to feasible region.
 In (Hoffmeister and Sprave, 1996) the following
expanded objective function has been utilised wherein
like most other penalty functions, infeasible individuals
are penalised according to their distance to feasible
region.

�(�) = �(�) + �� � �−��(�)�

�

���

��(�)� (7)

Where �(�) = �
1 if � > 0
0 otherwise

�

3.1.1.1 Overall View on Static Penalty Functions
 Overally speaking about the static penalty functions,
although they can successfully solve some constrained
problems, but their main disadvantage is that they
commonly contain some parameters to be tuned by user
and their performance is too sensitive to these
parameters.

3.1.2 Dynamic Penalty Functions
 Dynamic penalty functions are the functions which
vary according to the iteration number. In (Jones and
Houck, 1994) following dynamic expanded objective
function is proposed in which the penalty increases with
increasing iteration number.

�(�) = �(�) + (�. �)�. ���(�, �) (8)

Where:

���(�, �) = � ��(�)

���

���

+ � ���(�)�
�

�

���

 (9)

��(�) = �
0 if � ≤ ��(�) ≤ �
|��(�)| otherwise

� � =

1,2, … , � (10)

��(�) = max�0, ��(�)� � = 1,2, … , � (11)

3.1.2.1 Overall View on Dynamic Penalty Functions
 Although some researchers claim that dynamic
penalty functions outperform static ones, but the
process of setting their parameters is as difficult as that
of static penalty functions.

3.1.3 Adaptive Penalty Functions
 These penalty functions penalise infeasible
individuals according to the feedback taken from search
process. For example in (Alouane and Bean, 1997).

�(�) = �(�) + �(�) ��|��(�)|

���

���

+ � ���(�)�
�

�

���

� (12)

Where �(�) is updated via:

�(� + 1) =

⎩
⎨

⎧
�(�)

��
 If case I occur�

��. �(�) If case II occurs

�(�) Otherwise

� (13)

 Where cases I and II represent situations in which
the best individual in last K iterations was always
feasible (in case I) or was never feasible (in case II). ��
> �� > 1. Indeed, (13) implies that if the algorithm is
searching mainly in feasible regions, the penalty is
decreased to increase exploring infeasible regions and
conversely, if the search is being conducted
insufficiently in feasible regions, the penalty is reduced
to attract individuals more toward feasible regions. The
main drawback of this adaptive method is the difficulty
of setting K, �� and �� .

3.1.4 Annealing-Based Penalty Functions
 In (Scalak, et. al) a multiplicative penalty function
inspired from simulated annealing is introduced as:

�(�) = �. �(�) (14)

In this equation � is given by:

 � = ���
�� (15)

 Where � represents the amount of constraint
violation and � is temperature that decreases during the
run according to:

Journal of American Science 2012;8(10) http://www.jofamericanscience.org

348

� =
1

√�
 (16)

 That is, with increasing iteration number, the
temperature decreases that leads to increase in penalty,
so the search is propelled toward feasible regions of
search space.

3.1.5 Co-Evolutionary-Based Penalty Functions
 In co-evolutionary method, the population is
partitioned into two subpopulation with sizes �� and
��, where the function of first population is to evolve
solutions and second population evolves penalty factors
�� and ��. Here also the main concern is the setting of
�� and �� . The expanded objective function is as
follows (Coello, 2000).

�(�) = �(�) + ��. � ���

���

���

�� + ��. � (17)

Where N represents the number of constraint violations
and

�� = max�0, ��(�)�
�

 That is, both the information about amount of
constraint violation and number of violations are
considered in computation of penalty function.

3.1.6 Death Penalty
 This method can be considered as the static penalty
function approach whose penalty factors are all infinity,
so all the infeasible solutions are rejected and just
feasible regions are explored. The search is started with
feasible solutions and also continues with feasible
solutions.
 The main advantage of this method is the lack of the
necessity to set penalty factors and its main drawbacks
are the followings:

 Generating initial feasible solutions may be
difficult or so time-consuming.

 Since infeasible regions of search space are
not explored, the valuable information present
in those regions cannot be exploited, even in
cases where the algorithm cannot reach global
optimum, especially in problems which search
space contains many scattered disjoined
regions.

3.2 Repair Approaches
 In this approach, at each iteration the feasible
individuals are converted to feasible ones in a repair
process (Michalewics and Nazhiyath, 1995), (Xiao,
Michalewics and Trojanowski, 1997). The repaired

individual can either be used just for evaluation or may
replace the original individual. This approach is suitable
for problems wherein repairing infeasible individuals
can be conducted easily. Furthermore, each repair
process merely behaves well in certain environments.

3.3 Separatist Approaches
 These approaches do not combine objective function
and constraints, but handle them separately.

3.3.1 MO-Based Separatist Approaches
 In this approach, the minimization of the single-
objective constrained problem in (1) is translated to the
minimization of the following unconstrained multi-
objective function (Surry, Radcliffe and Boyd, 1995).

�(�) = ��(�), ��(�), ��(�), … , ����(�)� (18)

 Where ��(�) represents the violation amount related
to �th constraint.
 Then, this MO problem can be solved by various
MO techniques present in literature.

3.3.2 Co-Evolutionary-Based Separatist Approaches
 In this approach, the population is partitioned into
two sub-populations. The first sub-population contains
constraints while the second one contains potential
solutions of problem. Using an analogy with predator-
prey model, the selection pressure on members of one
sub-population relies on the members of the other sub-
population (Paredis, 1994). The outcomes of this
approach are promising and efficient mainly because
there is no need to check all constraints at each
iteration.

3.3.3 Separatists Based on Deb’s Comparison Rules
 This is the most commonly-used constraint-
handling mechanism in EA’s. In this approach, the
following rules are applied for pairwise comparison of
individuals (Deb, 2000):

1. A feasible individual always wins an infeasible
one.

2. Between two feasible individuals, the one with
better fitness value wins.

3. Between two infeasible individuals, the one
with less amount of constraint violation wins.
They are evaluated via:

�(�) = ������ + � Max �0, ��(�)�

���

���

 (19)

 Where all constraints have been transformed to
inequality constraints and ������ represents the fitness
of the worst feasible individual. In computing sum of

Journal of American Science 2012;8(10) http://www.jofamericanscience.org

349

the constraints, each constraint is normalised with
respect to the worst amount of its violation.
 Indeed, Deb’s approach represents a lexicographic
ordering wherein first, the sum of constraint violation in
two individuals is compared. If the violation of one of
them is lower than the other one, it wins. Otherwise, if
their violations are equal, their objective function is
compared to determine the winner individual.
 Due to the following reasons, Deb’s approach is
considered as the best and most-commonly used
approach for constraint handling.

 It is so simple.
 It is parameter-free, unlike most other

constraint handling approaches wherein the
main concern is to set their parameters.

 Unlike approaches like death penalty
approach, Deb’s approach explores infeasible
regions of search space. Therefore valuable
information extracted in infeasible regions can
be extracted.

 However, in this approach, there is an overpressure
for selecting feasible individuals, so the exploration of
infeasible regions may not be implemented sufficiently.
As a result, premature convergence issue is more acute
here. So, in this approach, the incorporation of efficient
diversity-enhancement strategies is of higher
importance with respect to other constraint-handling
mechanisms.

3.3.4 Stochastic Ranking
 In this approach which does not require any penalty
factor, the balance between objective and penalty
function is attained through a stochastic ranking
procedure based on the bubble-sort algorithm. For any
pair of two adjacent individuals, if both individuals are
feasible, the probability of comparing them according
to the objective function is unity, otherwise the
probability is set to �� . � individuals are ranked by

comparing adjacent individuals in at least � sweeps.
The procedure is halted when no change in the rank
happens within a complete sweep. The experiments
reveal that 0.4 < �� < 0.5 works well is most problems

(Runarsson and Yao, 2000). The massive advantage of
this approach is the lack of necessity to set penalty
factors.

3.4 Hybrid Approaches
 In some cases, two different EA’s or an EA with
another optimization technique are hybridised to solve
COP’s more efficiently (Le, 1995), (Adeli and Cheng,
1994). For example in (Le, 1995) EA is hybridised with
fuzzy logic to handle constraints. This technique puts
the constraints in the form of ��(�) ≤ �� and then
fuzzifies them via:

���(�) = ��(��, ��). ��(�) �
= 1,2, … � (20)

 Where �� represents the allowable tolerance of
violation in constraint � and:

��(�, �)(�)

=

⎩
⎪
⎨

⎪
⎧

1 ��� � ≤ �

��� �−� �
� − �

�
�

�

� − ���(−�)

1 − ���(−�)
 � < � ≤ � + � (21)

0 ��� � ≤ �

�

 The new objective function is defined by:

�(�)

= �(�). min ����(�), ���(�), … , ���(�)� (22)

 Like most other constraint handling mechanisms,
the main drawback in this method is the necessity to set
parameters �� and ��.

4. Conclusions and Future Research Directions
 In this paper, different strategies in heuristics for
handling constrained problems are analysed deeply.
Based on conducted analysis, the followings are
proposed as some directions for future research on this
area. Moreover, despite all the research effort has been
put on and all the existent achievements, there is still
room for improvement especially in the following
terms.
 Devising diversity-enhancement mechanisms

specific to constrained environments.
 Devising constraint-handling mechanisms for

dynamic and/or multi-objective problems.
 Devising mechanisms for handling dynamic

constraints (that is when the constraints vary over
time)

 Dividing the population into some subpopulations
and using a different constraint handling mechanism
for each subpopulation has been scarcely used while
it may be so promising.

 Using different constraint handling mechanisms in
different stages of optimisation process (it has not
been implemented yet).

Corresponding Author:
Nouradin Hashemi
Department of Electrical Engineering
University Putra Malaysia
UPM Serdang, Selangor 43400, Malaysia
E-mail: nourutm@yahoo.com

Journal of American Science 2012;8(10) http://www.jofamericanscience.org

350

References
1. Chong EKP, Zak SH. An introduction to

optimization. John Wiley Sons, New Jersey, 2008.
2. Rao SS. Engineering optimization. John Wiley Sons,

New Jersey, 1996
3. Back T, Fogel DB, Michalewics Z. Handbook of

evolutionary computation. Oxford University
Press, 1997.

4. Homaifar A. Lai SHY, Qi X. Constrained
optimization via genetic algorithms. Simulation
1994;62(4):242-54.

5. Morales AK, Quezada CV. A universal electric
genetic algorithm for constrained optimization.
Proc. IEEE Int. Congr. on Intelligent Techniques
and Soft Computing, 1998: 518-22.

6. Hoffmeister F, Sprave J. Problem-dependent
handling of constraints by use of metric penalty
functions. Proc. IEEE Int. Congr. on Evolutionary
Programming, 1996: 289-94.

7. Jones J, Houck C. On the use of non-stationary
penalty functions to solve nonlinear constrained
optimization problems with GAs. Proc. IEEE Int.
Conf. on Evolutionary Computation, 1994: 579-
84.

8. Alouane ABH, Bean JC. A genetic algorithm for the
multiple choice integer program. Operations
Research 1997;45:92-101.

9. Scalak SC, Shonkwiler R, Babar S, Aral M.
Annealing a genetic algorithm over constraints.
Availbale online at:

http://vlead.mech.virginia.edu./publications/shenk
paper.html.

10. Coello CAC. Use of a self-adaptive penalty
approach for engineering optimization problems.
Computers in Industry 2000;41(2):113-27.

11. Michalewics Z, Nazhiyath J. GENOCOP III: A co-
evolutionary algorithm for numerical optimization
with nonlinear constraints. Proc. IEEE Int. Conf.
on Evolutionary Computation, 1995: 647-51.

12. Xiao J, Michalewics Z, Trojanowski K. Adaptive
evolutionary planner/navigator for mobile robots.
IEEE Trans. Evol. Computation 1997;1(1):18-28.

13. Surry PD, Radcliffe NJ, Boyd ID. A multi-objective
approach to constrained optimization of gas
supply networks: the COMOGA method. Lecture
Notes in Computer Science 1995;1(1):166-80.

14. Paredis J. Co-evolutionary constraint satisfaction.
Proc. IEEE Int. Congr. on Parallel Problem
Solving from Nature, 1994: 46-55.

15. Deb K. An efficient constraint handling method for
genetic algorithms. Computer Methods in Applied
Mechanics and Engineering 2000;186:311-38.

16. Runarsson TP, Yao X. Stochastic ranking for
constrained evolutionary optimization. IEEE
Trans. Evol. Computation 2000;4(3):284-94.

17. Le TV. A fuzzy evolutionary approach to constraint
optimization problems. Proc. IEEE Int. Conf. on
Evolutionary Computation, 1995: 274-8.

18. Adeli H, Cheng NT. Augmented lagrangian genetic
algorithm for structural optimization. Journal of
Aerospace Engineering 1994;7(1):104-18.

6/24/2012

