
Journal of American Science 2012;8(10)                                                  http://www.jofamericanscience.org 

 

355 

 

Deadbeat Response of Nonlinear Systems Described by Discrete-Time State Dependent Parameter Using 

Exact Linearization by Local Coordinate Transformation 

 

E. M. Shaban 

 

Mechanical Engineering Department, Jazan University, Saudi Arabia 

On leave from Faculty of Engineering (Mataria), Helwan University – Egypt 

e-mail: modern3@hotmail.com 

 

Abstract: This paper considers State Dependent Parameter (SDP), Proportional-Integral-Plus (PIP) control of a 

wide class of nonlinear systems. Here, the system is modelled using the quasi-linear SDP model structure, in 

which the parameters are functionally dependent on other variables in the system. This formulation is then be 

used to design a PIP control law using linear system design strategies, such as pole assignment or suboptimal 

linear quadratic design. However, since not all feasible SDP model structures can be solved using the basic 

approach, the present paper develops an exact linearization by local coordinate transformation that returns the 

closed-loop system to a controllable state. Necessary and sufficient conditions are given such that nonlinear SDP 

systems are feedback equivalent to a controllable linear system. Finally, sufficient simulation examples are 

illustrated to verify the applicability of the approach. Similar or faster deadbeat response is achieved for nonlinear 

SDP models having one or more than one input terms respectively. Also, the equivalent linearized model leads to 

constant state feedback gains that control such nonlinear discrete-time SDP models. 

[E. M. Shaban. Deadbeat Response of Nonlinear Systems Described by Discrete-Time State Dependent 

Parameter Using Exact Linearization by Local Coordinate Transformation. J Am Sci 2012;8(10):355-366]. 

(ISSN: 1545-1003). http://www.jofamericanscience.org. 53 

 

Keywords: discrete-time nonlinear system, linearization by local coordinate transformation, state dependent 

parameter (SDP) model, proportional-integral-plus (PIP) control, deadbeat response. 

 

1.  Introduction 

Previous papers have introduced the linear 

Proportional-Integral-Plus (PIP) controller [1-2], in 

which Non-Minimal State Space (NMSS) models are 

formulated so that full state variable feedback control 

can be implemented directly from the measured input 

and output signals of the controlled process, without 

resort to the design and implementation of a 

deterministic state reconstructor or a stochastic 

Kalman filter. Such PIP control systems have been 

successfully employed in a wide range of practical 

applications [3-4]. 

Typically, however, any inherent nonlinearity in 

the system has been accounted for in a rather ad hoc 

manner at the design stage, sometimes leading to 

reduced control performance when applied to 

particularly difficult, highly nonlinear systems. 

One novel research area currently being 

investigated in order to improve PIP control in such 

cases, is based on the identification methodology of 

the State Dependent Parameter (SDP) system. Here, 

the nonlinear system is modelled using a quasi-linear 

model structure, in which the parameters are 

functionally dependent on other variables in the 

system [5]. In this manner, SDP models can provide a 

description of a widely applicable class of nonlinear 

system that even includes chaotic processes and 

systems that have previously been modelled using a 

bilinear approach. 

The linear-like, ‘affine’ structure of the SDP 

model means that, at each sampling instant, it can be 

considered as a ‘frozen’ linear system. This 

formulation is then used to design an SDP-PIP control 

law using linear system design strategies such as pole 

assignment or suboptimal Linear Quadratic (LQ) 

design, [6-7]. This yields SDP-PIP control systems in 

which the state feedback gains are themselves state 

dependent. However, not all feasible SDP model 

structures are controllable using this basic approach 

[8-9]. For this reason, the present paper develops an 

exact linearization by local coordinate transformation 

approach that allows the general discrete-time SDP 

model form to be controlled. The approach is 

motivated by conventional exact linearization via 

feedback methods applied to continuous-time systems, 

[10-13], when these are applied to the special case of 

discrete-time SDP models. 

2.  Nonlinear SDP-PIP control 

     The representation of nonlinear dynamical 

systems using State Dependent Parameter (SDP) 

models can be traced to earlier publications such as 

[14]. However, the practical development of this 

model is of more recent origin: see [5] and the 

references therein. In this paper, an SDP model, 

written in discrete-time incremental form, is 

considered as: 
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where ku  and ky  are the input and output variables 

respectively. The parameters )( kia   ni 1  and 

)( kjb   mj 1  are themselves functions of the 

lagged system variables. In Transfer Function (TF) 

form, the model (1) becomes, 
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where 1z  is the backward shift operator, for which 

)()(z ikykyi 
. Equation (2) alludes to the time 

variable parameter derivation of the SDP model: see 

e.g. reference [5] for details. Here, )( kia   ni 1  

and )( kjb   mj 1  are functions of the state 

variables. The backward shift operator notation 

utilised in (2) suggests that, for example, if 

)()( 11,1  kkk yfaa   then )( 111,1   kk aa   is a 

function of the un-lagged output ky . 

It is easy to show that model (1) can be represented by 

the following Non-Minimal State Space (NMSS) form, 
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The mn   dimensional non-minimal state vector kx  

consists of the present and past sampled values of the 

output and input variables as follows, 

 Tkmkknkkkk zuuyyy )1(1)1(1  x     (4) 

Here, )(1 kkkk yrzz    is the integral-of-error 

state, introduced to ensure inherent type 1 

servomechanism performance, where kr  is the 

reference level. Finally, )( 1kF , )( 1kg , d and h 

are defined as follows, 
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      The control law associated with the NMSS 

model (3) takes the usual State Variable Feedback 

(SVF) form, 

kkku xv    (6) 

where the state variable feedback gain vector is, 

][ ,,1,1,1,1, kIkmkknkkok kggfff   v

 

In more conventional block diagram terms, equation 

(6) can be implemented as shown in Figure 1, where 

)( 1zM k  and )( 1zLk  are defined as follows, 
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Figure 1.  Conventional SDP-PIP control block 

diagram. 

 

2.1  Nonlinear pole assignment design 

In order to develop the pole assignment solution, 

consider the closed-loop TF, obtained by reducing the 

block diagram shown in Figure 1 as follows, 
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for which )z(1)z( 11   kk MM , and 1z1   is 

the difference operator. Polynomial algebra 

manipulation of the characteristic equation, 
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can be utilized to find the SVF gains at pre-

determined pole positions ip , mni  ,,1 . 

Nevertheless, it is difficult to obtain closed-form of 

the gains using direct algebra because the polynomials 

)z( 1
kA  and )z( 1

kB  are most probably function of 

the un-lagged input ku  as shown in equation (2). 

However, straightforward iterative procedure can be 

performed to overcome this difficulty. 

Note that, in contrast to linear PIP control [1-2], the 

nonlinear SDP-PIP case considered here, the gain 

vector kv  is itself state dependent. In other words, the 

control gains are variable and updated at each 

sampling instant. 

2.2  Controllability 

 A prerequisite of global controllability is that the 

NMSS system (3) is piecewise controllable at each 

sample k. This requirement follows from the fact that 

if a system is globally controllable, it clearly has to be 

locally controllable. The NMSS linear controllability 

conditions are developed by Chotai et al. [15]. In the 

nonlinear case, these are written as follows [9, 16]: 

 Given a Single-Input Single-Output (SISO) 

discrete-time system described by the SDP-TF model 

(2), the NMSS representation, equation (3), as defined 

by the pair )](),([ 11  kk  gF , is locally controllable 

if and only if, the following two conditions are 

satisfied at each sample: 

1. The polynomials )z( 1
kA  and )z( 1

kB  are co-

prime. 

2. 0zz ,
1

1,1  





m
mkmk bb   

 Nevertheless, it is obvious that, due to the time 

variation of the parameters in the SDP case, even the 

conditions 1 and 2 above are not necessarily 

guaranteed at each sample. In this case, difficulties 

may arise during the design or implementation of the 

SDP-PIP algorithm, as illustrated in the example 

below. 

Example (1) 

 Consider the following nonlinear system [9], 
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where ky  is the output variable and ku  is the input 

variable. It can be seen that at 25.1ku , the input 

has no effect on the system output ky  and so the 

system is uncontrollable due to the invalidation of the 

second controllability condition. Moreover, at 

125.0ku  and 0.1ku , the system shows again 

uncontrollability due to the pole-zero cancellations. 

Here, the non-minimal state space vector is given by 

 Tkkkkk zuyy 11 x , while the NMSS model 

of the system based on equation (3) is defined by, 
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 The polynomials in equations (2) and (7) are as 

follows, 
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Since the TF model parameter 2,2 kb  is a function of 

the present input signal kk ub 4.02,2  , it is not a 

straightforward task to solve the pole assignment 

problem. However, either algebraic manipulation or 

an on-line iterative technique can be used to overcome 

this difficulty. In this manner, Figures 2 and 3 show 

the closed-loop response for two pole assignment 

designs. 
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(a) Upper plot: The set point (dotted line) and the closed-

loop response (solid line). Lower plot: The control input 

(solid line) and the level of critical input 0.125 (dashed 

line). 
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(b) The time varying gains used at poles (0.5). 

Figure 2.  The closed-loop response of system (10) at set 

point of 0.3, using poles 0.5 on the complex z-plane. 

Figure 2 (a) shows an oscillatory closed-loop response 

for poles placed at 0.5 on the complex z-plane. This 

happens because the control input approaches one of 

the critical values, i.e. 0.125, which causes the 

nonlinear SDP model (10) to start lose its 

controllability. However, unexpectedly, faster poles 

placed at 0.3 on the complex z-plane, shows smoother 

and good tracking response because the control input 

is now relatively away from this critical value, as 

illustrated in Figure 3 (a). 

 Figures 2 (b) and 3 (b) shows the time varying 

gains used in both cases. 

 In this example, the minimum absolute value 

between the control input ku  and its critical level of 

0.125 mentioned above is 41056.2   in Figure 2 (b). 

This takes a sufficiently larger value of 3104.1   in 

Figure 3 (b) and hence the closed-loop response 

avoids the controllability problems observed in the 

former case. Finally, it is convenient to note that the 

deadbeat response cannot be achieved at the selected 

set point, 3.0kr . 
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(a) Upper plot: The set point (dotted line) and the closed-

loop response (solid line). Lower plot: The control input 

(solid line) 

and the level of critical input 0.125 (dashed line). 
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(b) The time varying gains used at poles (0.3). 

Figure 3.  The closed-loop response of the system (8) at 

set point of 0.3, using poles 0.3 on the complex z-plane. 

3.  Relative degree of discrete-time systems 

The concept of relative degree   for continuous-

time systems had been proposed in several researches, 

e.g. [12]. Subsequently, it is suggested for discrete-

time SDP models [9, 16], using the analogy between 

continuous-time and discrete-time systems, which 

assumes that the notation x  is equivalent to 

kk xxx  1 . 

Relative degree   is exactly equal to the number of 

times one has to differentiate the output y at time t in 

order to have the value u of the input explicitly 

appearing [12], i.e. for ubiquitous continuous-time 

SISO nonlinear system, 
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Note that if 0)( xhLL k
fg  for all x, then the relative 

degree cannot be defined, implying that the system 

output is not affected by the input, i.e. the output 

depends only on the initial states. 

For the purposes of determining the relative degree   

for discrete-time SDP models, it is essential to express 

the SDP-NMSS description (3) without including the 

integral-of-error state. Such a regulator form has the 

following state vector kx~ , 

 Tmkknkkkk uuyyy )1(1)1(1 ....~
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The regulator difference form for the description (3) 
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for which )(~
1kg , and h

~
 are defined as (5) without 

the last element, and )(
~

1kF  are defined as (5) 

without the last row, the last column. As shown in 

(15), the regulator state space vector kx~  is composed 

of n  present and lagged output state variables, and 

1m  lagged input state variables. 

Lemma 1 

For discrete-time SDP nonlinear systems, 
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However, the function )~( kxg  always takes the form 
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It is now possible to provide the conditions for 

relative degree   for nonlinear discrete-time SDP 

model (2). 

 

Theorem 1 

 Nonlinear discrete-time SDP system (2) described 

in NMSS regulator form (16) has relative degree  , 

if and only if the following conditions are satisfied 

0

2...,,00

1 




kg

k
i

g

yL

iyL




               (18) 

For linear discrete-time TF models, it is 

straightforward to show that the relative degree   is 

the number of samples required for the input to affect 

the system following a change in the equilibrium 

conditions, i.e. the sampled time delay  . Applying 

the above definition of the time delay to SDP models, 

it is important to stress that ku  may start to influence 

the behaviour of the system through one or more of 

the parameters. For this reason,   is not necessarily 

equal to  . The following example illustrates this 

phenomenon. 

 

Example (2) 

Consider the following nonlinear discrete-time system, 

[15] 
2

2
2

11   kkkk uyuy                                (19) 

One possible formulation for the incremental SDP 

form (19) is given as 

    22111   kkkkkk uuyyuy              (20) 

for which its regulator SDP-NMSS description in 

difference form (16) is given by, 
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The relative degree   of this dynamical system can 

be obtained through the following differentiation 

process, 

 Given the output ky , 

  22

1

0
1

)~(~

kk

k
k

k
kg

yy

y
yL

 












 xg

x
 

This shows that the relative degree of this system 

1  since 00  kg yL  if and only if 0ky . Here, 

it is obvious that the construction of the incremental 

SDP form (20) gives an apparent sample delay 2 , 

i.e.   . Nevertheless, it is always possible to 

formulate the difference form of the regulator SDP-

NMSS description (16) such that   , as illustrated 

below. 

For example (2), another possible formulation for the 

incremental SDP form (19) is given as 

    221
2

1   kkkkk uuuyy                     (21) 

for which its difference regulator SDP-NMSS form is 
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The relative degree   of this form can be obtained 

through the following differentiation process, 

 Given the output ky  

  2
2

2 2
1

1

)~(~

k
k

k

k
k

k
kg

y
y

y

g
y
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

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
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As expected, the relative degree of this description 

1  since 00  kg yL  if and only if 0ky . 

Therefore, the description (21) gives   . 

 The above example shows that the value of the 

relative degree   represents the number of samples 

required for the input to affect the response of the 

dynamic system regardless the construction of the 

regulator SDP-NMSS form for the dynamic system 

(19). Nevertheless, the right construction of the 

incremental SDP form (21) leads certainly to a 

relative degree   equals to the sample delay  , 

  . This is one important condition for exact 

linearization. 

4.  Exact linearization 

Exact linearization of nonlinear continuous-time 

systems has been studied by many authors; e.g. [17-

21]. The close analogy between exact linearization by 

feedback of continuous and discrete time systems has 

persuaded other authors to apply the technique to 

discrete systems, e.g. [22-26]. With regard to discrete-

time SDP models, an exact linearization has been 

fully developed and implemented successfully [9, 16], 

the proposed approach provides the necessary and 

sufficient conditions for local input-output 

linearizability. However the deadbeat response using 

pole placement approach cannot be achieved for 

systems having 2 . For this reason, the present 

paper develops a local coordinate transformation 

approach for linearizing discrete-time SDP models; 

the proposed approach guarantees the deadbeat 

closed-loop response for the nonlinear systems using 

time-invariant gains instead. Necessary and sufficient 

conditions are provided for local input-output 

linearizability. The approach is applied on sufficient 

simulation examples. Limitations are also considered 

with proposed solutions. 

The particular nature of the NMSS model (3) 

prevents the linearization process of the system 

without changing the construction of the output 

function. This would violate the requirements of the 

NMSS model and its associated servomechanism. 

Therefore, the regulator NMSS form (16) is utilised 

here for the linearization step. 

4.1  Local coordinate transformation 

The conditions of relative degree for discrete-time 

SDP systems defined in Theorem 1, suggest that the 

functions ky , ..., and ky1
 have special 

importance. In fact, they can be used to define a local 

coordinate transformation around 
o~
kx , for which 

o~
kx  

is a point such that 01  
kg yL 

. This is because of 

the fact that )( kyd  , …, )( 1
kyd   are linearly 

independent at 
o~~
kxx  , for which 

x

y
yd k

i

k
i




 )(    1,,1,0  i   (22) 

Consider the following revised SDP model, in which 

the relative degree 1  is explicitly acknowledged, 
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
          (23) 

The SDP-TF form of the model (23) is 

k

k

k
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m
mkmρk

k

u
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u
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y

)z(

)z(

z)(z)(1

z)(z)(

1

1

1
11












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


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



 






 (24) 

 Recalling that n  is the number of output 

parameters )( 11 ka  , ..., )( nkna  , and 

1 mp  is the number of input parameters 

)(   kb , ..., )( mkmb  . The SDP-TF form (24) can 

be described in regulator NMSS difference form (16), 
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for which the regulator state space vector kx~  has 

length 1mn . 

Lemma 2 

For nonlinear discrete-time SDP model with n  

output parameters, and p  input parameters, the 

transformations 

1...,,1

,,1

2

)1(
1

)1(
1

)1()1(
















 jyyU
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n
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k
j

k
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  (25) 

ensure 1 n  independent elements of new full set 

of linearised regulator state space vector kX
~

, for 

which 

 Tkknkkk UUYY )1(1)1(

~
 X    

 (26) 

Proof: The first transformation in (25) maps the n  

output states in the linearised regulator state space 

vector kX
~

 as follows 

niyY ikik ...,,1)1()1(            (27) 

In case of 2 , the second transformation in (25) 

maps the rest 1  input states in the linearised 

regulator state space vector kX
~

. Here, the last or 

)1(  th
 input state, )1(  kU , is obtained by setting 

1j  as 


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The preceding )2(  th
 linearised input state, 

)2(  kU , is obtained by setting 2j  as 
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    k
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The preceding )3(  th
 linearised input state, 

)3(  kU , is obtained by setting 3j , as 
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therefore 
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n
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Consequently, the 1
st
 linearised input state, 1kU , is 

obtained by setting 1 j , as 
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therefore 
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i

ikkk UyyU  (31) 

Giving that 2 , equations (28), (29), (30), and (31) 

can be used to get the general form for the 1m  input 

states as 

1...,,1
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2
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 



















q

UyyU

qj

jk
qj
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i

ikk
q

qk  (32) 

Equation (27) states that at 1i , 

kk yY                   (33) 

Also equation (28) states that at 1j , 

)1(1)1(   nkkkk YYUy         (34) 

Substituting (34) into (33) gives 

)1(1)1(1   nkkkkk YYUYY   

Rearranging the above equation and shifting the index 

backward a unit step leads to an incremental linearised 

form for the system (24), as follows 

  knkkkk UYYYY 21        (35) 

The corresponding TF of the linearised model (35) 

using backward shift operator, 1z , is 

knk UY







zzz1

z
21 



          (36) 

Therefore the two transformations in (25) give 

necessary and sufficient conditions for the 

linearization process for any nonlinear model (24) 

with relative degree   equals the system time delay 

 , i.e.   . The linearised model always has one 

input parameter. Therefore, the order of the numerator 

polynomial of TF (36) is m . The resulting linear 

model (36) has unity output and input parameters. 

The linearised unity TF model (36) can be 

represented using the Non-Minimal State Space 

(NMSS) form as 

http://www.jofamericanscience.org/


Journal of American Science 2012;8(10)                                                  http://www.jofamericanscience.org 

 

361 

 

kk

kkkk

Y

rU

Xh

dgXFX



  11
           (37) 

for which n  dimensional non-minimal state 

vector kX  takes the form 

 Tkkknkkkk ZUUYYY )1(1)1(1  X  (38) 

Here, )(1 kkkk YrZZ    is the integral-of-error 

state variable, and kr  is the reference level. Note that 

kk yY  , according to equation (27). Finally, for 

1 , the matrices F , g , d and h in NMSS form (37) 

are defined as follows 
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F

h

d

g

T

T

      (39) 

The linear control law associated with the NMSS 

model (37) takes the usual state variable feedback 

form, 

kkU Xv                    (40) 

where the time-invariant state variable feedback gain 

vector is, 

][ 1111 Imno kggfff   v  

 

Theorem 2 

The second transformation in (25) at j  leads to 

the mapping equation between the system input ku  

and the linearised system input kU . 

This true since the relative degree   is the number 

of differentiations required to the output y  in order to 

have the value of input u  explicitly appearing [12]. 

Consider the next difference of the second 

transformation (25), i.e. j , as 


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     (41) 

The general law for the mapping equation (41) can 

be obtained by considering the SDP model (24) as 


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Shifting the SDP model (42) one step ahead gives 




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Basically, the first difference for the system output 

ky  is kkk yyy  1 . Also, the second difference 

is kkk yyy  1
2

. Subsequently, the  th
 

difference is kkk yyy 1
1

1 


  
. 

Example (3) 

Consider the following nonlinear discrete-time system, 

3231335

24431211
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(44) 

 The regulator SDP-NMSS description in 

difference form for system (44) takes the form of (16) 

for which the regulator state space vector takes the 

form 

 Tkkkkkk uuyyy 2121
~

x  

and the matrices IF  )(
~

1k , )(~
1kg , and h  are, 
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The Lie derivative of the system output ky  is 

0)(~
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
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k
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The first difference for the system output (44) is 
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The Lie derivative of the first difference ky  is 
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k
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The second difference for the system output (44) is 
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The Lie derivative of the second difference ky2  is 
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Therefore, the construction of the given incremental 

SDP form (44) gives a relative degree 3 , which 

coincides with the time delay, i.e.   . This is 

because of 02  kg yL , see equation (18) in Theorem 

1. 

 Equation (25) in Lemma 2, can be used to 

establish the new coordinate system for the nonlinear 

system (44) as 
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                         (47) 

Therefore, the linearised regulator state vector kX
~

 is 
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The new linearised system can be obtained from the 

transformation (47) as 221   kkkk UyyY  

which can be written as 

3321   kkkkk UYYYY             (49) 

Therefore, the nonlinear system (44) can be linearised 

to take the form of (49) using the transformation (47). 

The linearised system (49) has a new state space 

vector kX , according to equation (38), which is 

 Tkkkkkkk ZUUYYY 2121 X    (50) 

It is now possible to represent the linearised system 

(49) in NMSS form (37). The linear control law 

associated with the NMSS model takes the usual SVF 

form, 

kkU Xv                   (51) 

where the time-invariant SVF gain vector is, 

 Io kggfff  2121v         (52) 

The control law (51) can be implemented as shown in 

Figure 4, where 

2
2

1
1

1

2
2

1
1

1

31

3211

zz1)z(

zz)z(

z)z(

zzz1)z(

















ggM

fffL

B

A

o

           (53) 

1z1 

Ikkr

)z( 1L

)z( 1M

)z(

)z(
1

1





A

BkU kk yY 













 
Figure 4.  Conventional PIP control block diagram 

for the linearised system (49). 

In order to develop the pole placement solution, 

consider the closed-loop TF obtained by reducing the 

block diagram in Figure 4 as follows 
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Straightforward polynomial algebra manipulation for 

the characteristic equation, 

 
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can be utilised to find the time-invariant SVF gains 

defined in (52) at pre-determined pole positions ip , 

6,,1 i . 

The mapping between the system input ku  and the 

linearised system input kU  can be obtained using 

equation (41) in Theorem 2 as follows 

2
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  kkkk yyyU         (56) 

The third difference for the system output (44) can be 

obtained using equation (46) as 
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(57) 

Substituting (57) into (56) leads to the quadratic 

equation, 

032
2

1  cucuc kk               (58) 

for which 
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The solution of (58) maps the linearised input kU  to 

the system input ku . 

For numerical illustration, assume: 1.01  , 12  , 

01.03  , 1.04  , 01.05  , 15.01  , and 

12  . The deadbeat response can be achieved by 

manipulating the characteristic equation (9) for which 
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Similar to Example (1), the parameter 

213,3   kk ub  is a function of the present input 

signal ku , therefore it is not a straightforward task to 

solve for the pole placement. However, an iterative 

technique is developed to solve polynomial (9) at pre-

determined poles 0ip , 6,,1 i . This gives six 

time-variant gains, which form the state variable 

feedback gain vector, 

][ ,,3,2,2,1, kIkkkkkok kggfff v      (59) 

The closed-loop response of nonlinear system (44) 

can be achieved by substituting equation (59) into the 

control law (6). Figure 5 shows an oscillatory 

deadbeat response due to the existence of nonlinearity 

in the system. The distortion existed in the deadbeat 

response arises due to the nonlinearity behaviour of 

the system. This is one motivation for the linearization 

process. 

However, the six time varying gains used for 

deadbeat response are depicted in Figure 6. 

In the other side, linearization process of the 

nonlinear system (44) leads to the linear system (49), 

for which its parameters are: 1321  aaa , and 

13 b . The deadbeat response can be achieved by 

manipulating the characteristic equation (55), given 

the polynomials (53). Direct algebra manipulation for 

(55) at predetermined poles 0ip , 6,,1 i , 

gives six linear gains: 7of , 61 f , 42 f , 

21 g , 42 g , and 1Ik . Now, the time-invariant 

feedback gain vector (52) is used in the linear control 

law (51) for which the linear state space vector has the 

form of (50). 
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Figure 5.  Upper plot: The deadbeat closed-loop 

response of the nonlinear system (44). Lower plot: 

The control input. 
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Figure 6.  The time varying gains used for the 

deadbeat response of the nonlinear system (44). 

 

Finally, the linearised control input kU  is mapped 

to the system control input ku  using the mapping 

equation (58). The two solutions give a deadbeat 

response, yet the second solution, which gives 

positive control input, is selected for comparison with 

the SDP-PIP control depicted in Figure 5. 

The deadbeat closed-loop response of the nonlinear 

system (44) is depicted in Figure 7. As shown in the 

figure, the linearization process retains back the 

standard deadbeat response for the system (44), i.e. no 

oscillation or overshoot is existed. 
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Figure 7.  Upper plot: The deadbeat closed-loop response 

of the nonlinear system (44) based on linearization 

process. Lower plot: The control input and the linearised 

control input. 
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4.2  Exact linearization methodology 

Example (3) suggests the following steps for 

linearization process of any nonlinear SDP system 

(24): 

1. Describe the nonlinear system in the regulator 

difference form of NMSS description (16). Define 

the terms )~( kxf , )~( kxg , and )~( kxh , then calculate 

the relative degree   using equation (18) in 

Theorem 1. 

2. Make sure that the relative degree   of the 

nonlinear system coincides with its sample delay  , 

  . If   , describe the nonlinear system in 

another difference form and go to step (1), see 

Example (2). 

3. Define the new linear state space vector kX  using 

the transformations (25) in Lemma 2. The elements 

of the linearised state space vector should take the 

form of equation (27) for new linearised output 

states and equation (32) for new linearised input 

states, i.e. 
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 1...,,1  q  

 In case of nonlinear systems with unity relative 

degree, i.e. 1 , the second transformation in (25) 

has no use since no input states are existed in such 

cases. 

4. The new linearised system can be constructed now 

using transformation (25) at 1i  and 1j , 
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2

)1( 



   k

n

i

ikk UYY . This leads 

to a linear system with unity parameters at all input 

and output terms. The incremental form for the 

linear system is shown in (35), and its 

corresponding linear TF model is shown in (36). 

5. Closed-loop TF or NMSS form is constructed in 

the usual manner for the linearised system (35). 

Either pole placement or LQ design is utilised to 

find the linearised input kU , where kkU Xv . It 

should be noted here that the elements of SVF gain 

vector v is constant. 

6. Finally, equation (41) in Theorem 2 can then be 

used to establish the mapping between the 

linearised input kU  and the actual nonlinear system 

input ku . 

The procedure for full linearization process is 

applicable for any SDP nonlinear system. The next 

example illustrates the above procedure further more. 

Example (4) 

Consider the system in Example (1) for which its 

incremental form is 
2

2121 4.05.008.09.0   kkkkk uuyyy    (60) 

First, define the nonlinear system (60) in the regulator 

difference form of NMSS description, 
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Here, the terms )~( kxf , )~( kxg , and )~( kxh  are 
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Second, calculate the relative degree of the nonlinear 

system (60). The Lie derivative for the output ky  is 

05.0

)~(~
0
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 k

k

k
kg g

y
yL x

x  

This shows that the relative degree of the form (61) is 

1 , since 00  kg yL . Also, it is obvious that the 

time delay   coincides with the relative degree, i.e. 

1 . 

Third, define the linear state space vector kX  using 

the transformation (25) as 

11  



kk

kk

yY

yY
                    (62) 

The transformation (62) gives the following elements 

for the new linearised state space vector, 
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
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yY
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Forth, construct the new linearised system by means 

of transformation (25) at 1i  and 1j , i.e. 

1



kkk

kk

yyU

yY
 

This leads to the following linear system 

121   kkkk UYYY                (64) 

Fifth, the pole placement solution can be developed 

by considering the closed-loop TF (54) obtained by 

reducing the block diagram in Figure 4. Considering 

the linear system (64), the closed-loop TF is 
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The deadbeat response can be achieved by direct 

algebra for the characteristic equation in (65) at 

predetermined poles 0ip , 3,2,1 i . This gives 

three linear gains: 1of , 11 f , and 1Ik . Now, 

the time-invariant SVF gain vector (52) is used in the 

linear control law (51) for which the linear state 

vector is  Tkkkk zYY 1X . 

Sixth, the mapping between the linearised input kU  

and the actual system input ku  is then 

1 kkk yyU                  (66) 

Substituting with the value of ky  in (66) gives 

5.0

4.008.11.0 2
11  

 kkkk
k

uyyU
u       (67) 

The deadbeat closed-loop response of the nonlinear 

system (57) is depicted in Figure 8. 
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Figure 8.  Upper plot: The deadbeat closed-loop 

response of the nonlinear system (60) based on 

linearization process. Lower plot: The control input 

and the linearised control input. 

 

 Example (4) shows that the use of exact 

linearization for SDP nonlinear models sometimes has 

the advantage of simplifying the model, so reducing 

the number of gains used in the control law, compared 

to full SDP-PIP design. In this example, the nonlinear 

system (60) needs only three linear gains, however in 

Example (1), the same system needs four time-variant 

gains. 

 It is convenient to note that the deadbeat response 

cannot be reached without linearization. Also the 

controllability issue shown in Example (1) has been 

fully avoided using linearization process. 

5.  Conclusions 

This paper develops an ‘exact linearization by 

feedback’ approach for the control of a wide range of 

nonlinear systems. The approach is based on the State 

Dependent Parameter, Proportional-Integral-Plus 

(SDP-PIP) control methodology proposed in earlier 

publications. However, the present paper addresses 

certain controllability limitations of the basic SDP-PIP 

algorithm. Necessary and sufficient conditions are 

given such that the nonlinear SDP systems are 

feedback equivalent to a controllable linear system. 

In particular, by linearizing the SDP model, whilst 

utilising the SDP-PIP algorithm, any model described 

by the general SDP structure can now be controlled, 

and its typical deadbeat response is straightforwardly 

achievable. Preliminary simulation studies suggest 

that the new approach not only verifies the standard 

deadbeat performance of the SDP systems, but also it 

is generally easy to implement in practice. Moreover, 

fewer time-invariant input gains are required in case 

of number of input terms more than unity, i.e. 2p . 

This is because there is always only one linearised 

input term. 

This analysis suggests that, for SDP nonlinear model 

structures, exact linearization is a very straightforward 

approach that can be utilised to develop a fixed gain 

controller. The present examples show that the 

linearized controller has excellent tracking 

performance even for deadbeat response compared to 

the conventional SDP-PIP approach. 

In exact linearization by feedback, a modification to 

the conventional approach is required because of the 

particular NMSS representation used in SDP-PIP 

design. Therefore, a regulator form for the NMSS 

description is introduced. 

Furthermore, the term relative degree for discrete-

time nonlinear systems has been introduced and fully 

defined. Also, its importance for the correct 

description for the NMSS representation is revealed. 

Finally, robustness test, input disturbance rejection 

and output disturbance rejection tests for the 

linearised system, when applied to real and simulated 

nonlinear systems, are the subject of current research 

by the author. Moreover, on-line implementation of 

the linearised controller for practical systems is also 

being investigated by the author. 
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