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Abstract: This paper considers State Dependent Parameter (SDP), Proportional-Integral-Plus (PIP) control of a
wide class of nonlinear systems. Here, the system is modelled using the quasi-linear SDP model structure, in
which the parameters are functionally dependent on other variables in the system. This formulation is then be
used to design a PIP control law using linear system design strategies, such as pole assignment or suboptimal
linear quadratic design. However, since not all feasible SDP model structures can be solved using the basic
approach, the present paper develops an exact linearization by local coordinate transformation that returns the
closed-loop system to a controllable state. Necessary and sufficient conditions are given such that nonlinear SDP
systems are feedback equivalent to a controllable linear system. Finally, sufficient simulation examples are
illustrated to verify the applicability of the approach. Similar or faster deadbeat response is achieved for nonlinear
SDP models having one or more than one input terms respectively. Also, the equivalent linearized model leads to
constant state feedback gains that control such nonlinear discrete-time SDP models.
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1. Introduction The linear-like, ‘affine’ structure of the SDP
Previous papers have introduced the linear model means that, at each sampling instant, it can be
Proportional-Integral-Plus (PIP) controller [1-2], in considered as a ‘frozen’ linear system. This
which Non-Minimal State Space (NMSS) models are  formulation is then used to design an SDP-PIP control
formulated so that full state variable feedback control law using linear system design strategies such as pole
can be implemented directly from the measured input assignment or suboptimal Linear Quadratic (LQ)
and output signals of the controlled process, without design, [6-7]. This yields SDP-PIP control systems in
resort to the design and implementation of a which the state feedback gains are themselves state
deterministic state reconstructor or a stochastic dependent. However, not all feasible SDP model
Kalman filter. Such PIP control systems have been structures are controllable using this basic approach
successfully employed in a wide range of practical [8-9]. For this reason, the present paper develops an
applications [3-4]. exact linearization by local coordinate transformation
Typically, however, any inherent nonlinearity in ~ approach that allows the general discrete-time SDP
the system has been accounted for in a rather ad hoc ~ model form to be controlled. The approach is
manner at the design stage, sometimes leading to motivated by conventional exact linearization via
reduced control performance when applied to feedback methods applied to continuous-time systems,
particularly difficult, highly nonlinear systems. [10-13], when these are applied to the special case of
One novel research area currently being discrete-time SDP models.
investigated in order to improve PIP control in such 2. Nonlinear SDP-PIP control
cases, is based on the identification methodology of The representation of nonlinear dynamical
the State Dependent Parameter (SDP) system. Here, systems using State Dependent Parameter (SDP)
the nonlinear system is modelled using a quasi-linear models can be traced to earlier publications such as
model structure, in which the parameters are [14]. However, the practical development of this
functionally dependent on other variables in the model is of more recent origin: see [5] and the
system [5]. In this manner, SDP models can provide a references therein. In this paper, an SDP model,
description of a widely applicable class of nonlinear written in discrete-time incremental form, s
system that even includes chaotic processes and considered as:
systems that have previously been modelled using a
bilinear approach.
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Y ==a1(2)Yier = —an (X)) Yin (1)
+0y (i Ui+ + by (1 Uk

where u, and y, are the input and output variables

respectively. The parameters a;(y,) V1<i<n and

bj(xk) V1< j<m are themselves functions of the

lagged system variables. In Transfer Function (TF)
form, the model (1) becomes,
_ bl,k+1271+"'+bm,k+mzim

T+agZ e +agunZ "
1

Bz )

U = u @

Yk k Ak(z"l) k

where z7 is the backward shift operator, for which
27'y(k) = y(k—i) . Equation (2) alludes to the time
variable parameter derivation of the SDP model: see
e.g. reference [5] for details. Here, a;(x,) V1<i<n
and bj(xzc) V1<j<m are functions of the state
variables.
utilised

The backward shift operator notation
in (2) suggests that, for example, if

9(zea)=Buza) 00 010 . 0 =by(p)]
d=000..000..01
h=L00..000..00

ay =a (k) = Fykq) then ajy,g =a(xy,y) is a
function of the un-lagged output vy, .

It is easy to show that model (1) can be represented by
the following Non-Minimal State Space (NMSS) form,

X1 = FQriaa) Xk +9(xkaa) U +d Ty @)

Yi =hXxy
The n+m dimensional non-minimal state vector x,
consists of the present and past sampled values of the
output and input variables as follows,

Xk:[yk Yea Uk —(m-1) Zk]T (4)

Ye(nr) Uk -
Here, z, =z, +(r, —y,) Iis the integral-of-error
state, introduced to ensure inherent type 1
servomechanism performance, where 1, is the

reference level. Finally, F(x.,1), 9(xx4), d and h
are defined as follows,

o () 8 (Z) o~ (zen) ~a(en) Da(zi) o Bna(zi)  Pn(rea) O
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
: : : : : : . : : : (5)
0 1 0
F =
()= 0 -0 0 0 0 0 0
0 1
0 0 0 0 0 1 0 0
L a () A (Zee) aa(rien)  an(n) —D2(ria) - b)) —bn(ziaa) 1]
The control law associated with the NMSS N+ Kig

model (3) takes the usual State Variable Feedback
(SVF) form,

U ==V X (6)

where the state variable feedback gain vector is,
Vie=[fox  fux

_kl,k]

foak  Ouk Im-1k

In more conventional block diagram terms, equation
(6) can be implemented as shown in Figure 1, where

M, (z%) and L, (z ") are defined as follows,

L@ ™) =fop + fz bt frg 2z

()

M (z™) = gl,kz_l +"'+gm—1,kz_l
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Figure 1. Conventional SDP-PIP control block
diagram.

2.1 Nonlinear pole assignment design

In order to develop the pole assignment solution,
consider the closed-loop TF, obtained by reducing the
block diagram shown in Figure 1 as follows,

KigBe(z™) xic 8
AM @AY+ L @Bz )]k (B2 D)

Yk =
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for which M, (z 1) =1+M,(z %), and A=1-z"is
the difference operator. Polynomial algebra
manipulation of the characteristic equation,

AV @HAEY + L @B kB (g

=(-pz ™). (L= Ppmz )
can be utilized to find the SVF gains at pre-
determined pole positions p; , Vi=1...n+m .
Nevertheless, it is difficult to obtain closed-form of
the gains using direct algebra because the polynomials

A (z™') and B, (z*) are most probably function of
the un-lagged input u, as shown in equation (2).

However, straightforward iterative procedure can be
performed to overcome this difficulty.

Note that, in contrast to linear PIP control [1-2], the
nonlinear SDP-PIP case considered here, the gain
vector v, is itself state dependent. In other words, the

control gains are variable and updated at each
sampling instant.
2.2 Controllability

A prerequisite of global controllability is that the
NMSS system (3) is piecewise controllable at each
sample k. This requirement follows from the fact that
if a system is globally controllable, it clearly has to be
locally controllable. The NMSS linear controllability
conditions are developed by Chotai et al. [15]. In the
nonlinear case, these are written as follows [9, 16]:

Given a Single-Input Single-Output (SISO)
discrete-time system described by the SDP-TF model
(2), the NMSS representation, equation (3), as defined
by the pair [F(¥,.1).9(x«.1)]1, is locally controllable

if and only if, the following two conditions are
satisfied at each sample:

1. The polynomials A (z*) and B, (z!) are co-
prime.
2. bzt by amz ™ # 0

Nevertheless, it is obvious that, due to the time
variation of the parameters in the SDP case, even the
conditions 1 and 2 above are not necessarily
guaranteed at each sample. In this case, difficulties
may arise during the design or implementation of the
SDP-PIP algorithm, as illustrated in the example
below.

Example (1)

u, =0.125 and u, =1.0, the system shows again

uncontrollability due to the pole-zero cancellations.
Here, the non-minimal state space vector is given by

Xy =[yk Yier Ukl zkr , while the NMSS model
of the system based on equation (3) is defined by,

09 -0.08 -04u; O
1 0 0 0
F =
(Zk41) 0 0 0 0
-09 008 04u, 1
9()(k+1):[0-5 01 _0-5]T
d=[0 0 0 1]
h=[L 0 0 0]

The polynomials in equations (2) and (7) are as
follows,

Az ™) =1+(-0.9)z7" +(0.08)z
B, (z?)=(0.5)z7" + (-0.4u, )z 2
L@ ™) = fou + fruz™

My(z ) =1+gy 2™

Since the TF model parameter b,,., is a function of

(11)

the present input signal b,,,, =-0.4u,, it is not a

straightforward task to solve the pole assignment
problem. However, either algebraic manipulation or
an on-line iterative technique can be used to overcome
this difficulty. In this manner, Figures 2 and 3 show
the closed-loop response for two pole assignment
designs.
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(a) Upper plot: The set point (dotted line) and the closed-

Consider the following nonlinear system [9],
05271 —(0.4u,)z7?
©1-09z7 +0.082 2
where vy, is the output variable and u, is the input
variable. It can be seen that at u, =1.25, the input
has no effect on the system output y, and so the

system is uncontrollable due to the invalidation of the
second controllability condition. Moreover, at

(10)

Yk Uy
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loop response (solid line). Lower plot: The control input
(solid line) and the level of critical input 0.125 (dashed
line).
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(b) The time varying gains used at poles (0.5).

Figure 2. The closed-loop response of system (10) at set

point of 0.3, using poles 0.5 on the complex z-plane.
Figure 2 (a) shows an oscillatory closed-loop response
for poles placed at 0.5 on the complex z-plane. This
happens because the control input approaches one of
the critical values, i.e. 0.125, which causes the
nonlinear SDP model (10) to start lose its
controllability. However, unexpectedly, faster poles
placed at 0.3 on the complex z-plane, shows smoother
and good tracking response because the control input
is now relatively away from this critical value, as
illustrated in Figure 3 (a).

Figures 2 (b) and 3 (b) shows the time varying
gains used in both cases.

In this example, the minimum absolute value
between the control input u, and its critical level of

0.125 mentioned above is 2.56x10~* in Figure 2 (b).

This takes a sufficiently larger value of 1.4x10~ in
Figure 3 (b) and hence the closed-loop response
avoids the controllability problems observed in the
former case. Finally, it is convenient to note that the
deadbeat response cannot be achieved at the selected
set point, r, =0.3.
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(a) Upper plot: The set point (dotted line) and the closed-
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loop response (solid line). Lower plot: The control input
(solid line)
and the level of critical input 0.125 (dashed line).
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(b) The time varying gains used at poles (0.3).
Figure 3. The closed-loop response of the system (8) at
set point of 0.3, using poles 0.3 on the complex z-plane.

3. Relative degree of discrete-time systems

The concept of relative degree p for continuous-

time systems had been proposed in several researches,
e.g. [12]. Subsequently, it is suggested for discrete-
time SDP models [9, 16], using the analogy between
continuous-time and discrete-time systems, which
assumes that the notation X

is equivalent to
AX= Xyag =Xk -
Relative degree p is exactly equal to the number of

times one has to differentiate the output y at time t in
order to have the value u of the input explicitly
appearing [12], i.e. for ubiquitous continuous-time
SISO nonlinear system,

x=f(X)+g(x)u

y=h(x)
It can be said that any SISO nonlinear system has
relative degree p if,

i. LyLh(x)=0 forallxandall k<p-1
i. LyLyh(x°)=0
Here, L¢h(x) is the derivative of the function h(x)

(12)

along the function f(x), called Lie derivative. The
sequence of Lie derivatives is

LY h(x) = h(x)

i-1
L' h(x) = a"fa—:(x) f(x)

Vi=12,...k (13)

Also, the mixed derivatives between g(x) and f(x)

are defined as

oL’ h(x)

Ly L' h(x) :fa—xg(x) Vi=01...k (14)
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Note that if L ka h(x) =0 for all x, then the relative

degree cannot be defined, implying that the system
output is not affected by the input, i.e. the output
depends only on the initial states.

For the purposes of determining the relative degree p

for discrete-time SDP models, it is essential to express
the SDP-NMSS description (3) without including the
integral-of-error state. Such a regulator form has the
following state vector X, ,

Xy = [Yk Yka Yk—(n-1) Uk - Uk—(m—l)]T (15)
The regulator difference form for the description (3)
takes the form
AXy = (F(Zk+1) - |)>~(k + (k1) Uk (16)
yi =hX,

for which g(y,,4), and h are defined as (5) without

the last element, and E(Zkﬂ) are defined as (5)
without the last row, the last column. As shown in
(15), the regulator state space vector X, is composed
of n present and lagged output state variables, and
m—1 lagged input state variables.

Lemma 1
For discrete-time SDP nonlinear systems,

Lih(x)=A'y,, V i=0,.., p-1  (17)
Proof: The proof of this lemma can be obtained from

(16) by considering the functions
f(%) = [Flre) 1) % . 9% =8(zca) - and
h(X,)=hX,.

The special nature of difference form of SDP-NMSS
description (16) provides that h(x,) =y, , therefore
originally, the Lie derivative gives
LTh(X) =A%y, =y, .

Also, at p>1, description (16) ensures the existence
of all SDP-TF parameters in function f(x,) which
always takes the form

(%) = (Flziea) 1) %
=[Ayk —Ugg AU, ... Auk—(p—l)]T
However, the function g(X, ) always takes the form

gx)=[0 10 ... 1]
Given that p >1, the first Lie derivative (13) gives
I g
L:h(x,)=—""f(x
£h(xy) o, (Xk)
-fLoo ..

= Ay
Consecutively, the second Lie derivative (13) gives

0] f (%)

~ OAYy ¢~
L2h(X, ) = —2Xf(X
th(Xy) o (%)
_| OAyy  OAy  OAyy OAyY £,)
Oy OUgy Ouy, OUy_(p-1)
= Ay,
Eventually, the p—1" Lie derivative gives
e Ny
L7 h(R,) = 5 (%)
k
p-1 p-1 p-1
— ON Yk ON Yk ) ON Yk f(ik)
Y ouy 4 OU_(p-1)
=Ny,

It is now possible to provide the conditions for
relative degree o for nonlinear discrete-time SDP

model (2).

Theorem 1
Nonlinear discrete-time SDP system (2) described
in NMSS regulator form (16) has relative degree p,

if and only if the following conditions are satisfied

LAy, =0 V i=0,..p-2

gp_l “ (18)
LAy #0
For linear discrete-time TF models, it is

straightforward to show that the relative degree p is
the number of samples required for the input to affect
the system following a change in the equilibrium
conditions, i.e. the sampled time delay & . Applying
the above definition of the time delay to SDP models,
it is important to stress that u, may start to influence
the behaviour of the system through one or more of
the parameters. For this reason, p is not necessarily
equal to & . The following example illustrates this
phenomenon.

Example (2)
Consider the following nonlinear discrete-time system,
(18]
Vi = aUaYia + A, (19)
One possible formulation for the incremental SDP
form (19) is given as

Y =(@UaYia) Vs +(,3Uk72 )2 (20)
for which its regulator SDP-NMSS description in
difference form (16) is given by,

Ay | [auy =1 Suea | Vi 0
= + Uk
Au4 0 -1 Ju 1

v =lt 0]{ y“}

U
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The relative degree p of this dynamical system can
be obtained through the following differentiation
process,

Given the output y, ,

oy, ~
Ly Yk :ﬁg(xk)

-l ayf]m=ayf

This shows that the relative degree of this system
p =1 since LgAOyk #0 if and only if y, #0. Here,

it is obvious that the construction of the incremental
SDP form (20) gives an apparent sample delay 6 =2,
i.e. p=6 . Nevertheless, it is always possible to
formulate the difference form of the regulator SDP-
NMSS description (16) such that p=¢, as illustrated
below.

For example (2), another possible formulation for the
incremental SDP form (19) is given as

Y = (0‘ ylf—l)uk—l +(Bui2)uis (21)
for which its difference regulator SDP-NMSS form is

A | _[-1 B | vie ], i |
Aug | [0 =1 Jlug, 1| X

The relative degree p of this form can be obtained

through the following differentiation process,
Given the output vy,

oy ~
Ly Yk :ﬁg(xk)

2
[04
As expected, the relative degree of this description
p=1 since LyAy, #0 if and only if y, =0 .
Therefore, the description (21) gives p=6.

The above example shows that the value of the
relative degree p represents the number of samples
required for the input to affect the response of the
dynamic system regardless the construction of the
regulator SDP-NMSS form for the dynamic system
(19). Nevertheless, the right construction of the
incremental SDP form (21) leads certainly to a
relative degree p equals to the sample delay ¢ ,
p=06 . This is one important condition for exact

linearization.
4. Exact linearization

Exact linearization of nonlinear continuous-time
systems has been studied by many authors; e.g. [17-
21]. The close analogy between exact linearization by
feedback of continuous and discrete time systems has
persuaded other authors to apply the technique to

359

discrete systems, e.g. [22-26]. With regard to discrete-
time SDP models, an exact linearization has been
fully developed and implemented successfully [9, 16],
the proposed approach provides the necessary and
sufficient  conditions  for local input-output
linearizability. However the deadbeat response using
pole placement approach cannot be achieved for
systems having p>2 . For this reason, the present

paper develops a local coordinate transformation
approach for linearizing discrete-time SDP models;
the proposed approach guarantees the deadbeat
closed-loop response for the nonlinear systems using
time-invariant gains instead. Necessary and sufficient
conditions are provided for local input-output
linearizability. The approach is applied on sufficient
simulation examples. Limitations are also considered
with proposed solutions.

The particular nature of the NMSS model (3)
prevents the linearization process of the system
without changing the construction of the output
function. This would violate the requirements of the
NMSS model and its associated servomechanism.
Therefore, the regulator NMSS form (16) is utilised
here for the linearization step.

4.1 Local coordinate transformation

The conditions of relative degree for discrete-time

SDP systems defined in Theorem 1, suggest that the

functions Ay, , .., and Ap’lyk have special
importance. In fact, they can be used to define a local
coordinate transformation around X, , for which X

is a point such that LgAp’lyk # 0. This is because of

the fact that d(Ay,) , ..., d(A”y,) are linearly
independent at X = X, , for which
i
cl(A'yk)z8A Yi vV i=01 .., p-1 (22

Consider the following revised SDP model, in which
the relative degree p >1 is explicitly acknowledged,

Ve == (2k)Yiea =~ (2) Yen

(23)
+bp(/ﬁ{k)ukfp+"'+bm(/’{k)ukfm
The SDP-TF form of the model (23) is
_ bp(lkﬂy)z_p+"'+bm(lk+m)z_m
k= = — Uk
1+al(/1/k+1)z 1+"'+an(;{/k+n)z : (24)
B (z)
= 1, U
A(z™)
Recalling that n is the number of output
parameters  a;(xy4) » o @ (Xken) o and

p=m-p+1 is the number of input parameters
b,(Xksp) s s B (Xksm) - The SDP-TF form (24) can
be described in regulator NMSS difference form (16),
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for which the regulator state space vector X, has
length n+m-1.
Lemma 2

For nonlinear discrete-time SDP model with n
output parameters, and p input parameters, the
transformations

AYy 1) = Ay Vi=1..,n
. R N (25)
AW gy = Ay, _ZAJ_IYk—(i—l) Vij=l..p-1

i=2

ensure n+ p—1 independent elements of new full set
of linearised regulator state space vector >~(k , for

which

X, =Yy Uk—(pﬂ)]r
(26)

Proof: The first transformation in (25) maps the n

output states in the linearised regulator state space

vector X, as follows

Yy Yka

Vi = Yk ¥ 1=L..n (27)
In case of p>2, the second transformation in (25)
maps the rest p—1 input states in the linearised
regulator state space vector f<k . Here, the last or
(p—-1) "™ input state, Uy_(p-1), IS obtained by setting
j=1as

n
Ui_(p1) =AY — z Yi—(i-1)
i

The preceding (p—2) ™ linearised input state,
Uy_(,-2) . is obtained by setting j=2 as

(28)

n
2
AUy =AY _ZAyk—(i—l)
i

n
Ui (p-2) “Yi(p) = Ay, - ZAyk—(i—l)
therefore -
n
Ui (p-2) = Ay, - ZAyk—(i—l) +U (pm
i
The preceding (p—3) ™ linearised input state,
Uy_(,-3) , is obtained by setting j =3, as

(29)

n
AUy =Ny, - zAzyk—(i—l)
i

n
AUy (2~ AUy, qy =A%y, — ZAzyk—(i—l)
i

n
Ui (o3 ~Yk(p2) ~ AUy _(p gy =A%y — ZAZYHH)
i

360

therefore

n
Ui (pg) = Ay, - ZAZ Y-ty T AU oy tUi oy (30)
i

Consequently, the 1% linearised input state, U, ;, is
obtained by setting j=pp—1, as

n
-2 - -2
AUy (pgy = A Yy - E N2V i
i—2

n
N oy =N Uy = Ny - ZAH Yk—(i-1)
i2

p-2 n
j— - -2
Ui - ZAJ U k—(j+1) = A7 Yy - ZAP Yk—(i-1)
j=1 i=2
therefore

n p=2
Ues =271y, —ZAP i) +ZAHU k(4 (31)
i=2 j=1
Giving that p> 2, equations (28), (29), (30), and (31)
can be used to get the general form for the m—1 input
states as

n p=2
Uy q ="y, - zApilyk—(i—l) +
i2

2 Vg (32)
1=q

v q=1..,p-1
Equation (27) states that at i =1,

AYy = Ay, (33)
Also equation (28) states that at j =1,
Ayk =U k—(p-1) + Yk—l +... +Yk—(n—l) (34)

Substituting (34) into (33) gives
Yior =Yk =Up (o) +Yia +oo Vi ooy
Rearranging the above equation and shifting the index
backward a unit step leads to an incremental linearised
form for the system (24), as follows

Yk :kal +Yk72 +-~-+Yk—n +Uk7p (35)
The corresponding TF of the linearised model (35)
using backward shift operator, z %, is

Y, 2" U (36)
K1t gt
Therefore the two transformations in (25) give
necessary and sufficient conditions for the

linearization process for any nonlinear model (24)
with relative degree p equals the system time delay
p,i.e. 5=p. The linearised model always has one
input parameter. Therefore, the order of the numerator
polynomial of TF (36) is po=m. The resulting linear
model (36) has unity output and input parameters.

The linearised unity TF model (36) can be
represented using the Non-Minimal State Space
(NMSS) form as
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X =F X +gUy +dry

37
Yk = th ( )
for which n+p dimensional non-minimal state
vector X, takes the form
Xk:[Yk Yer " Ve Uk o Uk Zk]T (38)

Here, Z, =7, 4 +(r, —Y,) is the integral-of-error
state variable, and r, is the reference level. Note that
Y. =Yy , according to equation (27). Finally, for
p >1, the matrices F, g, d and h in NMSS form (37)
are defined as follows

g=p00..010.. 00

d=poo..000..01f
h=100..000..00

(11 ..100 ..01
10000 ..000
01 000

00 ..00O0O. 100
-1-1--1-10 ..0-11]
The linear control law associated with the NMSS
model (37) takes the usual state variable feedback
form,

where the time-invariant state variable feedback gain
vector is,
v=[f, f, --

fn—l 01 ° Oma _kl]

Theorem 2
The second transformation in (25) at j= p leads to

the mapping equation between the system input u,
and the linearised system input U .

This true since the relative degree p is the number
of differentiations required to the output y in order to
have the value of input u explicitly appearing [12].

Consider the next difference of the second
transformation (25), i.e. j=p,as
n
Ap71Ul<—(p—1) = Ay, _zApilyk—(i—l) (41)

i=2
The general law for the mapping equation (41) can
be obtained by considering the SDP model (24) as
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Yk :_Zai (i) Vi +ij (i) Ui (42)
=)

i=p
Shifting the SDP model (42) one step ahead gives

n
Vi =~ (Xsa) Vi — Zai (1) Y-y
i=2

m
+ij(7(k+1)uk—(j—1)
i=p
Basically, the first difference for the system output
Ayy is Ay, =Yy — Vi - Also, the second difference
th

(43)

is A%y, =Ay,,; —Ay, . Subsequently, the p

difference is A”y, = A"y, Ay,

Example (3)
Consider the following nonlinear discrete-time system,
Vi = (1 Yia +a2) Y — (gl + 4) Y2 (44)
—(a5Yk-3)Yis + (Bl 3 + B2 )Uy 3

The regulator SDP-NMSS  description in
difference form for system (44) takes the form of (16)
for which the regulator state space vector takes the
form
Xy = [Yk Y1 Ye—2 Uk kaz]T

and the matrices IE(;(M)—I , 9(xs1) »and h are,
@(lk+1):[0 001 O]T

h=[L 0 0 0 0]
'E(}(k+1)—|=
—a (1) 1 —a () (i) 0 bs(ria)
1 -1 0 0 0
0 1 -1 0 0
0 0 0 -1 0
0 0 0 1 -1

The Lie derivative of the system output y, is
Yy =~
L =— = O
o] Yk axk g(lk+1)
The first difference for the system output (44) is
AYy = Y1 — Yk
=—(an Yy +ag +1) Yy — (gl +a4)Yiq

—(asYk-2) Y2+ (Bilk 2 + Bo)Uy
The Lie derivative of the first difference Ay, is

(45)

OAYy ~
LgAyk =6Tykg(}(k+l) =0
Xy

The second difference for the system output (44) is
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APyy = Ay g — Ay
=—(Q2ayyy +0p +DAY, — i AYF — a3y AUy 4 (46)
= (gl + a4) Ay g —asAYy o (Yia + Yi2)
= (Blp + Bo)Uyp + (Bl + o)k 4

The Lie derivative of the second difference A%y, is

Ay,

, A%y, -
LyA%yy = %, 9(xis1)
ON?
= 3 i = Py + Pl + B, #0
Uy 1

Therefore, the construction of the given incremental
SDP form (44) gives a relative degree p =3, which

coincides with the time delay, i.e. p=6 . This is
because of L, A%y, =0, see equation (18) in Theorem

1.

Equation (25) in Lemma 2, can be used to
establish the new coordinate system for the nonlinear
system (44) as

AYk = Ayk
A¥y1 =AYy
AYy_p =AYy, (47)

2
AUy 5 =A%y, =AYy g —AYy
U2 =AYk = Vi1 = Yk2
Therefore, the linearised regulator state vector X, is

Y = Yk
Y1 = Yea
Yi2 = Y2 (48)

Ui =A%y — AV — Ay, +U

Uk2 =AYV = Yk1— Y2
The new linearised system can be obtained from the
transformation (47) as AY, =VYi4 + Yo +Ui
which can be written as

Yo =Y+ Yo + Y3 +Uy s (49)
Therefore, the nonlinear system (44) can be linearised
to take the form of (49) using the transformation (47).
The linearised system (49) has a new state space
vector X, , according to equation (38), which is

Xe=[e Yea Yeo Uea U, Z ] (50)
It is now possible to represent the linearised system
(49) in NMSS form (37). The linear control law
associated with the NMSS model takes the usual SVF
form,

Uk =-V Xk (51)
where the time-invariant SVF gain vector is,
v=[f, fi f, g 9, —k] (52)
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The control law (51) can be implemented as shown in
Figure 4, where

Az Y =1-z1-22%2-23
Bz =223

(53)
LY ="f,+fz +f,z7?
Mzl =1+g,z +g,272
e + B(z™") [Ye =X
d Az "

Figure 4. Conventional PIP control block diagram
for the linearised system (49).
In order to develop the pole placement solution,
consider the closed-loop TF obtained by reducing the
block diagram in Figure 4 as follows

-1
Y=g 1kI B 1) l 1 o (54
AM @Y AEY + Lz Y B Y |+ K BE ™)
Straightforward polynomial algebra manipulation for

the characteristic equation,

AM@h Az + LY BEY]+k BE Y

=(@-pz ) = pramz ™)
can be utilised to find the time-invariant SVF gains
defined in (52) at pre-determined pole positions p;,
Vi=1...,6.
The mapping between the system input u, and the
linearised system input U, can be obtained using
equation (41) in Theorem 2 as follows

NU L, = Ny -y - Ay, (56)
The third difference for the system output (44) can be
obtained using equation (46) as

Ay =Ny - Ay,
=2y Yy +ay + DAy, — 201 Ay, (Ayy +AYy)

)

(55)

— 20, A APy — A Y — Y AU, (57)

— a3 Yk AUy g — a3 AY AU — (agly s +ag)AP Yy

— a5 A1 (Wit + Ay o) = @sA Y o (Vs + Vi)

= (B + B2y — (Bly + Bz + B2) AUy,

+ (B + B2)uy
Substituting (57) into (56) leads to the quadratic
equation,

CUZ +CoU, +C3 =0

for which

(58)
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=5
C =5
Cy =AUy, — Ay - Ay

- QRayyy +ay +DA%Y, - 20 Ay, (Ayy +AYy)

=200 AY( Ay — an Y — agAY AUy

— a3 AUy 3 — 23AY AU 3 — (@3l 3 + @) A%y

— asAYy 1 (AYy 1+ AYy 5) = asA%Y o (Yia + Vi o)

= (P + By — (Buliy + Bily + Bo) AU,
The solution of (58) maps the linearised input U, to
the system input u, .
For numerical illustration, assume: o =0.1, a, =1,
a;=001, ,=01, a;=001, B3 =015, and
B, =1. The deadbeat response can be achieved by
manipulating the characteristic equation (9) for which

-1 -1 -2 -3
A(Z7)=14a1nZ " +agui 2 " +agy,sZ

By (z7) =Dgy .52

L (z7h) = fop + fruz ™+ fpy 272

My (z 1) =1+ 014zt +0p42 7

Similar to  Example (1), the parameter
b3x.3 = AUy + B, is a function of the present input

signal u, , therefore it is not a straightforward task to
solve for the pole placement. However, an iterative
technique is developed to solve polynomial (9) at pre-
determined poles p; =0, Vi=1,...,6. This gives six
time-variant gains, which form the state variable
feedback gain vector,

Vie=[for fix fax 92k 93k —Kikl (59)
The closed-loop response of nonlinear system (44)
can be achieved by substituting equation (59) into the
control law (6). Figure 5 shows an oscillatory
deadbeat response due to the existence of nonlinearity
in the system. The distortion existed in the deadbeat
response arises due to the nonlinearity behaviour of
the system. This is one motivation for the linearization
process.

However, the six time varying gains used for
deadbeat response are depicted in Figure 6.

In the other side, linearization process of the
nonlinear system (44) leads to the linear system (49),
for which its parameters are: a; =a, =az=-1, and

b; =1. The deadbeat response can be achieved by
manipulating the characteristic equation (55), given
the polynomials (53). Direct algebra manipulation for
(55) at predetermined poles p;=0, Vi=1...,6,
gives six linear gains: f, =7, f;=6, f,=4,
0,=2, g, =4, and k; =1. Now, the time-invariant
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feedback gain vector (52) is used in the linear control

law (51) for which the linear state space vector has the

form of (50).

e Set POIN, 1y

Closed-loop response, y,,

25 30 35 40 45 50

|
|

0

Control Input, u

5 10 15 20 25 30 35

Samples

4 45 50

Figure 5. Upper plot: The deadbeat closed-loop
response of the nonlinear system (44). Lower plot:
The control input.

20 30 40 20 30

20 30 40 20 30

N -0.005

0.01

0 10 20 30 40 50
Samples

0 10 20 30 40 50
Samples

Figure 6. The time varying gains used for the
deadbeat response of the nonlinear system (44).

Finally, the linearised control input U, is mapped
to the system control input u, using the mapping

equation (58). The two solutions give a deadbeat
response, yet the second solution, which gives
positive control input, is selected for comparison with
the SDP-PIP control depicted in Figure 5.

The deadbeat closed-loop response of the nonlinear
system (44) is depicted in Figure 7. As shown in the
figure, the linearization process retains back the
standard deadbeat response for the system (44), i.e. no
oscillation or overshoot is existed.

1

o
©

°
=y

Response, y,

o
IS

‘ csersens Set poINt, 1,

o
~

Closed-loop response, y,

o

o
@
.
5

35 40

Control Input, uy

N s o =N

0 10 15 20 25

Samples

30 35

Figure 7.
of the nonlinear system (44) based on linearization

process. Lower plot: The control input and the linearised

control input.

Upper plot: The deadbeat closed-loop response
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4.2 Exact linearization methodology

Example (3) suggests the following steps for

linearization process of any nonlinear SDP system

(24):

1. Describe the nonlinear system in the regulator
difference form of NMSS description (16). Define
the terms f(X,), g(X,), and h(x,), then calculate
the relative degree o using equation (18) in
Theorem 1.

2. Make sure that the relative degree p of the
nonlinear system coincides with its sample delay &,
p=0.If p=o5, describe the nonlinear system in
another difference form and go to step (1), see
Example (2).

3. Define the new linear state space vector X, using
the transformations (25) in Lemma 2. The elements
of the linearised state space vector should take the
form of equation (27) for new linearised output
states and equation (32) for new linearised input
states, i.e.

Y1) = Ye—(ia)

n
- 1
Uy q =71y, —ZAP Yik—(i-1)
i

ez
+ ZAJ_qU k—(j+1)
i=q

vg=l..,p-1
In case of nonlinear systems with unity relative
degree, i.e. p=1, the second transformation in (25)

has no use since no input states are existed in such
cases.

4. The new linearised system can be constructed now
using transformation (25) at i=1and j=1,

AYy = Ay

n
Ui(p-1) =AY — Z Yi—(i-1)
i

Yi=1..,n

n
Therefore, AY, :ZYK_(H) +Uy_(,1)- This leads
i=2
to a linear system with unity parameters at all input
and output terms. The incremental form for the
linear system is shown in (35), and its
corresponding linear TF model is shown in (36).

5. Closed-loop TF or NMSS form is constructed in
the usual manner for the linearised system (35).
Either pole placement or LQ design is utilised to
find the linearised input U, , where U, =—-v X, . It

should be noted here that the elements of SVF gain
vector v is constant.

6. Finally, equation (41) in Theorem 2 can then be
used to establish the mapping between the
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linearised input U, and the actual nonlinear system
input uy .
The procedure for full linearization process is
applicable for any SDP nonlinear system. The next
example illustrates the above procedure further more.
Example (4)
Consider the system in Example (1) for which its
incremental form is
y, =09y, , —0.08y, , +0.5u, , —0.4u?,  (60)
First, define the nonlinear system (60) in the regulator
difference form of NMSS description,
Ay, 0.1 -0.08 —0.4u, ;[ v, | [05
Ay, |=| 1 -1 0 Vi [+] O |uy (61)
Auy 4 0 0 1 Uy 1
Here, the terms (X, ), g(X,),and h(x,) are
~0.1y, —0.08y, ; —0.4uZ,
Yk = Yk
— Uk

f(X) =

g(%)=[05 0 1]

h(X) = Yi

Second, calculate the relative degree of the nonlinear

system (60). The Lie derivative for the output y, is

N

Xy
=05=0

This shows that the relative degree of the form (61) is

p=1, since LgAOyk #0. Also, it is obvious that the

LyA%yy = 9(X)

time delay & coincides with the relative degree, i.e.
p=0o=1.
Third, define the linear state space vector X, using
the transformation (25) as
AYy = Ay,
AYy 1 =AY
The transformation (62) gives the following elements
for the new linearised state space vector,
Y = Yk
Yk = Yka
Forth, construct the new linearised system by means
of transformation (25) at i=1 and j=1,i.e.
AYy = Ay
Up =AYy —Yka
This leads to the following linear system
Ye =Y +Ye o +Up (64)
Fifth, the pole placement solution can be developed
by considering the closed-loop TF (54) obtained by

reducing the block diagram in Figure 4. Considering
the linear system (64), the closed-loop TF is

(62)

(63)
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kiz™?

Y= 1 2

1-2-f,—k)z7+(fy—f)z "= (f, -1z
The deadbeat response can be achieved by direct
algebra for the characteristic equation in (65) at
predetermined poles p; =0, Vi=1 2, 3. This gives
three linear gains: f, =1, f; =1, and k, =1. Now,
the time-invariant SVF gain vector (52) is used in the
linear control law (51) for which the linear state

vectoris X, =[V, Yiu zJ .
Sixth, the mapping between the linearised input U,
and the actual system input u, is then

3 I (65)

Uk = AV, — Yi1 (66)
Substituting with the value of Ay, in (66) gives
0 _ Uy +0.1y, +1.08y, 4 +0.4ug, (67)

0.5
The deadbeat closed-loop response of the nonlinear
system (57) is depicted in Figure 8.

0.4

o
w

Response, Yie

o o
BN

Set point, T

Closed-loop response, y,

30 35 40 45 50

0.6

Control input, U
0.4

Linearized control input, U,

0.2

0

evel of critical input 0.125

Control Input, U

0.2 Y
'

-0.4
0

15 20 25

Samples
Figure 8. Upper plot: The deadbeat closed-loop
response of the nonlinear system (60) based on
linearization process. Lower plot: The control input
and the linearised control input.

30 35 40 45 50

Example (4) shows that the use of exact
linearization for SDP nonlinear models sometimes has
the advantage of simplifying the model, so reducing
the number of gains used in the control law, compared
to full SDP-PIP design. In this example, the nonlinear
system (60) needs only three linear gains, however in
Example (1), the same system needs four time-variant
gains.

It is convenient to note that the deadbeat response
cannot be reached without linearization. Also the
controllability issue shown in Example (1) has been
fully avoided using linearization process.

5. Conclusions

This paper develops an ‘exact linearization by
feedback’ approach for the control of a wide range of
nonlinear systems. The approach is based on the State
Dependent  Parameter,  Proportional-Integral-Plus
(SDP-PIP) control methodology proposed in earlier
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publications. However, the present paper addresses
certain controllability limitations of the basic SDP-PIP
algorithm. Necessary and sufficient conditions are
given such that the nonlinear SDP systems are
feedback equivalent to a controllable linear system.

In particular, by linearizing the SDP model, whilst
utilising the SDP-PIP algorithm, any model described
by the general SDP structure can now be controlled,
and its typical deadbeat response is straightforwardly
achievable. Preliminary simulation studies suggest
that the new approach not only verifies the standard
deadbeat performance of the SDP systems, but also it
is generally easy to implement in practice. Moreover,
fewer time-invariant input gains are required in case
of number of input terms more than unity, i.e. p>2.

This is because there is always only one linearised
input term.

This analysis suggests that, for SDP nonlinear model
structures, exact linearization is a very straightforward
approach that can be utilised to develop a fixed gain
controller. The present examples show that the
linearized  controller has excellent tracking
performance even for deadbeat response compared to
the conventional SDP-PIP approach.

In exact linearization by feedback, a modification to
the conventional approach is required because of the
particular NMSS representation used in SDP-PIP
design. Therefore, a regulator form for the NMSS
description is introduced.

Furthermore, the term relative degree for discrete-
time nonlinear systems has been introduced and fully
defined. Also, its importance for the correct
description for the NMSS representation is revealed.
Finally, robustness test, input disturbance rejection
and output disturbance rejection tests for the
linearised system, when applied to real and simulated
nonlinear systems, are the subject of current research
by the author. Moreover, on-line implementation of
the linearised controller for practical systems is also
being investigated by the author.
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