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1. Introduction 

Hubs are used as switching equipments in a 
variety of systems, such as transportation and 
multistage distribution. Hub location problems deal 
with locating hubs and assigning each demand point so 
that the traffic between an origin-destination pair can 
be routed. Defined as intermediates, hubs play 
particular role in distribution systems. Based on given 
problems, hubs can route and organize origin-
destination traffic demands, thereby leading to reduced 
times and costs, and improved parameters.  

Models developed on hub location problems 
are mostly applied to deterministic sets. O'Kelly 
(1987) presented the first recognized mathematical 
formula for a hub location problem by studying airline 
passenger networks. His formulation dealt with the 
single allocation p-median allocation problem. 
Research was followed by a variety of studies. 
Campbell (1994) developed the first integer linear 
programming formulation for single allocation p-
median problems. Thereafter, hub location problems 
under certainty set have been broadly investigated. 
However, location –assignment problems in uncertain 
settings were first investigated by Ermoliev and 
Leonardi (1982) who developed some models for the 
location problem with formulation under uncertainty, 
and solved it by using uncertain programming devices. 
Louveaux (1986) reviewed the current uncertain 
models for location problems where locating facilities 
was considered as the first step in the decision-making 
process, while distribution pattern was the second step.    

Among studies conducted on hub location-
assignment problems under uncertainty settings, only 
seven valid cases have been published. The first article 
addressed hub location problems under uncertainty 
was presented by Marianov and Serra (2003). The 
authors applied the M/D/c queuing models with a 

capacity constraint to a plane on landing. The model 
dealt with the hub location optimization in airline 
networks. Later, Mohammadi et al.(2011) proposed the 
same model; differences were found in the capacity 
constraint added and the M/M/c queuing model 
applied. Yang (2009) developed a model for air traffic 
demand forecasting. The stochastic programming 
model was introduced for hub location problems in air 
traffic and flight path programming when the volume 
of demands varied over seasons. In the same year, 
Thaddeus et al. (2009) introduced a stochastic p-
median model which could minimize the peak hour 
travel time by using random constraints to reach 
guaranteed service level. The problem concerned 
travel times in a stochastic process with normal 
distribution. In this line, Contreras et al. (2011) studied 
models for hub location problems with uncertain 
transportation demands or costs, but no capacity 
constraint. Considering uncertainty in the set-up costs 
and demands,  Alumur et al. (2012) developed generic 
models for single and multiple allocation problems 
which capture different sources of uncertainty. 
Recently published study by Zhai  et al. (2012) 
concerns a new two-stage stochastic programming 
approach for hub location problems with minimum-
risk criterion in which random vectors are used to 
characterize uncertain demands. Through 
standardization, the author presents a deterministic 
binary programming problem corresponding to binary 
fractional programming problems. 

Among studies conducted on robust 
optimization hub location problems, only two papers 
have been published. Huang and Wang (2009) 
presented a robust model for hub location, minimizing 
total transportation costs. Without capacity constraints, 
the model was solved by a multi-objective genetic 
algorithm. Makui et al. (2012)also developed a robust 
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optimization algorithm for Yang model with capacity 
constraints.  

The current paper is organized as the follow; 
section 2 gives a brief history of the robust 
optimization applied here. Section 3 describes and 
formulates the problem. And finally, a particular case 
study is analyzed and solved by goal programming in 
section 4.  
2. Robust Optimization 

In this paper, the framework Mulvey and 
Ruszczynsk (1995) developed for the robust 
optimization is used for modeling the problem. The 
framework consists of two robustness approaches: 
solution robustness and model robustness. The first 
means that the solution for all scenarios must be 
approximate to the optimum solution, while the latter 
refers to feasibility of the solution for all scenarios. 
However, no solution, both feasible and optimum, 
could be generally obtained under any scenario. 
Therefore, the concept of multi-criteria decision-
making (MCDM) can be applied to balance solution 
robustness and model robustness. Feng and Rakesh 
(2010) developed the LP model including random 
parameters, as below: 

Min
T T

c x d y  

Subject to: 
,Ax b  

,Bx Cy e   

, 0x y   

Where x is the decision variable vector, y is the control 
variable vector, and B, C, e are the random values. 
Assume that the set S=1,2,…s may give different 
scenarios for the random parameters, and each 
scenario has a probability value ps, (∑sp

s=1). Note that 
the model could be infeasible for any scenario s. 

Therefore, δ
s is defined as the feasible value. If the 

model is feasible, then δ
s  is equal to zero. Otherwise, 

it will find a positive value. The robust optimization 
model will then be given as below: 

 1 1
 , , , ( , , )

s s
Min x y y       

Subject to: 
,Ax b  

,   s s s s sB x C y e s S      

0, 0, 0,   s sx y s S      

The first part of the above objective function considers 
the solution robustness, and the second part deals with 
the model robustness. Mulvey and Ruszczynsk (1995) 
defined the robust optimization model for the first part 

as:  
' ' 2

σ 0 ( )
'

s s s s s s
p p p

s S s S s S
       

 ò ò
 

Where  is the weight value allocated for the variance 
solution. The less sensitive to change in data the 
solutions under different scenarios, the more increase 
the   value shows. Yu and Li (2000) converted the 
above quadratic equation into an absolute value, and 
presented it by some modifications as the following:  

' '
2

'

s s s s s s sMin p p p
s S s S s S

        


  
  
  ò ò

 

Subject to: 

0,    ,
s s s s

p s S
s S

      
ò

 

0,    ,
s

s S     

The second part of the objective function related to 
the model robustness includes the penalties applied in 
the control constraints. Here, we use the coefficient 
 as the weight to balance two parts of the objective 
function. Therefore, the objective function can be 
presented as:  

' '
2

'

s s s s s s s s s
Min p p p p

s S s S s Ss S

            


  
  
  蝌 ò

3. Modeling  
3.1. Stochastic Multi-objective Capacitated p-hub 
Location Problem (MCpHLP-s  )  

The idea for uncertainty model, developed here, 
is inspired from the model proposed by Yang (2009). 
Assume that there is a given number of cities (n), and 
also, there are some volumes of demand for 
commodities between two cities (Dij). The number of 
P-hub locations, chosen among the present cities, 
should be established in order to handle the 
distribution system. Commodities transporting from 
specific origins to specific destinations can utmost go 
through two hubs. A capacity (Uk) has been defined for 
each hub. Commodities are to be processed in each 
hub, so it takes some time (Tkl) to perform.  Obviously, 
if commodities transport to their destination through a 
route with no hub, then the time value will equal zero. 

If they go through one hub, then 
kk k

T T . And, if they 

transport from two hubs, then 
kl k l

T T T  . The 

distance transported from the origin to the destination, 
(diklj), is equal to the sum of distances from the origin 
to a hub, from that hub to another, and from the latter 

to the destination,(
ik kl lj

d d d  ) , all are the inputs for 

the problem. 
In this model, we assume two parameters; 

namely, the demand for commodities between origin-
destination pairs (Dij) and the processing time for each 
hub (Tk) under uncertainty and in scenarios. Other 
parameters depended to these two uncertain cases are 
also defined as scenarios.  
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Table 1. Notations of model 
variable Description 

M A big positive number 
p number of hubs which must be established 
n number of nodes in network 

s  Maximum of arc length in scenario s 

Uk capacity of hub at node k 
Fk fixed cost of establishing a hub at node k 

s

k
T  time hub k takes to process one unit of flow in scenario s 

Pk fixed time to initiate the service at hub k 
s

ij
D  demand from location i to location j in scenario s 

dij distance between node i and node j 
Cij the unit transportation cost for the non-stop service between i and j (per each distance unit) 

s

iklj
C  the unit transportation cost for hub-connected service from i to j and transshipped at hubs k and l in scenario s(per each 

distance unit) 
Zk equal 1 if a hub located at node k and otherwise 0 

s

ij
x  equal 1 if the demand is transported through the non-stop path i–j for scenario s, otherwise 0 

 s

iklj
x  equal 1 if the demand is transported from i to j and transshipped at hubs k and t for scenario s, otherwise 0 

 
Parameters applied in the model are summarized in 
Table 1. The model is formulated as below: 
MCpHLP-s: 

1 11

1 1 1 1

    ( 1 )    

n n n
s s

ij ij ij ijKk
i jk

n n n n
s s s s

ij iklj iklj iklj
i j k l

Min F Z D d C x

D d C x

 

   

  


 

 , , , , , ,
max max , , ,   (2)s s s s s s s

ij ij ik iklj kl iklj lj iklji j k l i j k l
Min d x d x d x d x  

1 1 1 1 1

    (3)
n n n n n

s s s

ijkl iklj k k
i j k l k

Min T D x P Z
    

   

Subject to: 

1

           (4)
n

k
k

Z p


  

1 1

1    ,     0,   (5)
n n

s s s

ij ijiklj
k l

x x i j i j D
 

      

1 1 1

     (  ) 6
n n n

s s

ij iklj
i

k k
j l

D x U Z k i j
  

    

1 1 1

     (  ) 7
n n n

s s

ij ilkj k k
i j l

D x U Z k i j
  

    

 
1 11 11

 

                         8) (  

n n n n n
s s s

iklj ilkj ikk
j i jli

j k
x x x MZ

k i j

   

 
 
 

  

 

 
 

 
1 1 11 1

 

                    (9)          

n n n n n
s s s

iklj ilkj ikkj
i

k
j i jl

M x x x Z

k i j

   

 
 
 

  

 

 
 

 , , 0,1    , , ,        (10)s s

ijk iklj
z x x i j k l i j    

The objective function (1) minimizes the sum 
of fixed establishing hubs costs and transporting 
commodities costs. The objective function (2) 
minimizes maximum length of the arc established. 
By the term "arc", we mean a direct path created 

between two places. If a path, for example, is created 
with two stops at hubs between the origin and the 
destination, then three arcs will be established; one 
between the origin and hub 1, another between hub 1 
and hub 2, and one last between hub 2 and the 
destination. The objective function (3) minimizes the 
total time values spent for processing commodities, 
and also for preparing established hubs. Clearly, the 
above objective functions are in conflict with each 
other. Constraint (4) allows us to establish maximum 
p-hubs. Constrain (5) is to ensure the transportation 
of commodities from the origin to the destination. 
Constraints (6) and (7) are related to the capacity. 
Constraint (8) indicates that if there is no hub in the 
node k, then the node must not perform as a hub. 
Constraint (9) makes it necessary to go through the 
hub when a hub placed on the node k. Constraint (10) 
defines the problem decision variables.  

The objective function (2) is the MiniMax. To 
make a linear objective function, the objective 
function (2) is replaced by the function (11), also the 
constraints (12)-(15) are added to the problem: 

 

                   (11)sMin  

 ,          1    2s s

ij ij
d x i j i j     

   , , ,         13s s s

ik iklj
d x i j k l i j     

 ,   , ,         14s s s

kl iklj
d x i j k l i j     

   , , ,         15s s s

lj iklj
d x i j k l i j     

3.2. Robust Optimization Formulation  
In this section, the model MCpHLP-s, 

proposed in 3.1, is developed using Mulvey's robust 
optimization methodology where uncertain 
parameters are under discontinued scenario. For 
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simplicity, the objective functions are first 
abbreviated as below:  

              

(  )
1 1

1 1 1 1

n ns s sTC transfer costs D d C xij ijij ij
i j

n n n n s s s sD d C xij iklj iklj iklj
i j k l

 
 

   
   

 

  
1

ns
FC fix costs F Zk kk




 

  
1 1 1 1

n n n ns s s sPT processing times T D xijkl iklj
i j k l
   
   

 

  

1

s
ST setup time Z

k

s k

n

Pk 


 

According to the above definitions, the robust 
optimization model is formulated as: 

 

   

1

   2 11

       ,                        (16)
, ,

s s sMinZ p TC FC
s

s s s s s s sp TC FC p TC FC
s s

s s
p

ij
s i j

 

 

  

 
       

  

 

   

 

   

2

     2 ,      (17)2 2

s s
MinZ p

s

s s s s s
p p

s s



   

 

 
  



 
  

 

 

   

3

2 ,   (18)33
s s

s

s s sMinZ p PT ST
s

s s s s sp PT ST p PT ST
s

  

  

 
     

  

     

Subject to: 

    0, ,  (19)1
s s s s s sTC FC p TC FC s

s
                  

    2 0, ,
s s s s

s

p s          (20)                

    0, ,  (21)3
s s s s s sPT ST p PT ST s

s
                   

 
1 1 1

    s s s

ij ij

n

iklj k

n n

i j l

k
D x U Z k i j

  

      (22) 

          
1 1 1

n n n s s sD x U Z k i jk kij ij ilkj
i j l

     
  

        (23) 

1 2 3, , , 0      , ,s s s s

ij s i j                           (24) 

Constraints (4), (5), (8), (9), (10) and (12)-(15). 
The first and second parts of (16), (17) and 

(18) represent the mean and variance for the 
objective functions. The third part of (16) indicates 

the amount of model robustness with respect to the 
uncertainty of the constraints (22) and (23) under 
each scenario. Constraints (19), (20) and (21) are 
applied to make the model linear as the given 
definition. The constraints (22) and (23), the control 
constraints, are defined the same as the constraints 
(6) and (7). The difference is that s

ij
 would be a 

positive value when the scenario reaches an 

infeasible solution. Otherwise, 0s

ij
  .  Furthermore, 

Constraint (24) defines non-zero variables. 
4. A Given Case Solution 
4.1 Solution Process  

As addressed in the previous section, the 
robust Optimization model can be concerned as a 
multi-objective mixed integer programming. Also, 
three objective functions are all implicitly in contrast. 
Hence, the application of goal programming (GP) 
with the aim to solve multi-objective models can find 
an alternative problem with a single objective 
function. The GP is more direct and flexible method 
which allows the manipulation of various scenarios 
by changing target or weight values. However, it 
seems that the GP is effective for solving multi-
objective problems with heterogeneous functions. 
This method also needs no objective function to 
scale, just the goals must be pre-determined.  

As (Romero 2004) stated, for the pre-emptive 
goal programming model, the framework can be 
formulated as: 

( ),..., ( ),..., ( )

1

 (25)

   

d d d d d dk k k k k k k k k k k k
k h k hj k hQ

Lex Min a

     
     

    

  



 
 
  

 

Subject to: 

   ~ 0, 1, 2, ,       26f x i q
i

   

 ( ) ,    ,    1,2,...    (27)g x d d b k h j Q
jk k k k

 
      

      ,     1,2,...     (, 8), 0 2k h jd
k

Q
j

d
k

 
 

  

Where,  
� : =,  or   
hj: Index set of goals placed in the jth priority level 

k
 : Weighting factor for positive deviation 

k
 : Weighting factor for negative deviation 

 i
f x : System constraint 

 
k

g x : Goal constraint;  

bk: Aspiration level of the goal k 

k
d  : Positive deviation 

 
k

d  : Negative deviation. 

Considering the above framework, the goal 
programming formulation for the proposed robust 
optimization approach may be written as follows: 
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 1 1 2 2 3 3
    (29)LexMinimize d d d       

Subject to: 

 

   

    

  2

     (

1 1

    
1 1 1

, ,
30)

s s sp TC FC
s

s s s s s s sp TC FC p TC FC
s

s s
p d d GOAL

ij
s i j

s
 

 

 

   
     

  


   





 

   

        (31)

     2
2 2

          
2 2 2

s s
p

s

s s s s s
p p

s

d d GOAL

s



   



 
  

 
  



 
 
 

     

 

   

   (32             )

    23 3

3 3 3

s s s
p PT ST

s

s s s s s s s
p PT ST p PT ST

s s

d d GOAL

 

 

  
    



 
  

 
 
 

  

Constraints (4), (5), (8), (9), (10), (12)-(15) and (19)-
(24). 

That 
i

 is weight of ith objective function. 

According to Romero framework (2004), constraints 
(30), (31) and (32) are goal constraints. The resultant 
single-objective model (MIP) can be easily solved by 

different linear model solution software, like Lingo 
and Gams. 
4.2. Case Study  

In order to evaluate the model, data was 
collected from Shirin Asal Co., an Iranian chocolate 
producer. Demand rate for chocolate products varies 
season to season, hence four scenarios were 
developed; namely, spring, summer, fall, and winter. 
The main production plant is located in Tabriz (the 
origin), with 36 distribution offices (the destinations) 
across the country, each with different demand rate. 
The country can be divided into three regions of 
West, Central and East; here, the research focuses on 
west region covering 14 destinations. The company 
management seeks to establish two hubs among these 
cities (14 destinations). Table 2 shows the unit 
transportation cost (package size 50 * 25 * 25 cm) for 
the non-stop service per each distance unit (Km); the 
unit transportation cost for the hub-connected service 
per each distance unit (Km) in different scenarios; 
and, possibility to set each scenario. Table 3 
represents distance between cities in western region, 
where Table 4 provides demands and processing 
times in each scenario. Finally, Table 5 covers 
capacity, and fixed costs and times to establish hubs 
for each city. 

 
Table 2. Primary data set 

The number of nodes 14 

number of hubs which should be established 2 

the unit transportation cost for the non-stop service (per each km) 9.5 Rials 
the unit transportation costs for hub-connected service (per each km) (spring/summer/fall/winter) (2.9,2.7,3.9,4.1)Rials 

Probability sets (spring/summer/fall/winter) (0.25,0.25,0.25,0.25) 

 
Table 3. Distances between cities (kms) 
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h
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K
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A
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k 

               

Rasht - 590 485 325 348 185 401 739 266 565 868 774 285 577 
Kermanshah  - 588 526 414 433 189 582 791 136 731 184 538 365 

Tabriz   - 599 280 455 609 308 219 452 1142 772 574 785 
Tehran    - 319 150 337 907 591 501 543 710 50 239 

Zanjan     - 175 329 588 377 278 862 598 282 505 
Qazvin      - 244 763 451 453 584 617 106 303 

Hamadan       - 610 667 164 568 373 354 176 
Urmia        - 527 446 1178 766 729 786 
Ardebil         - 655 1134 975 552 843 

Sanandaj          - 732 320 523 340 
Shahrekord           - 719 579 392 

Ilam            - 706 514 
Karaj             - 322 
Arak              - 
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Table 4. Demands and processing times in each scenario 
 Demand scenarios(Unit) Processing time scenarios(Day/Unit) 

City spring summer fall winter spring summer fall winter 
Rasht 9205 7899 21848 26510 0.00068 0.00058 0.00162 0.00196 

Kermanshah 10459 11256 18751 19628 0.00077 0.00083 0.00139 0.00145 
Tabriz 48022 39529 65890 94831 0.00355 0.00292 0.00487 0.00701 
Tehran 14412 12571 44070 91906 0.00107 0.00093 0.00326 0.00679 
Zanjan 10590 11732 20402 21218 0.00078 0.00087 0.00151 0.00157 
Qazvin 4424 5995 10848 12502 0.00033 0.00044 0.00080 0.00092 

Hamadan 6270 4802 9273 9505 0.00046 0.00035 0.00069 0.00070 
Urmia 17022 16006 24951 23234 0.00126 0.00118 0.00184 0.00172 
Ardebil 13764 19839 19281 16767 0.00102 0.00147 0.00143 0.00124 

Sanandaj 7996 6105 11330 10807 0.00059 0.00045 0.00084 0.00080 
Shahrekord 6142 5721 10320 9065 0.00045 0.00042 0.00076 0.00067 

Ilam 4044 4135 6689 7881 0.00030 0.00031 0.00049 0.00058 
Karaj 18519 22050 41018 48957 0.00137 0.00163 0.00303 0.00362 
Arak 4272 3726 9402 10287 0.00032 0.00028 0.00070 0.00076 

 
Table 5. Capacity, fixed times and costs for each city 

City 
 

Fixed costs 
(Rial) 

Fixed times(Pk) 
(Day) 

Capacity 
(Unit) 

Rasht 1,300,800,000 656 275200 
Kermanshah 616,800,000 210 154200 

Tabriz 1,286,560,000 434 321640 
Tehran 1,941,120,000 570 38528 
Zanjan 1,005,440,000 412 201360 
Qazvin 495,360,000 510 123840 

Hamadan 470,400,000 364 97600 
Urmia 440,320,000 395 110080 
Ardebil 495,360,000 412 123840 

Sanandaj 412,800,000 512 103200 
Shahrekord 550,400,000 462 137600 

Ilam 330,240,000 486 82560 
Karaj 2,143,840,000 892 460960 
Arak 331,340,000 384 82835 

 
The modeling and solution processes for the 

above problem were performed by the software 
Lingo in a PC with Core2duo 2.00 GHz CPU and 4 
GB of RAM with

1 2 3
1      , 

GOAL1=1,000,000,000, GOAL2=400, GOAL3=500 
and 200  . The value  will impose significant 
effects on the solutions. If 0  , for example, then 

the maximum value ij
s will be obtained. In this case, 

the average costs reach their minimum values. 

Figures 1-4 show the findings obtained from each 
scenario. The paths created include no hub-stop and 
hub-stop routs.  The result reveals that two hubs 
should be established between Zanjan and Hamadan. 
As seen from the figures, the number of hub-stop 
routes will be increased when demand rates increase. 
Because in this case, rising hub-stop services can 
help more cost savings. The number of hub-stop 
routes for each scenario (spring, summer, fall, and 
winter) is 7, 7, 9, and 10, respectively. The result 
indicates that the states of routes with hub and no hub 
are the same in spring and summer scenarios. The 
reason is that demands and costs are relatively close 
during these seasons. For fall scenario, some routes 
have one hub-stop, other routes with two hub-stops. 
To distinct the routes clearly, Table 6 shows the 
routes of origin of Tabriz; and the parameters k and I 
as hub 1 and hub 2, respectively, and j as the 
destination. 

The average amount of construction and 
transportation costs is 2,004,506,701 Rls; the average 
maximum arc length established is 598.75 Km; the 
average total processing time is 960.5 day; and the 

average sum of the values of ij
s  is 11422. 

 
Table 6. Transport paths in fall 

i k l j 

tabriz - - Rasht 
tabriz hamadan - Kermanshah 
tabriz - - Tabriz 
tabriz zanjan - Tehran 
tabriz - - Zanjan 
tabriz zanjan - Qazvin 
tabriz zanjan - Hamadan 
tabriz - - Urmia 
tabriz - - Ardebil 
tabriz zanjan - Sanandaj 
tabriz zanjan hamadan Shahrekord 
tabriz zanjan hamadan Ilam 
tabriz zanjan - Karaj 
tabriz hamadan - Arak 
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Figure 1. Network in spring 
 
 

 
 

Figure 2. Network in summer 
 
 

 
 

Figure 3. Network in fall 
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Figure 4. Network in winter 

 
As seen before,   may affect the values of 

objective functions and ij
s . Figures 5 and 6 show the 

effect in the present model. The value of objective 

functions will be increased when  increases, 

whereas the value of ij
s

 
 decreases.  

 

 
Figure 5. Trade-off for model robustness vs. expected feasible value 

 
Figure 6. Trade-off for model robustness vs. expected Z1 value

  
4. Conclusion  

A robust optimization model was proposed for 
multi-objective operation of capacitated P-hub 
location problems (MCpHLP). Here, simultaneous 
minimization of three objective functions was 
applied; namely, total costs, the maximum length of 

the arc established, and total processing times. By 
using the goal programming method, the robust 
multi-objective model was converted into a single-
objective problem. Also, different scenarios were 
developed for the volume of demand, processing time 
and related costs. The objectives of solution and 
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model robustness can be achieved by simultaneously 
optimizing the robust approach. The benefit of using 
the proposed model is that a close approximation to 
the real-world can be made. 

Since a case study was used to validate the 
model, it can be concluded that the model was 
designed based on real conditions and seasonal 
demands. The model is designed for general cases 
with different origin and destination points between 
each pair the traffic is possible, although the case 
study included only one city as the origin. The results 
indicated that the model robustness increased, but the 
solution robustness decreased. However, choosing 
the best  with trade-off between these may put the 
decision maker in ideal conditions. 

For future studies, it is recommended to apply 
meta-heuristic techniques to solve large-size 
problems. Moreover, the model can be extended by 
including uncertainty parameters based on known 
distribution functions and using alternative methods.   
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