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1. Introduction 

Creating freeform surfaces is a challenging 
task even with advanced geometric modeling 
systems. The problem of converting the dense point 
sets produced by laser scanners into useful geometric 
models is referred to as surface reconstruction. 

Parametric curves are widely used in different 
fields such as , computer graphics (CG), computer 
aided geometric design (CAGD), computed 
numerical control (CNC) systems [1, 2]. One basic 
problem in the study of parametric curves is to 
approximate a curve with lower degree curve 
segments. For a given digital curve, there exist 
methods to find such approximate curves efficiently 
[3, 4, 5, 6]. If the curve is given by explicit 
expressions, either parametric or implicit, these 
methods are still usable. However, some important 
geometric features such as singular points cannot be 
preserved. In this paper, we will focus on computing 
approximate surfaces which can approximate the 
given surface to any precision in a similar strategy for 
parametric curves. 

The rest of this paper is organized as follows. 
In Section 2, we introduce the problem. some 
notations and preliminary of B-splines are given in 
Section 3. In Sections 4 and 5, we give represent the 
least squares method for constructing curves and 
surfaces. in Section 6, there are some examples 
which used to illustrate the method. In section 7, the 
paper is concluded. 
2. Parametric B-splines  

The x , y , and z  coordinates of a curve is 

represented in parametric form as  
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 where the parameter t  ranges over a 
prescribed set of values. 

The underlying core of the B-spline is its basis 
or basis functions. The original definition of the B-
spline basis functions uses the idea of divided 
differences and is mathematically involved. Carl de 
boor established in the early 1970's a recursive 
relationship for the B-spline basis. By applying the 
Leibniz theorem, de boor was able to derive the 
following formula  
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 where piN ,  is the i -th B-spline basis 

function of order p , iu  is a member of non-

decreasing set of real numbers also called as the knot 
sequence and u  is the parameter variable. 

This formula shows that the B-spline basis 
functions of an arbitrary degree can be stably 
evaluated as linear combinations of basis functions of 
a degree lower. The obvious defining feature of the 

basis function is the knot sequence iu . The knot 

sequence is a set of non-decreasing real numbers. The 
variable u  represents the active area of the real 
number line that defines the B-spline basis. It takes 

1p  knots or p  intervals to define a basis 

function. Since the basis functions are based on knot 
differences, the shape of the basis functions is only 
dependent on the knot spacing and not specific knot 
values. 

Some of the properties of the B-spline basis 
functions are: 

The sum of the B-spline basis functions for 

any parameter value u  within a specified interval is 
always equal to 1; i.e.,  
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Each basis function is greater or equal to zero 

for all parameter values.  
Each basis function has only one maximum 

value.  
There are three different methods commonly 

used to parametrize model curve data; uniform, chord 
length and centripetal. These methods are discussed 
below.   
Uniform 

This is the simplest type of parametrization 
where the knot spacing is chosen to be identical for 
each interval. Typically, knot values are chosen to be 
successive integers:  

1.=1  ii uu  

For many cases, however, this method is too 
simplistic and ignores the geometry of the model data 
points. 
Chord Length 

This parametrization is based on the distance 
between the data points. The knot spacing is 
proportional to the distance between the data points. 
Equation (2.3) reflects this relationship. This 
parametrization more accurately reflects the 
geometry of the data points.  
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 in which iu  is the i -th domain knot, ip  is 

the i -th data point and i  is the number of knot 
interval. 
Centripetal 

This parametrization is derived from a 
physical analogy. It seeks to smooth out variation in 
the centripetal force acting on a point in motion along 
the curve. This requires the knot sequence to be 
proportional to the square root of the distance 
between the data points as shown in Equation (2.4).  
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Other parametrization methods have been 
investigated. All these methods have certain 
circumstantial advantage over the others. There is a 
trade-off between geometrical representation and 
computation time. Typically, chord length 
parametrization results in a very good compromise. 
In any event, each parametrization results in a 
different shape of the curve. 

 

3. B-spline surfaces 
B-spline surfaces are an extension of B-spline 

curves. The most common kind of a B-spline surface 
is the tensor product surface. The surface basis 
functions are products of two univariate (curve) 
bases. The surface is a weighted sum of surface (two 
dimensional) basis functions. The weights are a 
rectangular array of control points. The following 
Equation (3.1) shows a mathematical description of 
the tensor product B-spline surface. 
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 where ),( vuS  is a B-spline surface as a 

function of two variables, ijq 's are control points, 

)(, uN pi  is the i -th basis function of order p  as a 

function of u , )(, vN qj  is the j -th basis function 

of order q  as a function of v , and iu  , jv  are 

elements of the two knot sequences related to the 
variables u  and v , respectively. 

For most computer aided design purposes, as 

in the case of the curve, ),( vuS  is a vector function 

of two parametric values u  and v . A mathematical 
description of this relationship is shown below in 
Equation (3.2). 
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where x , y  and z  are coordinates in model 

space. The rectangular array of control points forms 
what is called a control net. Similar to the B-spline 
curve, the B-spline surface approximates the shape of 
the control net. Figure 1 shows a bicubic B-spline 
function. 
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Figure 1. A bicubic B-spline function 

 
Similar to the B-spline curve, the B-spline 

surface is also a network of polynomial pieces. Each 
piece of the B-spline surface is a two dimensionally 
represented part of a surface or patch. As with a B-
spline curve, each patch of a B-spline surface may be 
represented by a periodic relationship provided the 
knot spacing is uniform in each direction. This is a 
uniform B-spline surface. 

If the knot sequences are not uniformly 
spaced, then the surface is non-uniform. The basis 
functions would then have to be evaluated by the 
recursive relationship. The nonuniform patch 
Equation (3.1) can be represented in matrix form. 
 
3. The New Least Squares Method for 
Constructing Curves and Surfaces 

Given a knot vector  
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the associated B-spline functions piN ,  are defined as 

follows:  
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 for 2p  and .,0,1,= pri   

A B-spline curve with 1n  control points is 
then defined as  
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 in which iq 's are control points. 

With 1n  data points npp ,,0  , one can 

find an interpolation B-spline curve. In any case, one 

needs to assign a location parameter i  to each of 

the data points, define a knot vector U , and finally 
compute the control points [8, 14]. The location 

parameters i  can be assigned based on the chord 

length as  
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or by using a centripetal method as  
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The knot vector U  can be defined as  
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A standard interpolation problem is to solve a linear 
system  

.,0,=0,=)( nipC ii   

When there are 1m  data points, i.e., 
m
jjp 0=}{ , with nm > , the corresponding location 

parameters }{ j  and the knot vector U  can also be 

derived from the data points }{ jp  in a similar way. 

Suppose that the new approximation curve 

corresponding to U  is )(uC , then the least-squares 

method is to solve the new control points by 
minimizing  
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Usually, the least-squares method produces 
well-behaved results compared to those of the 
standard interpolation method, but it cannot ensure 
that the resulting curve exactly interpolates the data 

points }{ jp  [2]. 

4.  Constructing the curve and surefaces 
The seed curve is constructed as a cubic 

Bezier curve and can be written as  
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where 
3

0=}{ iiq  are the control points. Suppose 

that the given curve has two end points 0p  and 1p , 

and the corresponding tangent vectors at the end 

points are 0t  and 1t , respectively. From the tangent 

constraint at the end points, we have 
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When the values of   and   are determined, 

the corresponding cubic Bezier curve is then defined. 
The geometric Hermite methods such as the one in 
[7] can be used for determining the values of of   

and  . The least-squares method can also be used, 

which is to minimize 
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where 0t  and 1t  are the parameters of points 

0p  and 1p  on the given curve )(tC , respectively. 

For the 2D case, we also use the inner point 
interpolation method, which is to select an inner point 
where the given curve and the approximation curve 
are tangent with each other. Suppose that the inner 

point of the given curve is ),(= *** yxp  and 

),(= ***
yx ttt  is the corresponding tangent vector of 

the given curve at 
*p . Let )(tA  be ))(),(( tYtX . 

Then we have 
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The equation system (5.1) has three unknown 

variables; i.e.,  ,   and t , and three equations as 

well. The first two equations in the equation system 

(5.1)  are linear with respect to   and  . The terms 

  and   can then be directly solved as )(t  and 

)(t . Substituting )(t  and )(t  into the third 

equation of the equation system (5.1), we obtain a 

univariate equation in t , which can be simplified into 

a univariate cubic polynomial equation )(tH . A 

brief overview of related details can be found in 

Appendix. By solving 0=)(tH , we finally obtain 

the values of t ,   and  . Thus, the resulting 

approximation cubic Bezier curve is also obtained. 
A standard interpolation problem is to solve a 

linear system  
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The least-squares method is to solve the new 
control points by minimizing  
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Usually, the least-squares method produces 
well-behaved results compared to those of the 
standard interpolation method, but it cannot ensure 
that the resulting curve exactly interpolates the data 

points }{ ijp . 

 
5.  Numerical Examples 

Example 1 By considering  
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 we have a surface with the shape were shown 
in Figure 2.  

 
Figure 2. Parametric approximation 
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The flatted shape is shown in Figure 3:  

 
Figure 3. The flatted parametric approximation (1) 

 

Example 2 By considering  
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 we have a surface with the shape were 
shown in Figure 4.  

 
Figure 4. Parametric approximation 

 
3. Conclusion 
          In this work we extend a method of 
approximating curves by least squares to compute a 
surface. 
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