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Abstract: In this paper, we consider the mobility effect with a jointly optimal design of cross-layer congestion 
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constraint. In this way, we use multi-commodity flow variables. Then formulate resource allocation in networks 
with fixed wireless channel and single-rate devices. Because of entrance of the effect mobility in optimal design, we 
formulate resource allocation as utility and cost function, together in a maximization problem with those constraints. 
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1. Introduction 

Traditionally, network protocols take a 
layered structure and perform congestion control, 
routing and scheduling independently at different 
layers. However, wireless spectrum is a scarce 
resource, and it has importance to use the wireless 
channel efficiently. For this purpose, congestion 
control, routing and scheduling should be jointly 
designed. 

The need for joint design across these three 
layers is motivated by three observations. First, 
wireless channel is a shared medium and 
interference-limited. In wire-line networks, links are 
disjoint resources with fixed capacities. But in ad-hoc 
wireless networks the link capacities are “elastic” and 
because of the contention among links we have a 
constraint for resource allocation, i.e., they determine 
the feasible rate region at link layer (Ren & Zhang, 
2010) and (Korger et al., 2010). Second, most routing 
schemes for ad hoc networks select paths that 
minimize hop count. Therefore, a route is defined for 
any source-destination pair, independent of traffic, 
interference and contention among links. This may 
result in congestion at some region while other 
regions are not utilized perfectly and optimally. To 
use the wireless spectrum more efficiently, we should 
exploit multiple paths based on the pattern of traffic 
demand, interference and contention among links. As 
we will see, routing is then determined from the rate 
and scheduling constraints. Lastly, TCP congestion 
control can be interpreted as distributed algorithms 
(primal-dual problem) to maximize aggregate utility. 

In these algorithms, a network is assumed with fixed 
link capacities and pre-specified routes. 

In all cross-layer designs for congestion 
control in ad-hoc networks, the effect of node 
mobility on source rate control and resource 
allocation is not considered. Mobility can effect on 
link cost (for example the length of link).When nodes 
have mobility, the distances between them, change 
frequently. Consequently, the path for transmitting 
data will become longer or shorter. If in congestion 
control and routing, we don’t consider the mobility 
effect, and just consider the congestion price, the 
price that will be imposed on us when occurring 
congestion in network; data may be transmitted from 
longer path. It is obvious that this problem is not 
optimal. Increasing length between two nodes will 
cause the larger delay to transmit data and to 
attenuate the radio signal. When the radio signal 
decreases, the transmission error, data loss and 
interference increase. 

 Here we extend the basic utility 
maximization formulation to handle the link cost 
simultaneously. We model the mobility effect as link 
cost and by this extension, especially in ad-hoc 
networks without pre-specified routes, we are able to 
handle the mobility in congestion control and solve 
the maximization problem. We model the contention 
between wireless links as a contention flow graph. By 
this structure, we indicate which sets of links 
interfere and cannot transmit simultaneously. The 
feasible rate region at link layer is the convex hull of 
corresponding rate vectors of independent sets of the 
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contention flow graph. We use multi-commodity 
flow variables (Chen et al., 2006) to formulate rate 
constraint at the network layer and formulate 
resource allocation in wireless ad hoc networks with 
fixed channel or single-rate devices as a 
maximization problem with those constraints. In this 
maximization problem, by introducing a new multi-
commodity variable for link cost, we consider both 
utility and cost in optimization problem. We then 
apply duality theory to decompose the system 
problem vertically into congestion control sub-
problem and routing/scheduling sub-problem. These 
two sub-problems interact through congestion prices 
and link costs. Based on this decomposition, by using 
sub-gradient method we can obtain a distributed 
algorithm for link state aware cross-layer design for 
joint congestion control, routing and scheduling and 
prove the convergence of this algorithm to optimal 
value. In this design, the source adjusts its sending 
rate according to congestion price generated locally 
at the source node. By differential price of 
neighboring nodes, that is obtained with congestion 
price and link cost, the optimal scheduling and 
routing is satisfied. 
 
2. Related Works 

The work in (Kelly et al., 1998), (Low & 
Lapsley, 1999) and (Low, 2003) provides a utility-
based optimization framework for internet congestion 
control. For ad-hoc networks, similar framework has 
been applied for congestion control, (Chiang, 2005), 
(Oh et al., 2009), (Xue et al., 2003) and (Chen et al., 
2005). In (Chen et al., 2005), the authors study joint 
congestion control and media access control for ad-
hoc wireless network, and formulate rate allocation 
as a utility maximization problem with the constraints 
that arise from contention for channel access. 

In (Neely et al., 2005), the authors use 
multi-commodity flow variables to characterize the 
network capacity region for a wireless network with 
time-varying channel, and propose a joint routing and 
power allocation policy to stabilize the system 
whenever the input rates are within this capacity 
region. In (Jain et al., 2003), the authors study the 
impact of interference on multi-hop wireless network 
performance. They model wireless interference using 
the conflict graph. We use the same structure to 
model the contention among wireless links. In (Hajek 
& Sasaki, 1988), the author uses a similar model to 
study the problem of jointly routing the flows and 
scheduling the transmissions to determine the 
achievable rates in wireless networks. These works 
focus on the interaction between link and network 
layers and characterize the achievable rate region at 
network layer. In (Chen et al., 2006), the authors 
include the end-to-end transport layer, and so, the 

network uses congestion control to automatically 
explore the achievable rate region while optimizing 
some global objective for the end users. 

Motivated by the duality model of 
TCP/AQM, which is an example of “horizontal” 
decomposition via dual decomposition; researchers 
have extended the utility maximization framework to 
provide a general cross-layer design methodology. 
Duality theory leads to a natural “vertical” 
decomposition into separate designs of different 
layers that interact through congestion price. Recent 
works along this line of “layering as optimization 
decomposition” (Chiang et al., 2006) includes (Xiao 
et al., 2004) for routing and resource allocation, 
(Chen et al., 2006), for TCP and physical layer, and 
(Chen et al., 2005), (Lee et al., 2006), (Lin & Shroff, 
2004) for joint TCP and media access control or 
scheduling. In above cross-layer designs, the node 
mobility has not been considered. We present a 
method to handle this problem by defining a link cost 
variable. 

Our goal in this paper is to import the node 
mobility effect on congestion control in ad-hoc 
networks via a cross-layer design. In this way, we use 
the main idea presented in (Chen et al., 2006). In 
(Chen et al., 2006), a cross-layer joint design for 
congestion control, routing and scheduling is 
presented. We extend the work to handle the mobility 
problem and study its effect simultaneously, in 
congestion control, routing and scheduling. 
 
3. The Model 

Consider an ad hoc wireless network with a 
set � of nodes and a set � of links. These links are 
directed and symmetric, i.e., link (�, �) ∈ �  if and 
only if (�, �) ∈ � . The topology of network is static. 
Each link � ∈ �  has a fixed finite capacity �� bits per 
second, i.e., we assume that the wireless channel is 
fixed.In order to thoroughly simulate a new protocol 
for an ad-hoc network, it is imperative to use a 
mobility model that accurately represents the mobile 
nodes (MNs). Currently, there are two types of 
mobility models used in the simulation of networks: 
traces and synthetic models (Korger et al., 2010), 
(Sanchez & Manzoni, 1999) and (Eason et al., 1955). 
Traces are those mobility patterns that are observed 
in real-life systems. However, new network 
environments such ad-hoc networks, are not easily 
modeled if traces have not yet been created. In this 
type of situation, it is necessary to use synthetic 
models. Synthetic models attempt to realistically 
represent the behaviors of MNs without the use of 
traces. We will use a proper synthetic mobility model 
for movement of nodes in wireless ad-hoc network. 
Based on this model, we define a cost variable for 
each link in wireless network.  
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Wireless channel is a shared medium and 
interference-limited where links contend with each 
other for exclusive access to the channel. We will use 
the conflict graph to capture the contention relations 
among links. The feasible rate region at link layer is 
then a convex hull of the corresponding rate vectors 
of independent sets of the conflict graph. We will 
introduce multi-commodity cost variables, which 
correspond to the link cost to describe the mobility 
effect on link length and multi-commodity flow 
variables to the capacities allocated to the flows 
towards different destinations, to describe the rate 
constraint at network layer. The resource allocation is 
formulated as a utility minus cost maximization 
problem with schedulability and rate constraints. 

 
3.1. Mobility Model 

We assume a military environment and 
according to this assumption use a mobility model in 
this paper. We assume the nodes remain in each other 
radio range and because of mobility, the connectivity 
of network is preserved. In military movements, like 
movement of soldiers, tanks and etc, nodes have 
continuous movement and this movement is not quite 
random, because movements are based on human 
behaviors and military strategies. In other words, the 
current move in new step is not independent of its 
past move and depends on it, both in speed and 
direction. By allowing past speeds (and directions) to 
influence future speeds (and directions), we can 
eliminate the sudden stops and sharp turns, like 
realistic movements (Camp et al., 2002). 

According to above discussion, we use following 
model for mobility. A velocity vector �̅ = (�, �)  is 
used to describe a MNs’ velocity �  as well as its 
direction � ; the MNs’ position is represented as 
(�, �) . Both the velocity vector and the position are 
updated at every ∆�  time steps according to the 
following formulas: 
� (� + ∆� ) = ��� {���[� (�) + ∆�, 0 ] , ���� }         (1) 
� (� + ∆� ) = � (�) + ∆�;   
�(� + ∆� ) = � (�) + � (�) ∗ ���� (�);  
� (� + ∆� ) = � (�) + � (�) ∗ ���� (�);  

where ����  is the maximum velocity defined in 
the simulation, ∆�  is the change in velocity that is 
uniformly distributed between [−� ��� ∗ ∆�, � ��� ∗
∆� ], ����  is the maximum acceleration of a given 
MN, ∆�  is the change in direction that is uniformly 
distributed between [−� ∗ ∆�, � ∗ ∆� ]  and �  is the 
maximum angular change in the direction a MN is 
traveling (Haas, 1997). In problem formulation, we 
introduce multi-commodity variables as the amount 
of costs that link incurred while transmitting flow to 
the destination � , like definition used for flow 
variables in (Chen et al., 2006). 

 

3.2. Schedulability and Rate Constraint 
In this paper, we consider a network with primary 

interference model: links that share a common node 
cannot transmit or receive simultaneously, but links 
that do not share nodes can do so. Under this 
interference model, we can construct a conflict graph 
(Jain et al., 2003) that shows the contention relations 
among the links. In the conflict graph, each vertex 
represents a link, and an edge between two vertices 
denotes the contention between the two 
corresponding links: these links cannot transmit at the 
same time. Figure 1 shows an example of a wireless 
ad-hoc network and its conflict graph with primary 
interference model. 

 

 

 
Figure 1. An ad hoc wireless network (upper) with 4 

nodes and 8 links and its conflict graph (lower) 
 

By a conflict graph, we identify all its 
independent sets of vertices. It's obvious that all links 
in an independent set can transmit simultaneously. 
For instance, in Fig.1, {1, 8}, {2, 8}, {4, 6} … are 
some independent sets. Let E denote the set of all 
independent sets. We represent an independent set by 
e as a |�|-dimensional rate vector � � , where the � th 
entry is: 

��
� ∶= �

��        ��   � ∈ �
0     ��ℎ������

�                                             (2) 
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Then define the feasible rate region �  at the link 
layer as a convex hull of these rate vectors: 

� ∶= {�: � = ∑ �� �
� ,� �� ≥ 0, ∑ �� = 1� }              (3) 

Thus, for a link flow vector such y, 
theschedulability constraint says that � ∈ � . 

Denote the set of destination nodes of network 
layer flows by D. 

Let ��,�
� ≥ 0  denote the amount of capacity of link 

(�, �) allocated to the flow to destination � . Then 
��,� = ∑ ��,�

�
�∈�  is the aggregate capacity on link (�, �). 

From the schedulability constraint, � =: {� �,�} should 
satisfy the condition: 
� ∈ �                                                                        (4) 

Let ��
� ≥ 0  denote the flow generated at node � 

towards destination � . Then the aggregate capacity 
for its incoming flows and generated flow to the 
destination �  should not exceed the summation of the 
capacities for its outgoing flows to �: 
��

� ≤ ∑ ��,�
�

�:(�,�)∈� − ∑ ��,�
�

�:(�,�)∈�                               (5) 

� ∈ �, � ∈ �, � ≠ �   
Equation (5) is the rate constraint for resource 

allocation. Results in (Chen et al., 2006) give multi-
commodity flow variables a different interpretation 
as the amount of link capacities allocated to the flows 
of different destinations. 

 
3.3. Problem Formulation 

We use � ∈ �  or alternatively node pair (�, �) ∈
� × �  to denote a link. Assume the network is 
shared by a set �  of sources indexed by � . We use 
node pair [�, �] ∈ � × �  to denote a network layer 
flow. 

Assume each source �  attains a utility ��(��) 
when it transmits at rate �� packets per second. We 
assume ��(. )  is continuously differentiable, 
increasing, and strictly concave. 

For cost function, we introduce the multi-
commodity link cost variable for each link. 
According to the mobility model in section 3.1 we 
model the cost mobility with cost link. For each link 
we set a cost. This cost is dependent to length of that 
link. For example, if due to mobility of nodes, the 
length of link increases, consequently its cost, 
increases too. Because of transmitting data by this 
link, we see a larger path and a larger delay. Thus, we 
use ��,�

�  for link cost. It is interpreted in this way: the 

link (�, �) to transmit data ��,�
�  to destination � , incurs 

the cost ��,�
� . Our objective is to choose source rates 

��  and allocated capacities ��,�
�  so as to solve the 

following global problem: 

���
� � ��,� �,�

� ��
�∑ ��(��� ) − ∑ ��,�

� ��,�
�

(�,�),� �               (6) 

��
� ≤ ∑ ��,�

�
�:(�,�)∈� − ∑ ��,�

�
�:(�,�)∈�                              (7) 

� ∈ �                                                                        (8) 

where� ∈ �, � ∈ �, � ≠ � , and ��
� = 0  if [�, �] ∉

� × � . 
Solving the system problem (6)-(8) directly 

requires coordination among possibly all sources and 
links, thus is impractical in real network. Since (6) is 
a convex optimization problem with strong duality, 
distributed algorithms can be derived by formulating 
and solving its Lagrange dual problem. In the next 
section, we will solve the dual problem and interpret 
the resulting algorithm in the context of joint design 
of congestion control, routing and scheduling. 
 
4. Cross-Layer Design via Dual Decomposition 

Consider the Lagrangian problem with respect to 
rate constraints: 
�(�, �, �) = ∑ ��(��) − ∑ ��,�

� ��,�
�

(�,�),� −�   

∑ � �
�(��

� − ∑ ��,�
�

�:(�,�)∈� − ∑ ��,�
�

�:(�,�)∈��∈�,�∈�,��� ) (9) 

The dual problem to the primal problem (6-8) is: 
��� ��� �(� )                                                          (10) 

With partial dual function: 
�(� ) = ���(� (�, �, �))                                       (11) 
� ∈ �   

where we relax only the constraint (7) by 
introducing Lagrange multiplier � �

�  for node �  and 
destination � . The maximization problem in (11) can 
be decomposed into the following two sub problems:  
�� (� ) = ��� � � ��

∑ ��(��) − ∑ ���� � �                (12) 

�� (� ) = ���
��,�

� ��
∑ � �

��∑ ��,�
�

�:(�,�)∈� −�∈�,�∈�,���

∑ ��,�
�

�:(�,�)∈� � − ∑ ��,�
� ��,�

�
(�,�),�                                  (13) 

If we interpret � �
� as the congestion price, the first 

sub problem is congestion control (Low & Lapsley, 
1999) and (Low, 2003), and the second one is the 
joint routing and scheduling since to solve it we need 
to determine the amount of capacity ��,�

�  that link (�, �) 

is allocated to transmit the data flow towards 
destination � . Thus, by dual decomposition, the flow 
optimization problem decomposes into separate 
“local” optimization problems of transport and 
network/link layers, respectively, and they interact 
through congestion prices. The congestion control 
problem (12) admits a unique maximizer: 
��(� ) = � �

��� (� �)                                                  (14) 
which adjusts the source rate according to the 

congestion price of the source node. In contrast to 
traditional TCP congestion control where the source 
adjusts its sending rate according to the aggregate 
price along its path, in our algorithm the congestion 
price is generated locally at the source node. 

We can simply, verify that: 
∑ � �

�
�,� �∑ ��,�

�
�:(�,�)∈� − ∑ ��,�

�
�:(�,�)∈� � =

∑ ��,�
�

�,�,� �� �
� − � �

� − � �,�
� �                                      (15) 

��� � = �: � �
� = 0   
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Problem (13) is equivalent to the following 
problem: 
�� (� ) =  ��� �∈� ∑ ��,��,� ����(� �

� − � �
� − � ��

� )  (16) 

This motivates the following joint scheduling and 
routing algorithm: 

 
Algorithm 1: Joint Scheduling & Routing Algorithm 

a) For each link (�, �), find destination � ∗  such 

that � (�) ∈ ��� ��� ��� �
�(� )(�) − � �

�(� )(�) −

���
�(� )� and define: 

���(�) = � �
�(� )(�) − � �

�(� )(�) − � ��
�(� )        (17) 

b) Scheduling: choose ����  such that: 

��(�) ∈ ��� ��� �∈� ∑ ��,�(�,�)∈� (�)��,�    (18) 
The scheduling (18) is a difficult problem 
form ad hoc wireless network. We will 
discuss its solution in detail in section 4.2. 

c) Routing: over link (�, �), send an amount of 
bits for destination � ∗  according to the rate 
determined by the above scheduling. The ��,� 

values represent the maximum differential 
congestion price of destination �  packets 
between nodes �  and � . Note that 1–3 is 
equivalent to solve the problem (13) by the 
following assignment: 

���
�(�) = �

����(�)   ��  � = �(�)

0          ��  � ≠ �(�)
�                  (19) 

Now we come to solve the dual problem (10). 
Note that the dual function �(�)  is not differentiable, 
as �� (�)  is a piecewise linear function and not 
differentiable. Therefore, we cannot use the usual 
gradient methods; we will instead solve the dual 
problem using sub gradient method. Suppose ���

�  is 

the solution from the above joint routing and 
scheduling algorithm. It is easy to verify that: 
��

�(� ) =   

� ∑ ��,�
� (� ) − ∑ ��,�

�
�:(�,�)∈��: (�,�)∈� (� )� − � �

�(� )      (20) 

is a sub gradient of dual function �(�)  at point � . 
Thus, by the sub gradient method (Bertsekas, 1999), 
we obtain the following algorithm for price 
adjustment for node destination pair (�, �) : 
� �

�(� + 1 ) =

�� �
�(�) + � � � ��

��� (�)� − � ∑ ��,�
� �� (�)� −�:(�,�)∈�

∑ ��,�
�

�:(�,�)∈� �� (�)�� ��
�

                                         (21) 

Where ��  is a positive scalar step size, and ‘+’ 
denotes the projection onto the set ℛ �  of non-
negative real numbers. 

Equation (21) says that, if the demand ��
�(�(�))  

for bandwidth at node � for the flow to destination �  
exceeds the effective capacity ∑ ��,�

�
�:(�,�)∈� −

∑ ��,�
�

�:(�,�)∈� , the price � �
� will rise, which will in turn 

decrease the demand (see (14)) and increases 
effective capacity (see (16)). Also, note that (21) is 
distributed and can be implemented by individual 
nodes using only local information. The above dual 
algorithm motivates a joint congestion control, 
routing and scheduling design where at the transport 
layer sources �  individually adjust their rates 
according to the local congestion price, and nodes � 
individually update their prices according to (21); and 
at the network/link layer nodes � solve the scheduling 
(18) and route data flows accordingly. 

 
4.1. Convergence Analysis 

In this subsection, we discuss about convergence 
property of Algorithm 1. The new iteration may not 
improve the dual cost for all values of the step size.  
Because, sub gradient may not be a direction of 
descent, but makes an angle less than 90 degrees with 
all descent directions. It is shown that (Bertsekas, 
1999), for constant step size, the algorithm is 
guaranteed to converge to a neighborhood of the 
optimal value. For diminishing step size, the 
algorithm is guaranteed to converge to the optimal 
value. We would like a distributed implementation of 
the sub gradient algorithm, and thus a constant step 
size �� = �  is more convenient. Note that the dual 
cost usually will not monotonically approach the 
optimal value, but wander around it under the sub 
gradient algorithm. The usual criterion for stability 
and convergence is not applicable. The convergence 
analysis of our algorithm is exactly similar to the 
proof in (Chen et al., 2006).  

 
4.2. Scheduling over Ad Hoc Networks 

Scheduling over ad hoc network is a difficult 
problem and in general NP-hard. To see this, note 
that problem (18) is equivalent to a maximum weight 
independent set problem over the conflict graph, 
which is NP-hard for general graphs. However, with 
the primary interference model we show that problem 
(18) can be reduced to the maximum weighted 
matching problem, which is polynomial time 
solvable.  

The scheduling problem (18) is to maximize the 
weighted sum of the link capacities with the 
schedulability constraint. It is defined on a weighted 
digraph whose link weights ��,�  can take negative 

value. To see how it is related to the maximum 
weighted matching problem, first note that ��,� > 0  if 

��,� < 0  and vice versa. Second, note that links (�, �) 

and (�, �)  mutually (�, �), (�, �) ∈ � , define an 
undirected link 〈�, �〉  with weight ��,�

� =

������,���,�,��,���,�� . A matching in a graph is a 
subset of links, no two of which share a common 
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node. The weight of a matching is the total weight of 
all its links. 

A maximum weighted matching in a graph is a 
matching whose weight is maximized over all 
matchings of the graph. Interfere and have the same 
interference/contention relations with other links. 
Corresponding to each directed link pair 

Let �� denote the set of undirected links and �� 
the corresponding set of weights, the scheduling 
problem (18) is then equivalent to the maximum 
weighted matching problem on the weighted graph 
�� = (�, � �,��) . Note that an (maximal) 
independent set in the conflict graph will correspond 
to a (maximal) matching in this undirected graph. 
Maximum weighted matching problem can be 
computed in polynomial time (see, e.g., 
(Papadimitriou & Steiglitz, 1998)), but this requires 
centralized implementation. If implemented over an 
ad hoc network, each node needs to notify the central 
node of its weight and local connectivity information 
such that the central node can reconstruct the network 
topology as a weighted graph. This will lead to an 
immense communication overhead which is 
expensive in time and resources. There also exist 
simpler greedy sequential algorithms to compute a 
weighted matching at most a factor of 2 away from 
the maximum (see. e.g. (Preis, 1999)). But they also 
require centralized implementation. We seek a 
distributed algorithm where each node participates in 
the computation itself using only local information. 

In (Hoepman, 2004), the author presents a simple 
distributed algorithm to compute a weighted 
matching at most a factor of 2 away from the 
maximum in linear running time �(|��|) . This 
algorithm is a distributed variant of the sequential 
greedy algorithm presented in (Preis, 1999). We 
utilize this algorithm to solve our scheduling problem 
(18) distributedly, as summarized below. 

 
Algorithm 2: Distributed Scheduling Algorithm 

Each node � carries out the following steps: 
Step1) Calculate weight 

��,�
� = ��� ���,���,�,��,���,��  for each directed link 

pair (�, �), (�, �) ∈ � incident upon it. Ties are broken 
randomly. 

Step2) Find node �∗  such that ��,�∗
�∗  is maximized 

over all links 〈�, �〉 ∈ � � with free neighbors �. 
–If having received a matching request from �∗ , 

then link 〈�, �∗ 〉  is a matched link. Node �  sends a 
matched reply and a drop message to all other free 
neighbors. 

–Otherwise, node to � sends a matching request to 
node �∗ . 

Step3) Upon receiving a matching request from 
neighbor �: 

–If � = � ∗ , then link 〈�, �〉 is a matched link. Node 
� sends a matched reply to node � and a drop message 
to all other free neighbors. 

–If � ≠ � ∗ , node �  just stores the received 
message. 

Step4) Upon receiving a matched reply from 
neighbor �, node � knows link 〈�, �〉 is a matched link, 
and send a drop message to all other free neighbors. 

Step5) Upon receiving a drop message from 
neighbor �, node � knows that � is in a matched link, 
and excludes � from its freeneighbors set. 

Step6) If node � is in a matched link or has no 
free neighbors, no further action is taken. Otherwise, 
it will repeat Steps 2-5. 

Step7) Matched links are allowed to transmit. 
Nodes � , � in a matched link 〈�, �〉 will schedule the 
directed link, which gives value ��,�

� , to transmit. 

Steps 2-6 are the distributed algorithm for 
maximum weighted matching problem. A link that 
has been chosen to be in the matching is called 
matched link. Nodes that are not incident upon any 
matched link are called free. A matching request is 
sent to inquire the possibility to choose the link with 
a neighbor as a matched link. A matched reply is sent 
to confirm that the link with a neighbor is matched. A 
node sends drop message to tell its neighbors that it is 
not free anymore. 

Define a link 〈�, �〉 to be locally heaviest link if for 
both � and �, its weight is maximized over all links 
with free neighbors.We can see that this algorithm 
selects locally heaviest links as matched. Thus, 
Algorithm 2 is a locally optimal scheduling. 

 
5. Numerical Example 

In this section, we provide numerical examples to 
complement the analysis in the previous sections. We 
consider the network shown in Fig.1, and assume that 
there are two network layer flows � → � and � → � 
with the same utility ��(��) = ���� � . We have 
chosen such a small and simple topology to facilitate 
detailed discussion of the results. 

We assume that links CD, DC, AC, CA have one 
unit of capacity and all other links have 2 units of 
capacity when active. We first simulate Algorithm 1 
with perfect scheduling and without any cost, i.e. 
���

� = 0 .  Figures 2 and 3 show the evolution of 

source rate flows � → �  and � → �  with step 
size � = 0.1 . We see that they converge quickly to a 
neighborhood of the optimal and oscillate around the 
optimal.  

 



Journal of American Science2013;9(2)                                                   http://www.jofamericanscience.org 

  

162 
 

 
Figure 2. Source rate for flow A → D 

 

 
Figure 3. Source rate for flow B → C 

This oscillating behavior mathematically results 
from the non-differentiability of the dual function and 
physically is due to the scheduling process.  

However, Figures 4 and 5 show that the average 
source rates and congestion prices are smooth and 
approach the optimum value, monotonically.  

 

 
Figure 4. Average source rates 

 

 
Figure 5. Average congestion prices 

Tables 1 and 2 show the average link rates 
allocated to each flow. In all tables in this section, the 
first column is the sending nodes and the first row is 
the receiving nodes of each directed link.  
 

Table 1. Average rates of flowB → C through 
different links with Algorithm 1 (Perfect Scheduling) 

Rates A B C D 
A 0 0 0.1958 - 
B 0.2062 0 - 0.7992 
C 0 - 0 0 
D - 0 0.8322 0 

 
Table 2. Average rates of flowA → Dthrough 

different links with Algorithm 1 (Perfect Scheduling) 
Rates A B C D 
A 0 0.0080 0.8002 - 
B 0 0 - 0 
C 0 - 0 0.8012 
D - 0 0 0 

 
From Tables 1 and 2, we can say which paths 

each flow has used. Note that link BA is not used. 
This is due to the fact that BA is near the sources and 
is the link with most contention. So, an optimal 
routing and scheduling will not activate it. 

Now, we simulate Algorithm 1 with the 
distributed, approximate scheduling (Algorithm 2). 
The results are shown in Figures 6 and 7. The 
evolutions of source rates, congestion prices and their 
averages are similar to those with perfect scheduling: 
they converge quickly to a neighborhood of stable 
values.  

 

Figure 6. Average source rates, distributed 
scheduling 

Figure 7. Average congestion prices, distributed 
scheduling 

As expected, the source rates are less than those 
achieved with perfect scheduling, since the feasible 
rate region is smaller under the approximate 
scheduling. 
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Tables 3 and 4, summarize the average link rates 
allocated to each flow when we use the distributed 
algorithm. It is obvious that the routing pattern has 
been changed, due to the distributed scheduling. Also 
note that every link is used in routing, since each link 
has a chance to be a locally heaviest link. 

 
Table 3. Average rates of flows B → C through 

different links, Algorithm 1 (Distributed Scheduling) 
Rates A B C D 
A 0 0 0.3626 - 
B 0.3689 0 - 0.3736 
C 0 - 0 0 
D - 0 0.3676 0 

 
Table 4. Average rates of flows A → D through 

different links, Algorithm 1 (Distributed Scheduling) 
Rates A B C D 
A 0 0.6314 0.1369 - 
B 0 0 - 0.6254 
C 0 - 0 0.1329 
D - 0 0 0 

 
Though its worst case performance bound is 1/2, 

our results show that the degradation of the 
performance of Algorithm 1 with distributed 
scheduling is small. Beside its low communication 
overhead, fast convergence and good performance 
with distributed scheduling, our cross-layer design is 
promising for practical implementation. 

Now, based on presented model in section 3 for 
mobility of nodes and for cost function respect to 
mobility, we simulate Algorithm 1. We assume each 
node can move in a rectangular area (300,600) and 
have the mobility pattern for 10 seconds as shown in 
Figure 8. 

 
Figure 8. Mobility pattern for 10 seconds 

In Figure 9 we see the distance changes 
between nodes in 10 seconds, too. These distances 
are link costs in our algorithm. 
 

 
Figure 9. Distance changes between nodes in 10 

seconds 
 

Figures10, 11, 12 and 13show the source rates 
and congestion prices when the distances between 
nodes change. 

 

Figure 10. Source rate for flow � → � 
 

If consider the source rate in Figure10, for 
flow � → �, we see the rate is decreased. Because 
this link have capacity of two, the average rate of it is 
higher than other links. Since the link lengths � → � 
and � → �  are increased, the costs of them are 
increased, relatively. Therefore the source A 
decreases its rate. 
 

Figure 11.Source rate for flow � → � 
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Figure 12. Congestion price for flow � → � 
 

Figure 13. Congestion price for flow � → � 
 

In Figures 14 and 15, we consider the average 
link rates for links � → �  and � → � . The rate in 
link � → �  after mobility due to decrease of link 
length, is increased. The rate in link � → � due to 
increase of link length, is decreased. In all figures of 
mobility section, we see the values, converge to 
stable value after 3-4 seconds. Thus if the time 
between distance change in mobility pattern be larger 
of this value, we can run our algorithm completely 
dynamically. 

 

Figure 14. Average link rate for � → � 

 
Figure 15. Average link rate for � → � 

 
6. Discussions  

We have presented a model for the mobility 
aware joint design of congestion control, routing and 
scheduling for ad hoc wireless networks by extending 
the framework of network utility maximization to 
utility-cost maximization and applying dual-based 
decompositions. 

We formulate resource allocation in the network 
with fixed wireless channels or single-rate wireless 
devices as a utility maximization problem with 
schedulability and rate constraints arising from 
contention for the wireless channel. We add the 
mobility effect to utility problem by introducing link 
cost as a multi-commodity variable. By dual 
decomposition, we derive a sub gradient algorithm 
that is not only distributed spatially, but more 
interestingly, decomposes the system problem 
vertically into three protocol layers where congestion 
control, routing and scheduling jointly solve the 
network utility maximization problem.  

Further research steps stemming out of this paper 
include the following. First, unique features in our 
algorithm for practical implementations need to be 
further leveraged. Second, we will extend the results 
to networks with more general interference models. 
Third, scheduling problem is always a challenging 
problem for ad hoc network, and continued 
exploration of distributed scheduling protocols will 
further enhance the performance gain from cross-
layer design involving link layer. Fourth, we assume 
that the topology due to mobility is not changed. In 
next works, we must eliminate this assumption to 
have a more realistic model for network. 
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