Synthesis of Some Medicinal and Biological Active (2E)-2-(5-Substituted 2-thienylmethylene)-4-oxo-4arylbutanamides and (2E,3Z)-4-hydroxy-4-aryl-2-(5-substituted thien-2-ylmethylene)but-3-enohydrazides

Boshra M. Awad,* Hanaa A. Saad, Ekhlass M. Nassar, and Eman M. Azmy

Chemistry Department, Faculty of Women for Arts, Science, and Education, Ain Shams University Cairo, Egypt boshra_awad@yahoo.com

Abstract: Solvent-free microwave irradiation of (3E)-5-phenyl-3-(2-thienylmethylene)furan-2(3H)-one 1, (3E)-5-(4-methylphenyl)-3-(2-thienylmethylene)furan-2(3H)-one 2, and (3E)-3-[(5-methyl-2-thienyl)methylene]-5-phenylfuran-2(3H)-one 3 with aromatic and aliphatic amines (a-g and i) gave the corresponding (2E)-2-(5-substituted 2-thienylmethylene)-4-oxo-4-arylbutanamides 4-10, 12, 13-19, 21, 22-28, and 30. However, reaction of furanones 1-3 with hydrazine hydrate (h) gave (2E,3Z)-4-hydroxy-4-phenyl-2-(thien-2-ylmethylene)but-3-enohydrazide 11, (2E,3Z)-4-hydroxy-4-(4-methylphenyl)-2-(thien-2-ylmethylene)but-3-enohydrazide 20, and (2E,3Z)-4-hydroxy-2-[(5-methylthien-2-yl)methylene]-4-phenylbut-3-enohydrazide 29, respectively. Comparison between microwave-assisted and thermal heating synthesis of compounds 4-30 showed that microwave irradiation significantly reduces the reaction time with the enhancement of yields and purity. Structural formulas of synthesized compounds were assigned by their spectral data. Mechanisms of reactions are proposed. Some synthesized products showed antibacterial and cytotoxic activity.

[Boshra M. Awad, Hanaa A. Saad, Ekhlass M. Nassar and Eman M. Azmy. Synthesis of Some Medicinal and Biological Active (2E)-2-(5-Substituted 2-thienylmethylene)-4-oxo-4-arylbutanamides and (2E,3Z)-4-hydroxy-4-aryl-2-(5-substituted thien-2-ylmethylene)but-3-enohydrazides. *J Am Sci* 2013;9(6):566-577]. (ISSN: 1545-1003). http://www.jofamericanscience.org. 71

Keywords: Microwave, furanones, butanamides, hydrazides, green chemistry, antibacterial and cytotoxic activity

1. Introduction

Furanones are widely distributed in nature and found in about 10% of all natural compounds. They display a broad biological profile including strong antibiotic, antihelmetic, antifungal, antitumor, antiviral, anti-inflammatory and cytostatic properties, which make them interesting to be synthesized.¹⁻³ El-Abbady et al.,⁴ prepared 2-(1-acetyl-2-oxo-2,3-dihydro-1H-indol-3-yl)-N-benzyl-4-oxo-4-

arylbuntanamides and (2E)-2-(1-acetyl-2-oxo-1,2dihydro-3H-indol-3-ylidene)-4-oxo-4-

arylbutanehydrazides, from the reflux of (3E)-1acetyl-3-(5-aryl-2-oxofuran-3(2H)-ylidene)-1,3-

dihydro-2H-indol-2-ones with benzyl amine and hydrazine hydrate in ethanol. Guirguis et al⁵., synthesized (3E)-5-phenyl-3-(2thienylmethylene)furan-2(3H)-one 1. (3E)-5-(4methylphenyl)-3-(2-thienylmethylene)furan-2(3H)one 2, and (3E)-3-[(5-methyl-2-thienyl)methylene]-5phenylfuran-2(3H)-one⁶ **3** from the reaction of 4substituted β-benzoylpropionic acid with 5-methyl-2furancarboxyaldehyde, 5-methylthiophene-2carboxyaldehyde, or thiophen-2-carboxyaldehyde under Perkin's conditions. Hashem et al.,⁷ found that reflux of 2(3H)-furanones with hydrazine hydrate in ethanol, led to ring opening with the formation of the E-isomers of α -aracyl- β -(2-furyl) acrylic acid hydrazides as the only products. There was no detectable amount of the corresponding Z-isomers according to the ¹HNMR spectra. However ring closure of the acrylic acid hydrazides obtained using a mixture from acetic acid and hydrochloric acid gave the corresponding pyridazinones.⁸ Also it was reported that the conversion of furanone derivatives into (E)-2-aroylmethyl-3-arylacrylohydrazides took place by their reaction with hydrazine in ethanol at room temperature for 2 days under stirring.⁹

Microwave technology has become very important in many areas of preparative science and particularly in the area of synthetic chemistry. Microwave methods have become reliable, safe and relatively inexpensive.^{10,11} It proved to accomplish the reactions with excellent yields, high purity, assist cyclization, regioselectivity, and convenient working out¹²⁻¹⁷ than the conventional thermal heating technique. Moreover it proves to be more economically and environmentally safe (green chemistry) than thermal heating technique.

The aim of the present work is to extend and compare between furanones and anhydrides¹⁸⁻²⁰, as α,β -unsaturated carbonyl compounds, on their reaction with different aliphatic and aromatic amines and phenylhydrazine, using microwave irradiation and thermal heating techniques.

General Remarks

Spectral measurements were carried out at Micro Analytical Centre, Faculty of Science, Cairo University, using:

(a) FTIR: PERKIN-ELMER-1430; Infrared Spectrophotometer.

- (b) GCMS QP 1000 EX Shimaedzy; MS spectra.
- (c) Varian Gemmi (300 MHz); ¹H-NMR spectra.

Microwave irradiation was carried out in a Galanz Microwave Oven, WP1000AP30-2, Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University.

Antimicrobial Screening was measured at the Botany Department, Faculty of Women for Arts, Science, and Education, Ain Shams University.

Cytotoxic measurements were carried out at the National Institute of Cancer, Cairo University.

2. Experimental

(3E)-5-phenyl-3-(2-thienylmethylene)furan-2(3H)-one⁵ 1, (3E)-5-(4-methylphenyl)-3-(2thienylmethylene)furan-2(3H)-one⁵ 2 and (3E)-3-[(5methyl-2-thienyl)methylene)-5-phenylfuran-2(3H)one⁶ 3 were prepared and their structures confirmed.

Solvent-free Microwave Irradiation of Furanones 1-3 with Amines

General Procedure

In a microwave oven (1000 watt, 30-80% of its total power) a grind mixture from 1 mole furanone 1-3 and 2 moles amine with or without dimethyl formamide (DMF) was dry irradiated in an open vessel for 3-20 minutes. The time and power of each reaction were adjusted according to the reactivity, melting point, or boiling point of the starting materials. Completion of reaction was followed up by (TLC). The reaction mixture was then cooled down to the room temperature and the product obtained was dissolved in diethyl ether, chloroform, or methylene chloride, followed by washing the organic layer several times with dilute hydrochloric acid to remove the unreacted excess amine. Thoroughly wash of the organic layer with water followed by its dryness over anhydrous sodium sulfate then evaporation, gave (2E)-2-(5-substituted 2-thienvlmethylene)-4-oxo-4aryl butanamide derivatives 4-10, 12, 13-19, 21, 22**28**, **30**, (2E,3Z)-4-hydroxy-4-phenyl-2-(thien-2-ylmethylene)but-3-enohydrazide **11**, (2E,3Z)-4-hydroxy-4-(4-methylphenyl)-2-(thien-2-

ylmethylene)but-3-enohydrazide **20**, and (2E,3Z)-4hydroxy-2-[(5-methylthien-2-yl)methylene]-4-

phenylbut-3-enohydrazide **29**, respectively. The products obtained were crystallized from the appropriate solvent. Melting points, solvents of crystallization, yield, and crystals shapes are given in Table 1.

Conventional Thermal Heating of Furanones 1-3 with Amines

General Procedure

A mixture from furanone 1-3 with amines (a-i) (1:2, 1:5 or 1:10 moles) in the appropriate organic solvent was refluxed for 2-15 hours. Completion of reaction was followed up by (TLC). The reaction solvent was then distilled to give a product which was dissolved in chloroform and worked up in a similar way to that used in the microwave irradiation reaction. Reflux of furanones 1 and 3 with amines (a-i) in molar ratio 1:2 for 2 hours gave butanamides 4-10, 12, 22-28 and 30 or butenohydrazides 11, 29, respectively. However reflux of furanone 2 with amines (c, e-i) for 2 hours gave butanamides 15, 17-19, 21, or butenohydrazide 20, respectively. On the other hand, all trials to react furanone 2 with amines (a, b, or d), in molar ratios 1:2 or 1:5 under reflux up to 15 hours were unsuccessful, except with molar ration 1:10 their reflux for 15 hours yielded compounds 13, 14, and 16, respectively. All trials to condense furanones 1-3 with aromatic and aliphatic amines under conventional thermal heating technique in non polar solvents; pxylene and benzene were unsuccessful. The products obtained **4-30** were crystallized from the appropriate solvent. Melting points, solvents of crystallization, yield, and crystals shapes are given in Table 1. Their chemical structures were confirmed by spectral data: IR. ¹H-NMR, and MS.

Comp.	Compound name	Color and	m p °C/ (solvent of	Yield %	
No.		shape of crystals	crystallization)	Conventional heating	Microwave
4	(E)-4-Oxo-N,4-diphenyl-2-((thiophen-2- yl)methylene)butanamide	Brown crystals	131-132 (b)	28.53	83.00
5	(E)-4-Oxo-4-phenyl-2-((thiophen-2- yl)methylene)-N-p-tolylbutanamide	yellow crystals	164-166 (a)	44.32	85.00
6	(E)-N-(4-Methoxyphenyl)-4-oxo-4- phenyl-2-((thiophen-2- yl)methylene)butanamide	Green crystals	186-188 (a)	47.75	87.00
7	(E)-N-(4-Chlorophenyl)-4-oxo-4-phenyl- 2-((thiophen-2-yl)methylene)butanamide	Green crystals	187-189 (a)	55.11	73.50
8	(E)-N-Ethyl-4-oxo-4-phenyl-2-((thiophen- 2-yl)methylene)butanamide	Brown crystals	122-124 (b)	69.00	96.00
9	(E)-N-Butyl-4-oxo-4-phenyl-2-((thiophen- 2-yl)methylene)butanamide	Brown crystals	164-166 (a)	65.72	94.00

Table (1): Melting points and solvents of crystallization of Compounds 4-30

Comp.	Compound name	Color and	m p °C/ (solvent of	Yield %	
No.	r r r r	shape of	crystallization)	Conventional	Microwave
		crystals		heating	irradiation
10	(E)-N-Benzyl-4-oxo-4-phenyl-2-	White	199-200 (a)	59.53	89.00
	((thiophen-2-yl)methylene)butanamide	crystals			
11	(2E,3Z)-4-Hydroxy-4-phenyl-2-(thien-2-	Orange	166-168 (a)	34.27	64.48
	ylmethylene)but-3-enohydrazide	crystals			
12	(E)-4-Oxo-N`,4-diphenyl-2-((thiophen-2-	Brown	196-198 (b)	45.00	86.00
	yl)methylene)butanehydrazide	crystals			
13	(E)-4-Oxo-N-phenyl-2-((thiophen-2-	Yellow	121-123 (a)	72.02*	86.00
	yl)methylene)-4-p-tolylbutanamide	crystals			
14	(E)-4-Oxo-2-((thiophen-2-yl)methylene)-	Yellow	164-166 (a)	77.33*	88.00
	N,4-dip-tolylbutanamide	crystals			
15	(E)-N-(4-Methoxyphenyl)-4-oxo-2-	Gray	130-132 (a)	53.70	90.00
	((thiophen-2-yl)methylene)-4-p-	crystals			
	tolylbutanamide				
16	(E)-N-(4-Chlorophenyl)-4-oxo-2-	Brown	136-139 (b)	60.75*	81.00
	((thiophen-2-yl)methylene)-4-p-	crystals			
	tolylbutanamide				
17	(E)-N-Ethyl-4-oxo-2-((thiophen-2-	yellow	136-138 (b)	71.00	97.00
	yl)methylene)-4-p-tolylbutanamide	crystals			
18	(E)-N-Butyl-4-oxo-2-((thiophen-2-	Brown	159-160 (a)	67.44	95.00
10	yl)methylene)-4-p-tolylbutanamide	crystals			
19	(E)-N-Benzyl-4-oxo-2-((thiophen-2-	Yellow	159-160 (a)	69.33	91.00
• •	yl)methylene)-4-p-tolylbutanamide	crystals	202.204	26.00	
20	(2E,3Z)-4-Hydroxy-4-(4-methylphenyl)-2-	Pink	202-204 (a)	36.00	66.33
	(thien-2-ylmethylene)but-3-enohydrazide	crystals			
21	(E)-4-Oxo-N`-phenyl-2-((thiophen-2-	Orange	197-199 (b)	28.72	89.00
	yl)methylene)-4-p-tolylbutanhydrazide	crystals			
22	(E)-2-((5-Methylthiophen-2-	Yellow	118-120 (b)	60.94	90.00
	yl)methylene)-4-oxo-N,4-	crystals			
	diphenylbutanamide				01.00
23	(E)-2-((5-Methylthiophen-2-	Brown	175-177 (b)	64.00	91.00
	yl)metnylene)-4-oxo-4-pnenyl-N-p-	crystals			
24	(E) N (4 Mmethovunhonyl) 2 ((5	Drown	124.126 (b)	71.61	02.00
24	(E)-N-(4-Minethoxyphenyl)-2-((3- methylthiophen 2 yl)methylene) 4 ovo 4	orvetale	124-120 (0)	/1.01	93.00
	nhenylbutanamide	crystars			
25	(E)-N-(4-Chlorophenyl)-2-((5-	brown	162-164 (b)	68 35	83 54
20	methylthiophen-2-yl)methylene)-4-oxo-4-	crystals	102 101 (0)	00.55	05.51
	phenylbutanamide				
26	(E)-N-Ethyl-2-((5-methylthiophen-2-	Gray	162-164 (b)	77.00	99.00
	yl)methylene)-4-oxo-4-phenylbutanamide	crystals			
27	(E)-N-Butyl-2-((5-methylthiophen-2-	Yellow	126-128 (a)	73.31	96.00
	yl)methylene)4-oxo-4-phenylbutanamide	crystals			
28	(E)-N-Benzyl-2-((5-methylthiophen-2-	Yellow	180-181 (a)	74.66	93.00
	yl)methylene)-4-oxo-4-phenylbutanamide	crystals			
29	(2E, 3Z)-4-Hydroxy-2-[(5-methylthien-2-	Orange	160-162 (a)	46.66	80.00
	yl)methylene]-4-phenylbut-3-	crystals			
	enohydrazide				
30	(E)-2-((5-Methylthiophen-2-	Brick red	126-128 (b)	66.00	92.00
	yl)methylene)-4-oxo-	crystals			
	N`,4diphenylbutanhydrazide				

(a) Benzene

(b) Benzene-petroleum ether 40-60

*Molar ratio (1:10), 15 hours reflux

(2E)-4-Oxo-N,4-diphenyl-2-(2-

thienylmethylene)butanamide (4): Brown crystals from benzene-petroleum ether 40-60, mp131-132 °C, 83.00% yield in microwave and 28.53% yield in thermal. FTIR (KBr): v (cm⁻¹) = 3383 (NH, amide), 1680, and 1641 (2CO, conjugated ketone and amide). MS: m/z =347 (M⁺, 5.3%, C₂₁H₁₇NO₂S), 331(31.8, C₂₁H₁₇NOS), 330 (100, C₂₁H₁₆NOS), 270 (2.4, (2E)-N-(4-Methylphenyl)-4-oxo-4-phenyl-2-(2thienylmethylene)butanamide (5): Yellow crystals from benzene, mp 164-166 °C, 85.00% vield in microwave and 44.32% yield in thermal. FTIR (KBr): v (cm⁻¹) =3264 (NH, amide), 1680 and 1622 (2CO, conjugated ketone and amide). MS: m/z = 361(M⁺, 8%, C₂₂H₁₉NO₂S), 347 (0.3, C₂₁H₁₇NO₂S), 345 (4.7, C₂₂H₁₉NOS), 344 (14.6, C₂₂H₁₈NOS), 343 (53.2, C₂₂H₁₇NOS), 270 (1.3, C₁₅H₁₂NO₂S), 256 (9.4, $\begin{array}{c} C_{15}H_{14}NOS), \quad 254 \quad (33, \quad C_{15}H_{10}O_2S), \quad 242 \quad (3, \\ C_{14}H_{12}NOS), \quad 228 \quad (3, \quad C_{13}H_{10}NOS), \quad 227 \quad (13.4, \\ \end{array}$ C₁₄H₁₁OS), 134 (2, C₈H₈NO), and 105 (100, $C_{7}H_{5}O$).¹HNMR (DMSO-d₆): δ (ppm) = 8.05-7.94 (1H, q, H-1), 7.87-7.85 (2H, d, H-9), 7.82-7.78 (2H, m, H-6), 7.74-7.69 (1H, q, H-3), 7.60 (1H, s, H-8), 7.49-7.46 (2H, d, H-10), 7.50-7.44 (3H, m, H-7), 7.31(1H, s, H-4), 7.27-7.23 (1H, m, H-2), 3.49-3.2 (2H, imp, H-5), and 1.2 (3H, s, H-11).

(2E)-N-(4-Methoxyphenyl)-4-oxo-4-phenyl-2thienvlmethylene)butanamide (6): Green crystals from benzene, mp 186-188 °C, 87.00% yield in microwave and 47.75% yield in thermal. FTIR (KBr): υ (cm⁻¹) =3350 (NH, amide), 1673 and 1638 (2 CO, conjugated ketone and amide). MS: m/z = 377 $(M^+, 1\%, C_{22}H_{19}NO_3S), 361 (10, C_{22}H_{19}NO_2S), 360$ (21, C₂₂H₁₈NO₂S), 359 (79.4, C₂₂H₁₇NO₂S), 346 (3.1, $C_{21}H_{16}NO_2S$), 300 (5.8, $C_{16}H_{14}NO_3S$), 282 (2, $C_{16}H_{12}NO_2S$), 270 (2.4, $C_{15}H_{12}NO_2S$), 258 (4, $C_{14}H_{12}NO_2S$), 253 (6, $C_{15}H_{11}NOS$), 150 (3.2, C₈H₈NO₂), 136 (5, C₇H₆NO₂), and 105(100, C₇H₅O). ¹HNMR (DMSO-d₆): δ (ppm)= 7.76-7.74 (1H, dd, H-1), 7.65 (1H, s, H-9), 7.51-7.49 (2H, m, H-6), 7.41-7.37(2H, d, H-10), 7.39-7.38 (1H, imp, H-3), 7.27-7.22 (2H. m. H-8), 7.20 (1H. s. H-4), 7.17-7.14 (2H. d, H-11), 7.19-7.14 (3H, m, H-7), 6.76-6.72 (1H, dd, H-2), 3.6 (3H, s, H-12), and 3.25 (2H, s, H-5).

(2E)-N-(4-Chlorophenyl)-4-oxo-4-phenyl-2-(2thienylmethylene)butanamide (7): Green crystals from benzene, mp 187-189 °C, 73.50% yield in microwave and 55.11% yield in thermal. FTIR (KBr): υ (cm⁻¹) =3261 (NH, amide), 1664 and 1620 (2CO, conjugated ketone and amide). MS: m/z $=381(M^{+}, 0.7\%)$ $C_{21}H_{16}NO_2SCl),$ 365 (0.6,C₂₁H₁₆NOSCl), 298 (3.3, C₁₇H₁₃NO₂Cl), 287 (0.7, C₁₅H₁₀NOSCl), 280 (2, C₁₇H₁₁NOCl), 270 (3, C₁₅H₁₂NO₂S), 262 (2.7, C₁₃H₉NOSCl), 259(1.1, $C_{14}H_{10}NSCI$), 242 (4, $C_{14}H_{12}NOS$), 224 (2.4, C₇H₅NOCl), 153 (5.3, $C_{14}H_{10}NS$), 154 (3, C_7H_4NOCI), and 105 (100, C_7H_5O). ¹HNMR $(DMSO-d_6)$: δ (ppm)= 7.77-7.79 (1H, dd, H-1), 7.71-7.68 (2H, m, H-6), 7.54-7.51 (1H, m, H-3), 7.41(1H, s, H-8), 7.41-7.39 (3H, m, H-7), 7.38-7.36 (2H, d, H- 9), 7.33 (1H, s, H-4), 7.28-7.25 (2H, d, H-10), 7.2-7.17 (1H, q, H-2), and 7.17-7.16 (2H, d, H-5).

(2E)-N-Ethyl-4-oxo-4-phenyl-2-(2-

thienylmethylene)butanamide (8): Brown crystals from benzene-petroleum ether 40-60, mp 122-124 °C, 96.00% yield in microwave and 69.00% yield in thermal. FTIR (KBr): v (cm⁻¹) =3383 (NH, amide), 1671, and 1639 (2 CO, conjugated ketone and amide). MS: m/z =299 (M⁺, 14%, C₁₇H₁₇NO₂S), 283 (10, C₁₇H₁₇NOS), 282 (27, C₁₇H₁₆NOS), 281 (100, C₁₇H₁₅NOS), 270 (1.5, C₁₅H₁₀NO₂S), 266 (21.2, C₁₆H₁₂NOS), 253 (5.5, C₁₅H₁₁NOS), 252 (6, C₁₅H₁₀NOS), 204 (4.1, C₁₁H₁₀NOS), 194 (1.6, C₁₀H₁₂NOS), and 180 (2.4, C₉H₁₀NOS).

(2E)-N-n-Butyl-4-oxo-4-phenyl-2-(2-

thienylmethylene)butanamide (9): Brown crystals from benzene, mp 164-166 °C, 94.00% yield in microwave and 65.72% yield in thermal. FTIR (KBr): v (cm⁻¹) =3265 (NH, amide), 1673 and 1637 (2 CO, conjugated ketone and amide). MS: m/z = 327 $(M^+, 5\%, C_{19}H_{21}NO_2S), 311 (1.3, C_{19}H_{21}NOS), 310$ (3.1, C₁₉H₂₀NOS), 309 (8.6, C₁₉H₁₉NOS), 298 (5.5, C₁₇H₁₆NO₂S), 271 (6.2, C₁₅H₁₃NO₂S), 254 (6.5, $C_{15}H_{10}O_2S$), 250 (5.3, $C_{13}H_{16}NO_2S$), 232 (6.8, C₁₃H₁₄NOS), 226 (3, C₁₅H₁₆NO), 105 (23.5, C₇H₅O), 100 (8.7, C5H10NO), 77 (100, C6H5), and 74 (5, C4H12N). 1HNMR (DMSO-d6): δ (ppm) = 7.72-7.70 (1H, d, H-1), 7.51-7.49 (1H, t, H-8), 7.44-7.33 (2H, m, H-6), 7.36 (1H, s, H-3), 7.35-7.32 (1H, m, H-4), 7.31-7.26 (3H, m, H-7), 7.16-7.13 (1H, m, H-2), 3.2 (2H, s, H-5), 1.4-1.3 (2H, q, H-9), 1.26-1.18 (2H, quintet, H-10), 1.14-1.06 (2H, sextet, H-11), and 0.74-0.69 (3H, t, H-12).

(2E)-N-Benzyl-4-oxo-4-phenyl-2-(2-

thienylmethylene)butanamide (10): White crystals from benzene, mp 199-200 °C, 89.00% yield in microwave and 59.53% yield in thermal. FTIR (KBr): v (cm⁻¹) =3244 (NH, amide), 1670 and 1634 (2 CO, conjugated ketone and amide). MS: m/z = 361 $(M^+, 2\%, C_{22}H_{19}NO_2S), 360 (2.4, C_{22}H_{18}NO_2S), 345$ (44.7, C₂₂H₁₉NOS), 344 (34.4, C₂₂H₁₈NOS), 284 (2, C₁₆H₁₄NO₂S), 266 (7, C₁₆H₁₂NOS), 256 (13.4, $C_{15}H_{14}NOS$), 252 (34, $C_{15}H_{10}NOS$), 227 (9, C₁₄H₁₁OS), 134 (2.3, C₈H₈NO), and 91 (100, C₇H₇). ¹HNMR (DMSO-d₆): δ (ppm) = 7.77-7.73 (1H, dd, H-1), 7.6-7.57 (1H, t, H-9), 7.49-7.47 (1H, m, H-6), 7.36 (1H, s, H-4), 7.35-7.33 (1H, dd, H-3), 7.29-7.26 (1H, m, H-8), 7.20-7.15 (2H, m, H-7), 7.14 (5H, s, H-11), 6.84 (1H, d, H-2), 4.35-4.30 (2H, d, H-10), and 3.32 (2H, imp, H-5).

(2E,3Z)-4-Hydroxy-4-phenyl-2-(thien-2ylmethylene)but-3-enohydrazide (11): Orange crystals from benzene, mp 166-168 °C, 64.48% yield in microwave and 34.27% yield in thermal. FTIR (KBr): υ (cm⁻¹) =3300-3000 (hydrogen bonded OH, NH and NH₂), and 1654 (CO, amide). MS: m/z =286 (M^+ , 0%, $C_{15}H_{14}N_2O_2S$), 270 (6.5, $C_{15}H_{12}NO_2S$) = (6.5, $C_{15}H_{14}N_2OS$), 269 (20.3, $C_{15}H_{13}N_2OS$) = (20.3, $C_{15}H_{11}N_2OS$), 268 (100, $C_{15}H_{12}N_2OS$), 267 (12.4, $C_{15}H_{11}N_2OS$), 209 (5.1, $C_9H_9N_2O_2S$), 207 (3.1, $C_9H_7N_2O_2S$), 191 (3, $C_9H_7N_2OS$), 167 (1.7, $C_7H_7N_2OS$), and 165 (11.2, $C_7H_5N_2OS$). ¹HNMR (DMSO-d₆): δ (ppm) = 13.2 (1H, s, H-8), 7.89 (1H, s, H-9), 7.78-7.74 (2H, m, H-6) = (1H, dd, H-1), 7.48-7.46 (1H, dd, H-3), 7.45-7.38 (3H, m, H-7), 7.35-7.32(1H, d, H-4), 6.98-6.96 (1H, d, H-5), 6.95-6.92 (1H, q, H-2), and 4.03 (2H, s, H-10).

(2E)-4-Oxo-N',4-diphenyl-2-(2-

thienylmethylene)butanehydrazide (12): Brown crystals from benzene-petroleum ether 40-60, mp 196-198 °C, 86.00% yield in microwave and 45.00% yield in thermal. FTIR (KBr): v (cm⁻¹) =3348-3031 (2-NH), 1681 and 1643 (2CO, conjugated ketone and amide). MS: m/z =362 (M⁺, 4.6%, C₂₁H₁₈N₂O₂S), 346 (4.4, C₂₁H₁₈N₂OS), 345 (27.5, C₂₁H₁₇N₂OS), 344 (82, C₂₁H₁₆N₂OS), 271 (2.5, C₁₅H₁₃NO₂S), 270 (2.4, C₁₅H₁₂NO₂S), 257 (1.6, C₁₄H₁₃N₂OS), 252 (86.3, C₁₅H₁₀NOS), 243 (3.5, C₁₃H₁₁N₂OS), 235 (18.5, C₁₅H₁₁N₂O), 135 (1.3, C₇H₇N₂O), 105 (40.1, C₇H₅O), and 77 (100, C₆H₅).

(2E)-4-(4-Methylphenyl)-4-oxo-N-phenyl-2-(2thienylmethylene)butanamide (13): Yellow crystals from benzene, mp 121-123 °C, 86.00% yield in microwave and 0% yield in thermal. FTIR (KBr): v(cm⁻¹) = 3279 (NH, amide), 1682 and 1640 (2CO, conjugated ketone and amide). MS: m/z =361 (M⁺, 0.5%, C₂₂H₁₉NO₂S), 360 (2, C₂₂H₁₈NO₂S), 346 (1.2, C₂₁H₁₆NO₂S), 345 (5, C₂₂H₁₉NOS), 344 (6.6, C₂₂H₁₈NOS), 343 (13.1, C₂₂H₁₇NOS), 278 (3.1, C₁₈H₁₆NO₂), 271 (1, C₁₅H₁₃NO₂S), 266 (0.4, C₁₆H₁₃NOS), 238 (0.1, C₁₅H₁₂NS), 228 (4.5, C₁₃H₁₀NOS), 120 (27, C₇H₆NO), 119 (90, C₇H₅NO), and 93 (100, C₆H₇N).

(2E)-N,4-bis(4-Methylphenyl)-4-oxo-2-(2-

thienylmethylene)butanamide (14): Yellow crystals from benzene, mp 164-166 °C, 88.00% vield in microwave and 0% yield in thermal. FTIR (KBr): v (cm⁻¹) = 3267 (NH, amide), 1666 and 1624 (2CO, conjugated ketone and amide). MS: m/z = 375 (M⁺, 0.8%, $C_{23}H_{21}NO_2S$), 360 (1.4, $C_{22}H_{18}NO_2S$), 359 (7.7, C₂₃H₂₁NOS), 358 (25.4, C₂₃H₂₀NOS), 357 (89, $C_{23}H_{19}NOS$), 284 (0.7, $C_{16}H_{14}NO_2S$), 274 (1, $C_{19}H_{16}NO$), 242 (1.5, $C_{14}H_{12}NOS$), 241 (4, $C_{15}H_{13}OS$), 222 (6.7, 208 (100, $C_{15}H_{10}S$), C₁₄H₈S),134 (1.3, C₈H₈NO), and 91 (20.1, C₇H₇). ¹HNMR (DMSO-d₆): δ (ppm)= 8-7.93 (1H, m, H-1), 7.73 (1H, s, H-9), 7.67-7.61 (2H, d, H-6), 7.49-7.40 (2H, d, H-7), 7.38-7.34 (2H, d, H-10), 7.34-7.31(1H, d, H-3), 7.24 (1H, s, H-4), 7.16-7.12 (2H, d, H-11), 7.06-6.95 (1H, q, H-2), 3.79 (2H, imp, H-5), 2.18 (3H, s, H-8), and 2.14 (3H, s, H-12).

(2E)-N-(4-Methoxyphenyl)-4-(4-methylphenyl)-4-oxo-2-(2-thienylmethylene)butanamide (15): Gray crystals from benzene, mp 130-132 °C, 90.00% yield in microwave and 53.70% yield in thermal.

yield in microwave and 53.70% yield in thermal. FTIR (KBr): v (cm⁻¹) = 3388 (NH, amide), 1675 and 1636 (2CO, conjugated ketone and amide). MS: m/z =391(M⁺, 5%, C₂₃H₂₁NO₃S), 377 (7.6, C₂₂H₁₉NO₃S), 308 (40, C₁₉H₁₈NO₃), 300 (12.2, C₁₆H₁₄NO₃S), 287 (24, C₁₅H₁₃NO₃S), 285(15, C₁₆H₁₅NO₂S), 284 (5.1, C₁₆H₁₄NO₂S), 270 (18, C₁₅H₁₂NO₂S), 267(11, C₁₆H₁₁O₂S), 150 (21.5, C₈H₈NO₂), 119 (100, C₈H₇O). ¹HNMR (DMSO-d₆): δ (ppm)= 7.89-7.82 (1H, dd, H-1), 7.77-7.74 (2H, d, H-6), 7.64 (1H, s, H-9), 7.51-7.48 (2H, d, H-7), 7.27-7.23 (2H, d, H-10), 7.19-7.11(1H, m, H-3), 7.14 (1H, s, H-4), 7.07-6.99 (1H, m, H-2), 6.77-6.73 (2H, d, H-11), 3.75-3.7 (2H, m, H-5), 3.6 (3H, s, H-12), and 2.19 (3H, s, H-8).

(2E)-N-(4-Chlorophenyl)-4-(4-methylphenyl)-4oxo-2-(2-thienylmethylene)butanamide (16): Brown crystals from benzene-petroleum ether 40-60, mp 136-139 °C, 81.00% yield in microwave and 0% yield in thermal. FTIR (KBr): v (cm⁻¹) = 3252(NH, amide), 1659 and1632 (2CO, conjugated ketone and amide). MS: m/z =395(M⁺, 0.05, C₂₂H₁₈NO₂SCl), 379 (1, C₂₂H₁₈NOSCl), 378 (0.5, C₂₂H₁₇NOSCl), 377 (2, C₂₂H₁₆NOSCl), 286 (0.2, C₁₅H₉NOSCl), 269 (100, C₁₆H₁₃O₂S or C₁₆H₁₅NOS), 267 (39.3, C₁₆H₁₃NOS), 266 (2.5, C₁₆H₁₂NOS), 262 (0.5, C₁₃H₉NOSCl), and 240 (12, C₁₅H₁₄NS).

(2E)-N-Ethyl-4-(4-methylphenyl)-4-oxo-2-(2thienylmethylene)butanamide (17): Yellow crystals from benzene-petroleum ether 40-60, mp 136-138 °C, 97.00% yield in microwave and 71.00% yield in thermal. FTIR (KBr): v (cm⁻¹) = 3399.9 (NH, amide), 1682 and1640 (2CO, conjugated ketone and amide). MS: m/z =313 (M⁺, 1%, C₁₈H₁₉NO₂S), 312 (2.2, C₁₈H₁₈NO₂S), 297 (0.1, C₁₈H₁₉NOS), 296 (1.1, C₁₈H₁₈NOS), 295 (3.3, C₁₈H₁₇NOS), 284 (5, C₁₇H₁₈NOS or C₁₆H₁₄NO₂S), 267 (0.8, C₁₇H₁₇NS), 266 (1, C₁₆H₁₂NOS), 228 (3, C₁₃H₁₀NOS), 204 (1, C₁₁H₁₀NOS), 119 (100, C₈H₇O), and 72 (7, C₃H₆NO).

(2E)-N-n-Butyl-4-(4-methylphenyl)-4-oxo-2-(2thienylmethylene)butanamide (18): Brown crystals from benzene, mp 159-160 °C, 95.00% yield in microwave and 67.44% yield in thermal. FTIR (KBr): v (cm⁻¹) = 3250 (NH, amide), 1667 and 1636 (2CO, conjugated ketone and amide). MS: m/z =341(M⁺, 0.4%, C₂₀H₂₃NO₂S), 325 (17, C₂₀H₂₃NOS), 324 (55.2, C₂₀H₂₂NOS), 323 (100, C₂₀H₂₁NOS), 267 (61, C₁₆H₁₃NOS), 266 (23.1, C₁₆H₁₂NOS), 252 (58.2, C₁₅H₁₀NOS), 250 (7, C₁₃H₁₆NO₂S), 232 (3, C₁₃H₁₄NOS), 222 (24.2, C₁₂H₁₆NOS), and 208 (61, C₁₁H₁₄NOS). ¹HNMR (DMSO-d₆): δ (ppm) = 7.71-7.69 (1H, dd, H-1), 7.48-7.44 (1H, t, H-9), 7.42-7.39 (1H, dd, H-3), 7.22-7.19 (2H, d, H-6), 7.16-7.12 (2H, d, H-7) or (1H, imp, H-4), 6.72-6.66 (1H, dd, H-2), 3.53 (2H, s, H-5), 2.25 (3H, s, H-8), 1.4-1.3 (2H, q, H-10), 1.29-1.2 (2H, quintet, H-11), 0.75-0.69 (3H, t, H-13), and 1.12-1.07 (2H, sextet, H-12).

(2E)-N-Benzyl-4-(4-methylphenyl)-4-oxo-2-(2thienylmethylene)butanamide (19): Yellow crystals from benzene, mp 159-160 °C, 91.00% yield in microwave and 69.33% yield in thermal. FTIR (KBr): v (cm⁻¹) = 3274 (NH, amide), 1670 and 1635 (2CO, conjugated ketone and amide). MS: m/z = 375 $(M^+, 4.1\%, C_{23}H_{21}NO_2S), 359 (2.5, C_{23}H_{21}NOS), 358$ (7.6, C₂₃H₂₀NOS), 357 (26.3, C₂₃H₁₉NOS), 284 (0.2, $C_{16}H_{14}NO_2S$), 266 (7, $C_{16}H_{12}NOS$), 256 (2, C₁₅H₁₄NOS), 252 (1.3, C₁₅H₁₀NOS), 242 (0.7, $C_{14}H_{12}NOS$), 214 (0.8, $C_{13}H_{12}NS$), 134 (0.5, C₈H₈NO), 119 (15.4, C₈H₇O), and 78 (100, C₆H₆). ¹HNMR (DMSO-d₆): δ (ppm) =7.73-7.71 (1H, dd, H-1), 7.54-7.52 (1H, t, H-9), 7.45-7.42 (2H, m, H-6), 7.32 (1H, s, H-4), 7.21-7.12 (1H, dd, H-3), 7.16-7.12 (2H, d, H-7), 7.1 (5H, s, H-11), 7.09-7.06 (1H, d, H-2), 4.31-4.28 (2H, d, H-10), 3.53 (2H, imp, H-5), and 2.22 (3H. s. H-8).

(2E,3Z)-4-Hydroxy-4-(4-methylphenyl)-2-(thien-2-ylmethylene)but-3-enohydrazide (20): Pink crystals from benzene, mp 202-204 °C, 66.33% yield in microwave and 36.00% yield in thermal. FTIR (KBr): v (cm⁻¹) = 3350-3000 (hydrogen bonded OH, NH and NH₂), 1651 (CO, amide). MS: m/z =300 $(M^+, 0.03\%, C_{16}H_{16}N_2O_2S), 285 (2.3, C_{15}H_{13}N_2O_2S),$ 284 (14.2, $C_{16}H_{14}NO_2S$) = (14.2, $C_{16}H_{16}N_2OS$), 283 (38, C₁₆H₁₅N₂OS), 282 (100, C₁₆H₁₄N₂OS), 266 (2.5, C₁₆H₁₂NOS), 209 (28.5, C₉H₉N₂O₂S), 191 (32.4, $C_9H_7N_2OS$), 167 (6.5, $C_7H_7N_2OS$), 165 (57.2, C₇H₅N₂OS), and 119 (4.4, C₈H₇O). ¹HNMR (DMSO d_6): δ (ppm) = 13.13 (1H, s, H-9), 7.86 (1H, s, H-10), 7.68-7.64 (2H, d, H-6) or (1H, d, H-1), 7.35-7.32 (1H, d, H-4 or 1H, d, H-3), 7.28-7.24 (2H, d, H-7), 6.94-6.92 (1H, q, H-2), 4.02 (2H, s, H-11), 3.38-3.34 (2H, imp, H-5), and 2.33(3H, s, H-8).

(2E)-4-(4-Methylphenyl)-4-oxo-N'-phenyl-2-(2thienylmethylene)butanehydrazide (21): Orange crystals from benzene-petroleum ether 40-60, mp 197-199 °C, 89.00% yield in microwave and 28.72% yield in thermal. FTIR (KBr): v (cm⁻¹) = 3400-3306 (2NH), 1697 and 1640 (2CO, conjugated ketone and amide). MS: m/z =376 (M⁺, 0%, C₂₂H₂₀N₂O₂S), 375 (60, C₂₂H₁₉N₂O₂S), 374 (51.4, C₂₂H₁₈N₂O₂S), 362 (26, C₂₁H₁₈N₂O₂S), 374 (16.3, C₂₀H₁₈N₂OS), 306 (20.3, C₁₉H₁₈N₂S), 300 (46,C₁₆H₁₆N₂O₂S), 297 (22, C₁₆H₁₃N₂O₂S), 257 (36, C₁₄H₁₃N₂OS), 229 (73.4, C₁₃H₁₃N₂S), 135 (50.6, C₇H₇N₂O), and 101 (100, C₈H₅).

(2E)-2-[(5-Methyl-2-thienyl)methylene]-4-oxo-

N,4-diphenylbutanamide (22): Yellow crystals from benzene-petroleum ether 40-60, mp 118-120 °C, 90.00% yield in microwave and 60.94% yield in

thermal. FTIR (KBr): υ (cm⁻¹) = 3308 (NH, amide), 1677 and 1640 (2CO, conjugated ketone and amide). MS: m/z =361 (M⁺, 3.3%, C₂₂H₁₉NO₂S), 360 (10.4, C₂₂H₁₈NO₂S), 345 (7.1, C₂₂H₁₉NOS), 344 (18, C₂₂H₁₈NOS), 343 (57.3, C₂₂H₁₇NOS), 315 (4.4, C₂₁H₁₇NS), 284 (15.5, C₁₆H₁₄NO₂S), 267 (7.5, C₁₆H₁₃NOS), 243 (9.5, C₁₄H₁₃NOS), 151 (100, C₈H₇OS), 121 (57, C₇H₇NO), and 97 (7, C₅H₅S).

(2E)-N-(4-Methylphenyl)-2-[(5-methyl-2-

thienyl)methylene]-4-oxo-4-phenylbutanamide

(23): Brown crystals from benzene-petroleum ether 40-60, mp 175-177 °C, 91.00% yield in microwave and 64.00% yield in thermal. FTIR (KBr): v (cm⁻¹) = 3386 (NH, amide), 1690 and 1640 (2CO, conjugated ketone and amide). MS: m/z = 375 (M⁺, 1.1%, C₂₃H₂₁NO₂S), 359 (8.5, C₂₃H₂₁NOS), 358 (26.6, $C_{23}H_{20}NOS$), 357 (100, $C_{23}H_{19}NOS$), 329 (4.7, C₂₂H₁₉NS), 315 (2.3, C₂₁H₁₇NS), 268 (6, C₁₆H₁₂O₂S), 256 (1.6, C₁₅H₁₄NOS), 238 (1.4, C₁₅H₁₂NS), 214 (2, C₁₃H₁₂NS), 134 (3.3, C₈H₈NO), and 91 (31.4, C₇H₇). ¹HNMR (DMSO-d₆): δ (ppm) = 7.54 (1H, s, H-8), 7.38-7.35 (1H, d, H-3), 7.33 (1H, s, H-4), 7.31-7.28 (2H, m, H-6), 7.26-7.22 (3H, m, H-7), 7.17-7.14 (2H, d, H-9), 6.99-6.96 (2H, d, H-10), 6.89-6.87 (1H, d, H-2), 3.5 (2H, imp, H-5), 2.3 (3H, s, H-1), and 2.15 (3H, s, H-11).

(2E)-N-(4-Methoxyphenyl)-2-[(5-methyl-2-thienyl)methylene]-4-oxo-4-phenylbutanamide

(24): Brown crystals from benzene-petroleum ether 40-60, mp 124-126 °C, 93.00% yield in microwave and 71.61% yield in thermal. FTIR (KBr): υ (cm⁻¹) = 3229 (NH, amide), 1670 and 1632 (2CO, conjugated ketone and amide). MS: m/z = 391 (M⁺, 3.3%, C₂₃H₂₁NO₃S), 375 (7.5, C₂₃H₂₁NO₂S), 374 (29, C₂₃H₂₀NO₂S), 373 (100, C₂₃H₁₉NO₂S), 345 (2.1, $C_{22}H_{19}NOS$), 314 (3.7, $C_{17}H_{16}NO_3S$), 300 (2.3, $C_{16}H_{14}NO_{3}S$), 272(1, $C_{15}H_{14}NO_{2}S$), 269 (6.7, C₁₆H₁₃O₂S), 268 (23.2, C₁₆H₁₄NOS), 258 (3.1, C₁₅H₁₆NOS), and 149 (17.4, C₈H₇NO₂). ¹HNMR $(DMSO-d_6)$: δ (ppm) = 7.83 (1H, s, H-8), 7.67-7.6 (1H, d, H-3), 7.6-7.4 (2H, m, H-6), 7.47 (2H, d, H-9), 7.38-7.05 (3H, m, H-7), 7.24 (1H, s, H-4), 7.02-6.92 (2H, d, H-10), 6.91-6.81 (1H, d, H-2), 3.71 (3H, s, H-11), 3.5-3.12 (2H, imp, H-5), and 2.54 (3H, s, H-1).

(2E)-N-(4-Chlorophenyl)-2-[(5-methyl-2thienyl)methylene]-4-oxo-4-phenylbutanamide (25): Brown crystals from benzene-petroleum ether 40-60, mp 162-164 °C, 83.54% yield in microwave and 68.35% yield in thermal. FTIR (KBr): υ (cm⁻¹) =3397 (NH, amide), 1671 and 1633 (2CO, conjugated ketone and amide). MS: m/z =395 (M⁺, 3%, C₂₂H₁₈NO₂SCl), 379 (9.2, C₂₂H₁₈NOSCl), 378 (6, C₂₂H₁₇NOSCl), 377 (18.1, C₂₂H₁₆NOSCl), 349 (0.7, C₂₁H₁₆NSCl), 342 (0.7, C₂₂H₁₆NOS), 318 (2, C₁₆H₁₃NO₂SCl), 290 (1.5, C₁₅H₁₃NOSCl), 276 (2, $C_{14}H_{11}NOSCI$, 153 (5.5, C_7H_4NOCI), 111 (2, C_6H_4CI), and 105 (100, C_7H_5O).

(2E)-N-Ethyl-2-[(5-methyl-2-

thienyl)methylene]-4-oxo-4-phenylbutanamide

(26): Gray crystals from benzene-petroleum ether 40-60, mp 162-164 °C, 99.00% yield in microwave and 77.00% yield in thermal. FTIR (KBr): v (cm⁻¹) = 3402 (NH, amide), 1676 and 1640 (2CO, conjugated ketone and amide). MS: m/z =313 (M⁺, 1%, C₁₈H₁₉NO₂S), 299 (1.5, C₁₇H₁₇NO₂S), 297 (1.3, C₁₈H₁₉NOS), 296 (1.3, C₁₈H₁₈NOS), 295 (2.5, C₁₈H₁₇NOS), 285 (2, C₁₆H₁₅NO₂S), 266 (1.1, C₁₆H₁₂NOS), 194(3, C₁₀H₁₂NOS), 185 (6.2, C₁₂H₁₁NO), 157 (42, C₁₀H₇NO), 98 (7, C₅H₈NO), 72 (7, C₃H₆NO), 71 (94, C₃H₅NO), and 57 (100, C₂H₃NO).

(2E)-N-n-Butyl-2-[(5-methyl-2-

thienyl)methylene]-4-oxo-4-phenylbutanamide

(27): Yellow crystals from benzene, mp 126-128 °C, 96.00% yield in microwave and 73.31% yield in thermal. FTIR (KBr): v (cm⁻¹) = 3395 (NH, amide), 1675 and 1640 (2CO, conjugated ketone and amide). MS: m/z = 341 (M⁺, 3%, C₂₀H₂₃NO₂S), 326 (9.4, $C_{19}H_{20}NO_2S$), 324 (4, $C_{20}H_{22}NOS$), 323 (9.4, C₂₀H₂₁NOS), 298 (3.3, C₁₇H₁₆NO₂S), 280 (3.2, $C_{17}H_{14}NOS$), 268 (8, $C_{16}H_{12}O_2S$), 267 (7.1,C₁₆H₁₃NOS), 246 $(2, C_{14}H_{16}NOS), 222 (4,$ C₁₂H₁₆NOS), 125 (70, C₇H₁₁NO), 105 (100, C₇H₅O), and 99 (15, C_5H_9NO). ¹HNMR (DMSO-d₆): δ (ppm) = 7.94-7.9 (1H, t, H-8), 7.84-7.74 (1H, m, H-6), 7.5-7.48 (1H, d, H-3), 7.44-7.26 (3H, m, H-7), 7.34 (1H, s, H-4), 7.1-7 (1H, m, H-2), 3.5 (2H, imp, H-5), 2.05 (3H, s, H-1), 1.6-1.5 (2H, q, H-9), 1.4-1.3 (2H, quintet, H-10), 1.2-1.1 (2H, sextet, H-11), and 0.9-0.74 (3H, t, H-12).

(2E)-N-Benzyl-2-[(5-methyl-2-

thienvl)methylene]-4-oxo-4-phenylbutanamide (28): Yellow crystals from benzene, mp 180-181 °C, 93.00% yield in microwave and 74.66% yield in thermal. FTIR (KBr): v (cm⁻¹) = 3248 (NH, amide), 1674 and 1632 (2CO, conjugated ketone and amide). MS: m/z = 375 (M⁺, 69%, C₂₃H₂₁NO₂S), 359 (6.6, C₂₃H₂₁NOS), 358 (25.1, C₂₃H₂₀NOS), 357 (85.1, $C_{23}H_{19}NOS$), 284 (2.5, $C_{16}H_{14}NO_2S$), 270 (30.3, C₁₆H₁₆NOS), 270 (30.3, C₁₆H₁₄O₂S), 268 (12.3, $C_{16}H_{12}O_2S$), 266 (33.5, $C_{16}H_{12}NOS$), 256 (5, C₁₅H₁₄NOS), 136 (100, C₈H₈S), 134 (9.4, C₈H₈NO), and 133 (1.2, C_8H_7NO). ¹HNMR (DMSO-d₆): δ (ppm) = 7.46-7.42 (1H, t, H-8), 7.33 (1H, s, H-4), 7.3-7.24 (2H, m, H-6), 7.23-7.22 (1H, d, H-3), 7.16-7.09 (3H, m, H-7), 7.12 (5H, s, H-10), 6.86-6.82 (1H, m, H-2), 4.32-4.26 (2H, d, H-9), 3.31 (2H, imp, H-5), and 2.46 (3H, s, H-1).

(2E, 3Z)-4-Hydroxy-2-[(5-methylthien-2yl)methylene]-4-phenylbut-3-enohydrazide (29): Orange crystals from benzene, mp 160-162 °C,

80.00% yield in microwave and 46.66% yield in thermal. FTIR (KBr): v (cm⁻¹) = 3300-3000 (hydrogen bonded OH, NH and NH₂), 1654 (CO, amide). MS: $m/z = 300 (M^+, 0.04\%, C_{16}H_{16}N_2O_2S)$, 284 (21, C₁₆H₁₆N₂OS), 283 (65.2, C₁₆H₁₅N₂OS), 282 $(100, C_{16}H_{14}N_2OS), 268 (9.3, C_{16}H_{12}O_2S), 267 (47,$ $C_{16}H_{13}NOS$), 266 (8.1, $C_{16}H_{12}NOS$), 254 (4, $C_{15}H_{14}N_2S$), 238 $(11, C_{15}H_{12}NS), 205 (7.2,$ $C_{10}H_9N_2OS$), 195 (3.6, $C_9H_{11}N_2OS$), 181 (3, $C_8H_9N_2OS$), and 59 (2.5, CH_3N_2O). ¹HNMR $(DMSO-d_6)$: δ (ppm) = 13.19 (1H, s, H-8), 7.86 (2H, s, H-9), 7.78-7.74 (1H, d, H-3), 7.47-7.38 (2H, m, H-6) or (1H, d, H-4), 7.33-7.28 (3H, m, H-7), 6.73-6.70 (1H, d, H-2), 6.6-6.57 (1H, d, H-5), 3.93 (2H, s, H-10), and 2.32 (3H, s, H-1).

(2E)-2-[(5-Methyl-2-thienyl)methylene]-4-oxo-N',4-diphenylbutanehydrazide (30): Brick red crystals from benzene-petroleum ether 40-60, mp 126-128 ^{0°}C, 92.00% yield in Microwave and 66% yield in thermal. FTIR (KBr): υ (cm⁻¹) = 3430-3268 (2NH), 1690 and 1640 (2CO, conjugated ketone and amide). MS: m/z =376 (M⁺, 0.22%, C₂₂H₂₀N₂O₂S), 359 (2, C₂₂H₁₉N₂OS), 358 (4, C₂₂H₁₈N₂OS), 330 (0.4, C₂₁H₁₈N₂S), 281 (1.1, C₁₆H₁₃N₂OS), 279 (24.3, C₁₇H₁₅N₂O₂), 267 (2, C₁₅H₁₁N₂OS), 266 (2.1, C₁₆H₁₂NOS), 251 (5.5, C₁₆H₁₁OS), 149 (100, C₈H₉N₂O), 135 (2, C₇H₇N₂O), 134 (1, C₇H₆N₂O), and 105 (4.2, C₇H₅O).

2. Results and Discussion

Solvent-free microwave irradiation reactions were carried out in a one-pot reaction in order to synthesize compounds that expected to have bioactivity **4-30** in an environmentally-safe technique (green chemistry), appreciable high yields and purity. Such requirements are essential for synthesis of bioactive compounds.

The solvent-free microwave irradiation reactions of studied furanones; (3E)-5-phenyl-3-(2the thienylmethylene)furan-2(3H)-one 1. (3E)-5-(4methylphenyl)-3-(2-thienylmethylene)furan-2(3H)one 2, and (3E)-3-[(5-methyl-2-thienyl)methylene]-5phenylfuran-2(3H)-one 3, with aromatic, aliphatic amines, and phenylhydrazine gave the corresponding (2E) 2-(substituted 2-thienylmethylene)-4-oxo-4-aryl butanamide derivatives 4-10, 12, 13-19, 21, 22-28, 30, as only products. However in our previous work using □□-unsaturated anhydrides, the corresponding butanoic acid derivatives, or/and pyrrolidine-2,5-diones.¹⁸⁻²⁰ were produced. On the other hand, reaction of furanones 1-3 with hydrazine hydrate gave (2E,3Z)-4-hydroxy-4-phenyl-2-(thien-2ylmethylene)but-3-enohydrazide 11. (2E.3Z)-4hydroxy-4-(4-methylphenyl)-2-(thien-2ylmethylene)but-3-enohydrazide 20, and (2E,3Z)-4-

ylmethylene)but-3-enohydrazide **20**, and (2E, 3Z)-4 hydroxy-2-[(5-methylthien-2-yl)methylene]-4-

phenylbut-3-enohydrazide **29**, respectively, whereas anhydrides formed the hydrazide derivatives.¹⁸⁻²⁰

Solvent-free microwave irradiation of furanones 1- 3, with aniline (a) $(K_b{=}4.2{\times}10^{-10})$

as an unsubstituted amine, gave (2E)-4-oxo-N,4diphenyl-2-(2-thienylmethylene)butanamide **4** (83%), (2E)-4-(4-Methylphenyl)-4-oxo-N-phenyl-2-(2-

thienylmethylene)butanamide **13** (86%), and (2E)-2-[(5-methyl-2-thienyl)methylene]-4-oxo-N,4-

diphenylbutanamide **22** (90%), respectively. This was attributed to the low basicity of the amine. However with 4-methylaniline (b) ($K_b=14.8\times10^{-10}$), furanones **1-3** formed the corresponding (2E)-N-(4-methylphenyl)-4-oxo-4-phenyl-2-(2-

thienylmethylene)butanamide **5** (85%), (2E)-N,4bis(4-methylphenyl)-4-oxo-2-(2-

thienylmethylene)butanamide 14 (88%), and (2E)-N-

(4-methylphenyl)-2-[(5-methyl-2-thienyl)methylene]-4-oxo-4-phenylbutanamide **23** (91%), respectively. Also with 4-methoxyaniline (c) ($K_b=15\times10^{-10}$), furanones **1-3** yielded (2E)-N-(4-methoxyphenyl)-4oxo-4-phenyl-2-(2-thienylmethylene)butanamide **6** (87%), (2E)-N-(4-Methoxyphenyl)-4-(4methylphenyl)-4-oxo-2-(2-

thienylmethylene)butanamide **15** (90%), and (2E)-N-(4-methoxyphenyl)-2-[(5-methyl-2-

thienyl)methylene]-4-oxo-4-phenylbutanamide 24 (93%), respectively. The higher yield can be attributed to the presence of the electron donating, methyl and methoxyl groups in amines (b) and (c). The enhancement in yields formed with 4-methoxyaniline can be assigned to the higher basicity results from the mesomeric effect exerted by the methoxyl group.

Comp.	R 1	R ₂
11	Н	н
20	н	СН₃
29	CH₃	Н

Scheme (2)

On the other hand, with 4-chloroaniline (d) $(K_b=1\times10^{-10})$, furanones 1-3 formed (2E)-N-(4-chlorophenyl)-4-oxo-4-phenyl-2-(2-

thienylmethylene)butanamide **7** (73.5%), (2E)-N-(4-chlorophenyl)-4-(4-methylphenyl)-4-oxo-2-(2-

thienylmethylene)butanamide **16** (81%), and (2E)-N-(4-chlorophenyl)-2-[(5-methyl-2-thienyl)methylene]-4-oxo-4-phenylbutanamide **25** (83.5%), respectively. The decrease in yield could be assigned to the presence of the electron attracting chlorine atom which decreases the amine basicity.

Microwave irradiation of furanones 1-3 with ethylamine (e) $(K_b=5.2\times10^{-4})$, gave (2E)-N-ethyl-4oxo-4-phenyl-2-(2-thienylmethylene)butanamide **8** (96%), (2E)-N-ethyl-4-(4-methylphenyl)-4-oxo-2-(2thienylmethylene)butanamide **17** (97%), and (2E)-Nethyl-2-[(5-methyl-2-thienyl)methylene]-4-oxo-4-

phenylbutanamide **26** (99%), respectively. However, with n-butylamine (f) (K_b = 4.8×10⁻⁴), furanones **1-3** produced (2E)-N-butyl-4-oxo-4-phenyl-2-(2thienylmethylene)butanamide **9** (94%), (2E)-N-butyl-4-(4-methylphenyl)-4-oxo-2-(2-

thienylmethylene)butanamide **18** (95%), and (2E)-N-butyl-2-[(5-methyl-2-thienyl)methylene]-4-oxo-4-

phenylbutanamide **27** (96%), respectively. The relative lower yields of the products **9**, **18**, and **27**, than **8**, **17**, and **26**, could be assigned to both the steric factor exerted by the n-butyl group in (f) comparable to the ethyl group in (e), and the higher basicity of (e). With benzylamine (g) (K_b =0.24×10⁻⁴), the results obtained showed that furanones **1-3** gave (2E)-N-benzyl-4-oxo-4-phenyl-2-(2-

thienylmethylene)butanamide **10** (89%), (2E)-N-benzyl-4-(4-methylphenyl)-4-oxo-2-(2-

thienylmethylene)butanamide **19** (91%), and 2E)-N-benzyl-2-[(5-methyl-2-thienyl)methylene]-4-oxo-4-

phenylbutanamide **28** (93%). The results obtained ascertained that the basicity of amines outweighs the steric factor. Also with the low basic phenyl hydrazine (h) $(K_b=1.62\times10^{-9})$, furanones **1-3** produced (2E)-4-oxo-N',4-diphenyl-2-(2thienylmethylene)butanehydrazide **12** (86%), (2E)-4-(4-methylphenyl)-4-oxo-N'-phenyl-2-(2-

thienylmethylene)butanehydrazide **21** (89%), and (2E)-2-[(5-methyl-2-thienyl)methylene]-4-oxo-N',4-diphenylbutanehydrazide **30** (92%), respectively.

The results obtained led us to propose a mechanism in which a nucleophilic attack by the lone pair of amino nitrogen takes place on the carbonyl carbon of the furanone to form the unstable enol form, which undergoes tautumerization to give the more stable keto compounds. (Scheme 1)

However, the results obtained from solvent-free microwave irradiation of furanones 1-3. with hydrazine hydrate (i) (K_b =8.5×10⁻⁷), to give (2E,3Z)-

4-hydroxy-4-phenyl-2-(thien-2-ylmethylene)but-3enohydrazide **11** (64.5%), (2E,3Z)-4-hydroxy-4-(4-

methylphenyl)-2-(thien-2-ylmethylene)but-3-

enohydrazide **20** (66.3%), and (2E,3Z)-4-hydroxy-2-[(5-methylthien-2-yl)methylene]-4-phenylbut-3-

enohydrazide 29 (80%), respectively, led us to propose a mechanism in which the enol form is stabilized by the formation of a hydrogen bond between the amino nitrogen and the OH group (Scheme 2). This mechanism was confirmed by the ¹H-NMR of the products (11, 20, and 29) where they showed signals at δ (ppm) = 13.2 (1H, s, H-8), 13.13 (1H, s, H-9), and 13.19 (1H, s, H-8), respectively corresponding to the OH of the enol form. Also their FTIR (KBr) showed bands at v (cm⁻¹) in the range 3350-3000 characteristic for hydrogen bonded OH, NH and NH₂, and 1651-1654, for C=O amide. This was also confirmed by the results obtained from microwave irradiation of furanones 1-3 with phenylhydrazine where stable keto compounds (2E)-4-oxo-N',4-diphenyl-2-(2-

thienylmethylene)butanehydrazide **12**, (2E)-4-(4-methylphenyl)-4-oxo-N'-phenyl-2-(2-

thienylmethylene)butanehydrazide **21**, and (2E)-2-[(5-methyl-2-thienyl)methylene]-4-oxo-N',4-

diphenylbutanehydrazide **30** respectively, were produced.

Structural Effect of Furanones 1-3 on their Reaction with Amines and Hydrazines (a-i)

It was of great interest to study the structural effect of furanones 1-3 on their solvent-free microwave irradiation reactions with amines (a-g), and phenylhydrazine (i), to give the corresponding (2E)-N-substituted -2-(5-substituted -2-(5-substituted-2-thienylmethylene)-4-oxo-4-aryl butanamide derivatives 4-10, 12, 13-19, 21, 22-28, and 30, whereas with hydrazine hydrate, they gave (2E,3Z)-4-hydroxy-4-aryl-2-(5-substituted

thienylmethylene)but-3-enohydrazide 11, 20, and 29, respectively. With all amines, the results obtained showed that the yields produced from furanones 1-3 fall in the order: 3>2>1. These results led us to propose a mechanism in which intermediate (II) is formed, that containing charge separation, so that the presence of electron releasing methyl (CH₃) group in the thinly ring stabilizes and activates it toward product formation. The presence of the (CH₃) group in the phenyl ring in furanone 2, stabilizes intermediate II, leading to enhancement in the yield than furanone 1.

Furanones versus Anhydrides

Comparison between the results obtained from solvent-free microwave irradiation of furanones 1-3, as α,β -unsaturated carbonyl compounds, with those obtained from α,β -unsaturated anhydrides, showed

that furanones formed the corresponding butanamides as only products, whereas α,β -unsaturated anhydrides produced butanoic acid derivatives or/and pyrrolidine-2,5-diones.¹⁸⁻²⁰ This can be attributed to the low susceptibility of the carbonyl carbon of the aroyl group in the butanamides towards further intramolecular nucleophilic attack by the amido nitrogen to form the cyclic product. Moreover, with hydrazine hydrate, furanones **1-3** produced the corresponding enolhydrazines (**11**, **20**, and **29**), respectively, whereas α,β -unsaturated anhydrides gave the corresponding hydrazides.¹⁰⁻¹² These results led us to propose a mechanism in which intermediate II is formed through the reaction of furanones, whereas intermediate I is formed with anhydrides. In intermediate I the presence of partial positive charge on carbonyl carbon increase its susceptibility towards intramolecular nucleophilic attack by the amido nitrogen to form the cyclic products. Many trials for cyclizing the produced butenamides in presence of different cyclizing agents were unsuccessful.

Although both intermediates I and II contain charge separation, but the amido nitrogen in intermediate II is involved in the continuous conjugated system until the thienyl ring, whereas in intermediate I it is separated by the methylene group. Therefore, the presence of the electron-releasing methyl group in the thienyl ring would stabilize intermediate II, through the decrease of the positive charge on the amido nitrogen, resulting in the enhancement of the yield produced from furanone **3**. (Fig. 1)

Figure 1

Conventional Thermal Heating of Furanones 1-3 with Amines and Hydrazines (a-i)

Conventional thermal heating reactions of furanones 1-3 with amines (a-i) gave the corresponding butanamides and hydrazides 4-30 as only products, in lower yields comparable to the products obtained from the microwave irradiation reactions. However, reaction of furanone 2 with the aromatic amines; aniline (a), 4-methylaniline (b), and 4-chloroaniline (d), to give butanamides 13, 14, and 16, respectively, required more drastic conditions (reflux for 15 hours, molar ratio 1:10), instead of 3 hours and molar ratio 1:2, used with 4methoxyaniline (c). These results can be explained on the basis of the weak basicity of amines (a, b, and d) relative to the basicity of amine (c), due to mesomeric effect exerted by the electron releasing methoxyl group. It can also be attributed to the steric effect exerted by the sp³ hybridized CH₃ carbon in furanone 2, attached to the phenyl group in the reacting moiety.

However, under microwave irradiation technique, the unexpected formation of the corresponding butanamides 13, 14 and 16 from furanone 2 with amines (a, b, and d), irrespective to their low basicity, can be attributed to the acceleration results from material-wave interactions, leading to thermal effects (dielectric heating), or/and specific non-purely thermal effects. The combination of these two contributions can be responsible for the observed results.

Molecular Structural Assignment

Molecular structural assignment of compounds **4-30** were assigned by their spectral analyses; FTIR, MS, and ¹H-NMR. The protons numbering of ¹H-NMR spectra of some compounds are given in Figure 2.

Antimicrobial Activity

The antimicrobial screening of compounds; 4, 6, 9-13, 15, 18-22, and 24-30, using the disk diffusion method, inhibition zone diameter (mm/mg sample) in DMSO as solvent, show that all derivatives examined have antimicrobial activity ranging from high to moderate values against; *Bacillus subtilis* (G⁺), *Staphylococcus aureus* (G⁺), *Escherichia coli* (G⁻), and *Pseudomonas aeruginosa* (G⁻). The screened compounds showed pronounced antibacterial activity. The results obtained are given in Table 2.

Cytotoxic Activity

In vitro cytotoxic activity (IC50) of compounds **4**, **13**, **22**, **6**, **15**, **24**, **10**, **19** and **28** against a human breast carcinoma cell line using flouraciele as a reference drug, using the method that reported by Skehan²¹, where IC50 is defined as the concentration results in a 50% decrease in cell number as compared with that of the control structures in the absence of an inhibitor. The results obtained are given in Table 2.

Figure 2

	-	Cytotoxic			
Compd. No.	Staphylococcus aureus	Escherichia coli	Bacillus subtilis	Pseudomonas aeroginosa	activity IC50 μg/ml
4	No growth	No growth	18 ++	No growth	10.7
6	No growth	No growth	-ve	No growth	11.4
9	No growth	No growth	19 ++	No growth	
10	No growth	No growth	-ve	No growth	17.6
11	No growth	No growth	-ve	No growth	
12	No growth	No growth	15 ++	No growth	
13	No growth	No growth	10 +	No growth	16.8
15	No growth	No growth	-ve	No growth	13.1
18	No growth	No growth	-ve	No growth	
19	No growth	No growth	-ve	No growth	11
20	No growth	No growth	-ve	No growth	
21	No growth	No growth	-ve	No growth	
22	No growth	No growth	-ve	No growth	11
24	No growth	No growth	-ve	No growth	11.1
27	No growth	No growth	-ve	No growth	
28	No growth	No growth	10	No growth	12.8
29	No growth	No growth	-ve	No growth	
30	No growth	No growth	10 +	No growth	
Standard antibacterial agent is Durecif	No growth	No growth	No growth	33 +++	Reference drug is Flouraciele

Table (2): Antimicrobial and Cytotoxic Activities of the Some Compounds

4. Conclusion

- The one-pot solvent-free microwave irradiation reactions were carried out in to synthesize compounds expected to have bioactivity **4-30** in environmentally-safe technique (green chemistry), appreciable high yields and purity. Such requirements are essential for synthesis of bioactive compounds.
- Furanones reactivity 1-3 falls in the order: 3>2>1. These results are attributed to the presence of electron releasing methyl (CH₃) group in the thinly ring which stabilizes and activates it toward product formation.
- The formation of the corresponding butanamides as only products with furanones, comparable to the formation of butanoic acid derivatives or/and pyrrolidine-2,5-diones with α , β -unsaturated anhydrides, is attributed to the low susceptibility of the carbonyl carbon of the aroyl group in the butanamides towards further intramolecular nucleophilic attack by the amido nitrogen to form the cyclic product.

Acknowledgment

The authors like to thank and appreciate Dr. Shadia M. Abdallah, Associate Professor of Chemistry, Department of Chemistry, Faculty of Women for Arts, Science, and Education, for her substantial contribution in this work.

References

- 1. Negishi, E.-I.; Kotora, M. Tetrahedron 1997, 53, 6707-6738.
- 2. Collins, I. J. Chem. Soc., Perkin Trans. 1999, 1377-1395.
- 3. Seitz, M.; Reiser, O. Curr. Opin. Chem. Biol. 2005, 9, 285-292.
- 4. El-Abbady, A. M.; Omera, M. A.; Kandil, N. G. *Rev. Roum. Chim.* **1974**, *19*, 79.
- Guirguis, N. R.; Awad, B. M.; Saad, H. A. Liebigs. Ann. Chem. 1986, 6, 1003-11.
- Guirguis, N. R.; Awad, B. M.; Saad, H. A. J. Prackt. Chem. 1990, 332, 414
- 7. Hashem, A. I.; Shaban, M. E. J. Prakt. Chem. 1981, 323, 164.
- 8. Hashem, A. I.; Hamad, A. S. S. Molecules 2000, 5, 895-907.
- Hashem, A. I.; Hamad, A. S. S.; Derbala, H. A.; El-Sayed, W. A. Acta. Chem. Sol. 2001, 417-425.
- Gedye, R. N.; Smith, F.; Westaway, K.; Ali, H.;Baldisera, L.; Laberge, L.; Rousell, J. Tetrahedron Letters **1986**, *27*, 279-282.
- 11. Caddick, S.; Fizmaurice, R. Tetrahedron Letters 2009, 65, 3325-3355.
- Loupy, A.; Petit, A.; Hamelin, J.; Texier-Boullet, F.; Taquault, P.; Mathe, D. Synthesis 1998, 1213-1234.
- 13. Loupy, A., C. R. Chim. 2004, 7, 103-112.
- Leadbeater, N. E.; Pillsbury, S. J.; Shanahan, E.; Williams, V. A. *Tetrahedron* 2005, *61*, 3565-3585.
- 15. Marquez, H.; Loupy, A.; Calderon, O.; Perez, E. R. *Tetrahedron* **2006**, *62*, 2616-2621.
- 16. Gardre, J. N.; Vardhan, D. K.; Late R. N.; Mohit M.; Chaitanya, V. *Research J. Chem. Enviro.* **2004**, 8 (1), 13-15.
- Strubing, D.; Neumann, H.; Jacobi von Wangelin, A.; Klaus, S.; Hubnre, S. Beller, M. *Tetrahedron* 2006, 62, 10962-10967.
- Abdallah, Sh. M; Hefny, H. A. Turkish Journal of Chemistry 2012, 35, 463-474
- Awad, B. M.; Abdallah, Sh. M; Hefny, H. A. Abdou, M.; Abdelmonem, F.; Abdelmonem, N. *Journal of American Science* 2012, 8(2), 87-95.
- Awad, B. M.; Abdallah, Sh. M; Hefny, H. A. Abdou, M.; Abdelmonem, F.; Abdelmonem, N. *Life Science Journal* 2012, 9 (4), 567-577.
- 21. Skehan, P.; Storeng, R. J. Nat. Cancer Inst. 1990, 82, 1107-1112.

5/2/2013