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1. Introduction 

One of the oldest combinatorial optimization 
problems in facility planning is the quadratic 
assignment problem (QAP) that it has been shown as 
an NP-Hard problem (Sahni and Gonzalez, 1976). 
The QAP was first proposed by Koopmans and 
Beckmann (1957) and there are many researches 
focused on the QAP so far. Referring to Burkard et 
al. (1998), the QAP can be defined as the problem of 
allocating a set of facilities to a set of locations, with 
the cost being a function of the distance and flow 
between the facilities, plus costs associated with a 
facility being placed at a certain location. The 
objective is to assign each facility to a location such 
that the total cost is minimized. The QAP can be 
formulated as follows: 
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:n number of facilities, 

:ipc Cost of installing facility i  to location j , 

:pqd  Distance between locations p  and q , 

:ijf  Material flow from facility i  to facility j ,  
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Objective function is to minimize material handling 
cost and cost of installing facilities. Constraints (1-2) 
and (1-3) state that each location must be occupied by 
only one facility and each facility must be located in 
only one location. Since the linear term of (1.1) is 
easy to solve, most authors ignored it, moreover the 
non-linear term of (1.1) can be reformulated as 
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where it is implied that the QAP can be formulated as 
a convex binary problem. Several researches have 
been implemented in the QAP in three directions: 
proposing linearization method for problem (1), 
developing heuristics/meta-heuristics to find near 
optimal solution and finding tight lower bound for 
optimal solution of the QAP. A useful survey was 
written by Loiola et al. (2006) classified 368 
references in these directions. Moreover, the QAP 
library (QAPLIB) has provided sets of instances with 
their best known solution and lower bound. In this 
paper, we study the QAP and particularly, the single-
period facility layout problem (SFLP). The 
contributions of this paper are mentioned as follows: 
 We develop an efficient algorithm to solve the 

QAP near optimally. 
 We explain some directions for the future 

research’s direction and explain their relation 
with the QAP. 

Remainder of paper is organized as follows: 
In section 2, directions of research in QAP are 
reviewed. In section 3, we develop four meta-
heuristics including, simulated annealing (SA) 
algorithm, Tabu search (TS) algorithm and a hybrid 
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algorithm of TS algorithm and SA algorithm called 
as TABUSA for the QAP and their efficiency are 
next evaluated in 59 instances of QAPLIB. In section 
4, conclusions are explained and some suggestions 
for future research are described. 

 
2. Research’s directions of QAP  

Almost all the researches in the field of QAP 
can be divided by three subjects: proposing efficient 
linearization for the problem (1), finding tight upper-
bound and lower bound for optimal solution of the 
QAP. Here, we provide a short description of each 
direction as follows. 
2.1. Linearization of the QAP 

In this type of research, the goal is to find an 
efficient way to linearize the problem (1). The 
simplest linearization is 
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It can be shown that it is not necessary to 

impose variable ipjqy  as binary variables and 

because of objective function, we can reduced 
constraints by removing (2.4) and (2.5). Therefore, 
the linearization of the QAP can be reformulated as 
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Although formulation (3) reduces the 
computational time of formulation (2), however it is 
not the most efficient linearization of the QAP. It is 
probably because of this fact that the non-linearity is 
linearized based on inequality constraint. Adams and 
Jhonson (1994) proposed a linearization method that 
it is the most well-known method in the literature 
based on some equality constraints: 
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Recently, Zhang et al. (2010) improved 
Adams and Johnson (1994) linearization as 
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Their linearization was also improved by 
removing zero flow variables. Here we report a brief 
numerical implementation as Table 1. comparing the 
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efficiency of the formulations (3), (4) and (5) in 5 
instances of QAPLIB as follows. It is shown that 
computational time of problem depends on structure 
of objective coefficients as well the size of problems. 
Moreover, it is shown that the formulation (5) is 
more efficient linearization than the other 
linearization. 
Table 1. Computational time of different linearization 

 
CPU Time 

Instance (2) (3) (4) (5) 
Chr12a >2hrs 28.67 sec 9.5 sec 6.29sec 
Chr12b >2hrs 6.9 sec 9.89 sec 1.09sec 
Chr12c >2hrs 47.02 sec 21.31 sec 14.15sec 
Had12 >2hrs >2hrs >2hrs 1.5hrs 
Nug12 >2hrs >2hrs >2hrs >2hrs 

 
2.2. Upper bound 

Another direction of researches focused on 
QAP is to find near optimal solution for QAP. 
Several heuristics and meta-heuristics have been 
proposed and tested in set of instances existed in 
QAPLIB. QAPLIB provide several data sets 
containing 135 instances where best known solution 
(BKS) and lower bound of each instance are reported. 
Researchers have focused on improving the best 
known solution of each instance of QAPLIB as 
Drezner et al. (2013) or solving all instances of 
QAPLIB with the minimum gap respect to best 
known solution as James et al. (2009). 
 
2.4.Lower bound 
The last direction of QAP is to find a lower bound for 
optimal solution. The simplest way of finding lower 

bound is to sort element of matrix f  from smallest 

to largest, f̂ , and sort element of matrix D  from 

largest to smallest, D̂ . The value of Df T ˆˆ  can be 

considered as a lower bound for optimal solution of 
QAP. Another lower bound was proposed by 
Gilmore (1962) as Gilmore-Lawler lower bound. 
They find the lowest cost of each facility in each 

location, 
ip

f , and convert the QAP to assignment 

problem as 
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Problem (6) can be solved in polynomial time with 

)( 4nO  using Hungarian method. Another lower 

bound can be found by LP- relaxation of problem (5), 
however the most efficient method proposed in the 
literature is based on semi-definite programming 
method (SDP). SDP relaxation can be applied for the 
QAP as 
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where yxyxSDPsQ  20,,i  and Q  is a 

positive semi-definite matrix if 00,  xQxxT . 

3. Algorithms 
In this section, four algorithms, that are, SA, 

TS and TABUSA are proposed for the QAP. The 
steps of each algorithm are explained as Figure 1. We 
compare the efficiency of all algorithms in 59 
instances of QAPLIB shown in Table 2. The bold 
number shows that the algorithm finds BKS of 
instance and underline shows the best solution 
between four algorithms. It is shown that GA is the 
most efficient algorithm and SA is the worst 
algorithm. We next compare the best proposed 
algorithm, that is TABUSA, with four algorithms 
existed in the literature of the QAP, Ramkumar et al. 
(2008, 2009a&b) and Goldberg and Goldberg (2012). 
The solution, the gap (respect to BKS ) and the 
computational time of each method are reported in 
each instance in Table 3.  

We evaluate the efficiency of all algorithms 
in 59 instances (containing burxxx, elsxxx, escxxx, 
hadxxx, nugxxx, rouxxx, scrxxx, stexxx and thoxxx) 
of QAPLIB shown in Table 2. The bold number 
shows that the algorithm finds BKS of instance and 
underline shows the best solution between four 
algorithms. We next compare the best proposed 
algorithm, that is GA, with four algorithms existed in 
the literature of the QAP, Ramkumar et al. (2008, 
2009a, 2009b) and Goldberg and Goldberg (2012) 
shown in Table 3. It is also shown in Table 4 that our 
proposed GA performs better than the other 
algorithm in all instances such that it can solve the 
most instances with zero gap (53 instances), it is also 
the best algorithm in terms of largest gap (1.56%) 
and dominates other algorithms in all instances. 
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Begin 

    Input data and algorithm’s parameters 

        ; %Total number of movement 
        ; %cooling rate 
        NEIT=n; %movement in each temperature 
        ; %Initial temperature 
        ; %Coefficient of accepting unfavorable solution 

         % Best value of the algorithm 

    Generate initial solution randomly ( ) and evaluate its efficiency .  

    Consider the best solution, . 

    Set ;  

    While  

        For  
           If  then replace location of two randomly selected facilities 

           Elseif  replace location of two pair of randomly selected facilities Endif 

           Evaluate the efficiency of neighbor solution  

           Define  

           If  then update  and  , 

           Elseif r  then update  and Endif. 

           Update ,  

        Endfor 

         
    Endwhile 

End. 

Figure 1.a. SA Algorithm pseudo-code 
 

Begin 

    Input data and algorithm’s parameters 

        ; %Total number of movement 
        ;%Size of tabulist 
        ; %Initial Tabulist 
        ; %movement before each local search 

         % Best value of the algorithm 

    Generate initial solution randomly ( ) and evaluate its efficiency .  

    Consider the best solution, . 

    Set ;  

    While  

        For  
           If  then replace location of two randomly selected facilities 

           Elseif  replace location of two pair of randomly selected facilities Endif 

           If solution of neighbor,  

               
              If  then remove half of solution of Tabulist,  Endif 

              If  then update  and , 

              Update ,  

        Endfor 

        Implement localsearch %find the optimal permutation of three successive facilities 
    Endwhile 
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End. 

Figure 1.b. TS Algorithm pseudo-code 

 

 

Begin 

    Input data and algorithm’s parameters 

        ; %Total number of movement 
        ;%Size of tabulist 
        ; %Initial Tabulist 
        ; %movement before each local search 
        ; %cooling rate 
        ; %Initial temperature 
        ; %Coefficient of accepting unfavorable solution 

         % Best value of the algorithm 

    Generate initial solution randomly ( ) and evaluate its efficiency .  

    Consider the best solution, . 

    Set ;  

    While  

        For  
           If  then replace location of two randomly selected facilities 

           Elseif  replace location of two pair of randomly selected facilities Endif 

           If solution of neighbor,  

               
           If  then update  and  , 

           Elseif r  then update  and Endif. 

           Update ,  

        Endfor 

        Implement 2-opt local search 
         
    Endwhile 

End. 

Figure 1.c. TABUSA Algorithm pseudo-code 
 

Table 4. Optimality gap comparison of algorithms 

Interval TABUSA 
Algorithms of literature 

2008 2009a 2009b 2012 
zero gap 42 46 44 49 3 
≤0.1 50 48 46 50 12 
≤1 54 53 52 53 24 
≤2 54 56 55 56 26 
Dominating 73% 81% 75% 51 11% 
Total instances 59 57 59 57 28 
Largest gap 4.12 2.25 3.66 2.48 2.85 

 
6. Conclusions 

In this paper, three directions of research in 
the QAP are reviewed. We then developed four meta-
heuristics, (SA, TS, TABUSA and GA) and compared 
with four existed algorithms in the literature 
(Ramkumar et al. 2008, 2009 a,b and Golberg and 
Golberg 2012). The numerical results show that our 
proposed GA performs is better than proposed 
algorithm in the literature. Finally, we explain some 

problems addition as future research’s direction as 
follows: 

 SFLP: This problem is a special case of the QAP 

where parameter d is defined as departmental 
distance. Proposed algorithms for the QAP can be 
applied easily for the SFLP. 

 Dynamic facility layout problem (DFLP): DFLP is 
an extension of the QAP such that there are several 
periods with different departmental material flows 
and it’s objective is to minimize material handling 
cost of all periods plus relayout cost of 
departments. Developed algorithms can be tested 
in a benchmark proposed by Balakrishnan et al. 
(2000).  

 Traveling salesman problem (TSP): TSP is a 
special case of the QAP that is a special case of the 
QAP where facilities will be located over a circle. 
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Developed algorithms can be tested in TSP library 
benchmark proposed by Reinelt (2001). 

 Sequencing problem: A set of jobs will be worked 
in several machines. There are several types of 
sequencing problem as single machine scheduling 
and parallel machine scheduling. In this problem, 
the solution can be represented as permutation 
encoding. There is a lot of instance for each type 
of this problem. 

 Stochastic QAP: It is an interesting area to assume 
uncertain parameters in the QAP. In each instance 
of QAPLIB, we can consider an interval for each 
parameter where uncertain parameters deviated 
from their nominal value in these intervals. 
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Table 2. Comparison of proposed algorithm 
        SA   TS   TABUSA   
n Name BKS   CPU time Solution RPD   CPU time Solution RPD   CPU time Solution RPD   

(a) Solution qualities with CPU time of  burxxx problems                     
26 Bur26a 5426670   32.9 5547753 2.23   30.4 5434116 0.14   50.2 5433083 0.12   
26 Bur26b 3817852   33.4 3904762 2.28   30.1 3824830 0.18   49.7 3818041 0.00   
26 Bur26c 5426795   34.0 5532348 1.95   31.8 5428558 0.03   47.2 5427703 0.02   
26 Bur26d 3821225   33.8 3902153 2.12   31.0 3831262 0.26   46.5 3821525 0.01   
26 Bur26e 5386879   34.0 5509541 2.28   29.3 5401444 0.27   48.3 5387503 0.01   

26 Bur26f 3782044   32.8 3881039 2.62   29.4 3794964 0.34   45.4 3782219 0.00   
26 Bur26g 10117172   34.9 10314185 1.95   31.2 10120332 0.03   48.9 10119767 0.03   
26 Bur26h 7098658   33.9 7234980 1.92   29.7 7099875 0.02   50.9 7098905 0.00   

(b) Solution qualities with CPU time of  elsxxx problems                     

19 Els19 17212548   22.4 21868218 27.05   20.8 22324310 29.70   25.9 17260346 0.28   

(c) Solution qualities with CPU time of  escxxx problems                     

16 esc16a 68   15.6 72 5.88   16.3 68 0.00   19.9 68 0.00   
16 esc16b 292   13.7 292 0.00   17.6 292 0.00   20.2 292 0.00   
16 esc16c 160   19.0 162 1.25   20.6 160 0.00   21.1 160 0.00   
16 esc16d 16   15.5 18 12.50   22.4 16 0.00   19.4 16 0.00   
16 esc16e 28   16.3 28 0.00   16.2 28 0.00   17.5 28 0.00   
16 esc16f 0   10.7 0 0.00   23.2 0 0.00   33.9 0 0.00   
16 esc16g 26   15.3 26 0.00   21.1 26 0.00   22.3 26 0.00   
16 esc16h 996   17.1 996 0.00   21.4 996 0.00   17.2 996 0.00   
16 esc16i 14   14.7 14 0.00   16.7 14 0.00   21.7 14 0.00   
16 esc16j 8   13.8 8 0.00   16.8 8 0.00   18.1 8 0.00   
32 esc32a 130   95.3 254 95.38   23.0 160 23.08   72.9 130 0.00   
32 esc32b 168   90.4 320 90.48   38.2 196 16.67   79.2 168 0.00   
32 esc32c 642   37.5 704 9.66   40.2 642 0.00   85.3 642 0.00   
32 esc32d 200   38.7 244 22.00   42.0 214 7.00   78.1 200 0.00   
32 esc32e 2   31.6 2 0.00   37.9 2 0.00   78.0 2 0.00   
32 esc32g 6   33.1 6 0.00   41.4 6 0.00   81.2 6 0.00   
32 esc32h 438   40.6 518 18.26   39.6 466 6.39   75.0 438 0.00   

64 esc64a 116   85.7 154 32.76   124.2 116 0.00   445.0 116 0.00   
128 esc128a 64   244.7 210 228.13   530.0 68 6.25   2187.0 64 0.00   

(d) Solution qualities with CPU time of  hadxxx problems                     

12 Had12 1652   12.1 1676 1.45   13.6 1676 1.45   11.1 1652 0.00   
14 Had14 2724   15.1 2780 2.06   14.7 2724 0.00   14.1 2724 0.00   
16 Had16 3720   17.1 3820 2.69   15.6 3720 0.00   17.8 3720 0.00   

18 Had18 5358   20.1 5522 3.06   18.9 5420 1.16   22.0 5358 0.00   

20 Had20 6922   23.1 7158 3.41   20.2 7034 1.62   27.7 6922 0.00   

(g) Solution qualities with CPU time of  nugxxx problems       
 

            

12 nug12 578   11.9 600 3.81   13.4 586 1.38   11.6 578 0.00   

14 nug14 1014   15.1 1084 6.90   15.1 1016 0.20   14.1 1014 0.00   

15 nug15 1150   16.0 1222 6.26   15.7 1152 0.17   15.1 1150 0.00   

16 nug16a 1610   17.3 1752 8.82   16.6 1634 1.49   16.9 1610 0.00   

16 nug16b 1240   17.7 1388 11.94   17.4 1290 4.03   18.7 1240 0.00   

17 nug17 1732   19.2 1884 8.78   18.4 1764 1.85   20.6 1732 0.00   

18 nug18 1930   21.0 2126 10.16   20.6 1970 2.07   22.9 1930 0.00   

20 nug20 2570   23.6 2864 11.44   22.3 2632 2.41   28.5 2570 0.00   

(h) Solution qualities with CPU time of  rouxxx problems       
 

      
 

    

12 rou12 235528   11.7 255982 8.68   12.7 240038 1.91   11.1 235528 0.00   

15 rou15 354210   15.9 384298 8.49   16.3 363786 2.70   16.1 354210 0.00   

20 rou20 725522   23.1 804298 10.86   20.5 729774 0.59   26.6 725582 0.01   

(i) Solution qualities with CPU time of scrxxx problems                     

12 scr12 31410   12.2 34462 9.72   12.7 31410 0.00   12.1 31410 0.00   

15 scr15 51140   15.8 61808 20.86   15.0 54002 5.60   16.3 51140 0.00   

20 scr20 110030   24.4 143882 30.77   22.5 116022 5.45   29.8 110030 0.00   

(k) Solution qualities with CPU time of  stexxx problems                     

12 tai12a 224416   12.8 244438 8.92   13.8 235554 4.96   11.5 224416 0.00   

15 tai15a 388214   16.6 419472 8.05   16.3 399756 2.97   17.0 388214 0.00   

15 tai15b 51765268   16.7 52247647 0.93   16.2 51881760 0.23   16.5 51765268 0.00   

17 tai17a 491812   19.0 546896 11.20   18.5 504676 2.62   20.6 491812 0.00   

20 tai20a 703482   24.6 794058 12.88   21.9 731042 3.92   28.5 705622 0.30   

20 tai20b 122455319   22.8 146972858 20.02   21.5 123190475 0.60   34.2 122455319 0.00   

25 tai25a 1167256   32.3 1309950 12.22   28.4 1230588 5.43   44.8 1199284 2.74   

30 tai30a 1818146   40.6 2034712 11.91   35.1 1902096 4.62   67.6 1867454 2.71   

40 tai40a 3139370   65.0 3559698 13.39   57.3 3288442 4.75   130.7 3259350 3.82   

50 tai50a 4938796   81.2 5643164 14.26   74.2 5139074 4.06   200.0 5142270 4.12   

(m) Solution qualities with CPU time of  thoxxx problems                     

30 tho30 149936   45.8 184932 23.34   35.0 158644 5.81   64.3 150994 0.71   

40 tho40 240516   76.1 295656 22.93   52.8 255248 6.13   121.0 245646 2.13   

 
Table 3. Comparison of our best algorithm with algorithms in the literature of the QAP 

        Ramkumar et al. (2008)   Ramkumar et al. (2009,a)   Ramkumar et al. (2009,b)   
Goldberg & 

 Goldberg (2012) 
  TABUSA 

n Name BKS   CPU time Solution RPD   CPU time Solution RPD   Solution RPD   CPU Time RPD   CPU time Solution RPD 

(a) Solution qualities with CPU time of  burxxx problems                                 

26 Bur26a 5426670   61.3 5426670 0.00   39.1 5431255 0.08   5426670 0.00   

0.15 0.01 

  50.2 5433083 0.12 

26 Bur26b 3817852   60.3 3817852 0.00   41.1 3824315 0.17   3817852 0.00     49.7 3818041 0.00 
26 Bur26c 5426795   57.8 5426795 0.00   39.1 5426795 0.00   5426795 0.00     47.2 5427703 0.02 

26 Bur26d 3821225   61.3 3821225 0.00   40.1 3821225 0.00   3821225 0.00     46.5 3821525 0.01 

26 Bur26e 5386879   57.8 5386879 0.00   38.4 5386879 0.00   5386879 0.00     48.3 5387503 0.01 
26 Bur26f 3782044   59.2 3782044 0.00   38.6 3782044 0.00   3782044 0.00     45.4 3782219 0.00 

26 Bur26g 10117172   57.7 10117172 0.00   37.1 10117172 0.00   10117172 0.00     48.9 10119767 0.03 

26 Bur26h 7098658   57.5 7098658 0.00   37.4 7098658 0.00   7098658 0.00     50.9 7098905 0.00 

(b) Solution qualities with CPU time of  elsxxx problems                               

19 Els19 17212548   - - -   8.9 17212548 0.00   17212548 0.00   - -   25.9 17260346 0.28 

(c) Solution qualities with CPU time of  escxxx problems                               

16 esc16a 68   3.2 68 0.00   2.2 68 0.00   68 0.00   - -   19.9 68 0.00 

16 esc16b 292   2.8 292 0.00   1.9 292 0.00   292 0.00   - -   20.2 292 0.00 

16 esc16c 160   4.0 160 0.00   2.8 160 0.00   160 0.00   - -   21.1 160 0.00 

16 esc16d 16   4.0 16 0.00   2.8 16 0.00   16 0.00   - -   19.4 16 0.00 

16 esc16e 28   2.3 28 0.00   1.6 28 0.00   28 0.00   - -   17.5 28 0.00 

16 esc16f 0   1.1 0 0.00   0.8 0 0.00   0 0.00   - -   33.9 0 0.00 

16 esc16g 26   2.8 26 0.00   1.9 26 0.00   26 0.00   - -   22.3 26 0.00 

16 esc16h 996   2.1 996 0.00   1.5 996 0.00   996 0.00   - -   17.2 996 0.00 

16 esc16i 14   2.0 14 0.00   1.4 14 0.00   14 0.00   - -   21.7 14 0.00 

16 esc16j 8   2.9 8 0.00   2.0 8 0.00   8 0.00   - -   18.1 8 0.00 

32 esc32a 130   136.8 130 0.00   89.5 134 3.08   130 0.00   5 0.57   72.9 130 0.00 
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32 esc32b 168   110.4 168 0.00   72.9 168 0.00   168 0.00     79.2 168 0.00 

32 esc32c 642   54.7 642 0.00   34.6 642 0.00   642 0.00     85.3 642 0.00 
32 esc32d 200   74.3 200 0.00   49.0 200 0.00   200 0.00     78.1 200 0.00 

32 esc32e 2   46.1 2 0.00   29.4 2 0.00   2 0.00     78.0 2 0.00 

32 esc32g 6   28.4 6 0.00   18.9 6 0.00   6 0.00     81.2 6 0.00 
32 esc32h 438   85.8 438 0.00   54.9 438 0.00   438 0.00     75.0 438 0.00 

64 esc64a 116   1521.7 116 0.00   1059.9 116 0.00   116 0.00   15 0.00   445.0 116 0.00 

128 esc128a 64   - - -   23370.1 64 0.00   64 0.00   20 0.88   2187.0 64 0.00 

(d) Solution qualities with CPU time of  hadxxx problems                               

12 Had12 1652   1.0 1652 0.00   1.0 1652 0.00   1652 0.00   - -   11.1 1652 0.00 

14 Had14 2724   2.0 2724 0.00   2.0 2744 0.73   2724 0.00   - -   14.1 2724 0.00 

16 Had16 3720   3.6 3722 0.05   3.6 3722 0.05   3720 0.00   - -   17.8 3720 0.00 

18 Had18 5358   6.5 5358 0.00   6.4 5358 0.00   5358 0.00   - -   22.0 5358 0.00 

20 Had20 6922   10.6 6922 0.00   10.2 6922 0.00   6922 0.00   3.0 0.00   27.7 6922 0.00 

(g) Solution qualities with CPU time of  nugxxx problems       
 

    
 

            
 

  

12 nug12 578   1.4 578 0.00   1.0 578 0.00   578 0.00   - -   11.6 578 0.00 

14 nug14 1014   3.1 1018 0.39   2.1 1014 0.00   1016 0.20   - -   14.1 1014 0.00 

15 nug15 1150   4.0 1150 0.00   2.9 1150 0.00   1150 0.00   - -   15.1 1150 0.00 

16 nug16a 1610   5.6 1610 0.00   3.9 1610 0.00   1610 0.00   - -   16.9 1610 0.00 

16 nug16b 1240   5.6 1240 0.00   3.9 1240 0.00   1240 0.00   - -   18.7 1240 0.00 

17 nug17 1732   7.3 1732 0.00   5.2 1734 0.12   1732 0.00   - -   20.6 1732 0.00 

18 nug18 1930   9.6 1930 0.00   6.7 1930 0.00   1930 0.00   - -   22.9 1930 0.00 

20 nug20 2570   16.1 2570 0.00   11.2 2570 0.00   2570 0.00   3.0 0.00   28.5 2570 0.00 

(h) Solution qualities with CPU time of  rouxxx problems                               

12 rou12 235528   1.1 235528 0.00   1.1 235528 0.00   235528 0.00   - -   11.1 235528 0.00 

15 rou15 354210   3.0 354210 0.00   2.9 354210 0.00   354210 0.00   - -   16.1 354210 0.00 

20 rou20 725522   11.7 725662 0.02   11.4 725522 0.00   725522 0.00   3.0 0.16   26.6 725582 0.01 

(i) Solution qualities with CPU time of scrxxx problems                               

12 scr12 31410   1.1 31410 0.00   11.1 31410 0.00   31410 0.00   - -   12.1 31410 0.00 

15 scr15 51140   3.1 51140 0.00   3.1 51140 0.00   51140 0.00   - -   16.3 51140 0.00 

20 scr20 110030   12.7 110030 0.00   12.3 110030 0.00   110030 0.00   3.0 0.01   29.8 110030 0.00 

(k) Solution qualities with CPU time of  stexxx problems                               

12 tai12a 224416   1.1 224416 0.00   1.1 224416 0.00   224416 0.00   - -   11.5 224416 0.00 

15 tai15a 388214   3.0 388214 0.00   3.0 388870 0.17   388250 0.01   - -   17.0 388214 0.00 

15 tai15b 51765268   3.1 51765268 0.00   3.1 51765268 0.00   51765268 0.00   - -   16.5 51765268 0.00 

17 tai17a 491812   5.6 493662 0.38   5.5 491812 0.00   494550 0.56   - -   20.6 491812 0.00 

20 tai20a 703482   11.4 706786 0.47   1.4 729204 3.66   709080 0.80   3.0 0.52   28.5 705622 0.30 

20 tai20b 122455319   12.5 122455319 0.00   12.4 125286585 2.31   122455319 0.00   - -   34.2 122455319 0.00 

25 tai25a 1167256   33.0 1190574 2.00   32.9 1181072 1.18   1185587 1.57   6.0 1.29   44.8 1199284 2.74 

30 tai30a 1818146   83.1 1838380 1.11   82.8 1845582 1.51   1842986 1.37   10.0 1.52   67.6 1867454 2.71 

40 tai40a 3139370   354.4 3197384 1.85   346.9 3198114 1.87   3192668 1.70   25.0 2.22   130.7 3259350 3.82 

50 tai50a 4938796   1104.1 5049794 2.25   1076.1 5043946 2.13   5061236 2.48   50.0 2.85   200.0 5142270 4.12 

(m) Solution qualities with CPU time of  thoxxx problems                               

30 tho30 149936   118.9 150378 0.29   78.1 150454 0.35   - -   10.0 0.21   64.3 150994 0.71 

40 tho40 240516   501.8 241782 0.53   351.3 242888 0.99   - -   25.0 0.45   121.0 245646 2.13 
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