Quadratic Assignment Problem

Hossein Shahbazi, Ali Eghbali Ghahyazi, Farhad Zeinali

Department of Industrial Engineering, Islamic Azad University, South Tehran Branch shahbazi.hossein1368@gmail.com

Abstract: One of the well-known combinatorial optimization problems is the quadratic assignment problem (QAP). There are three directions of research in the QAP: proposing linearization method for the QAP formulation, developing heuristics/meta-heuristics to find near optimal solution and finding tight lower bound for optimal solution of the QAP. In this paper, we review these directions and next propose three algorithms to find near optimal solutions. The efficiency of our best proposed algorithm is tested in 59 instances of QAPLIB and our numerical results confirmed that our algorithm performs better than four algorithms existed in the literature of the QAP. [Hossein Shahbazi, Ali Eghbal Ghahyazi, Farhad Zeinali. **Quadratic Assignment Problem.** J Am Sci 2013;9(8):178-184]. (ISSN: 1545-1003). http://www.jofamericanscience.org. 26

Keywords: Quadratic assignment problem; meta-heuristics; Single-period facility layout problem; Mixed integer programming.

1. Introduction

One of the oldest combinatorial optimization problems in facility planning is the quadratic assignment problem (QAP) that it has been shown as an NP-Hard problem (Sahni and Gonzalez, 1976). The QAP was first proposed by Koopmans and Beckmann (1957) and there are many researches focused on the QAP so far. Referring to Burkard et al. (1998), the QAP can be defined as the problem of allocating a set of facilities to a set of locations, with the cost being a function of the distance and flow between the facilities, plus costs associated with a facility being placed at a certain location. The objective is to assign each facility to a location such that the total cost is minimized. The QAP can be formulated as follows:

$$Min \sum_{q=1}^{n} \sum_{p=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} d_{pq} f_{ij} y_{ipjq} + \sum_{p=1}^{n} \sum_{i=1}^{n} c_{ip} x_{ip}$$
(1.1)

$$\sum_{i=1}^{n} x_{ip} = 1 \qquad \forall p \quad (1.2)$$

$$\sum_{p=1}^{p} x_{ip} = 1 \qquad \forall i \quad (1.3)$$

$$x_{ip} \in \{0,1\}, \qquad \forall i, p \ (1,4)$$

n:number of facilities,

 c_{in} : Cost of installing facility *i* to location *j*,

 d_{pq} : Distance between locations p and q,

 f_{ii} : Material flow from facility *i* to facility *j*,

$$x_{ip} = \begin{cases} 1, & \text{If facility } i \text{ is located in location } p \\ 0, & \text{Otherwise} \end{cases}$$

Objective function is to minimize material handling cost and cost of installing facilities. Constraints (1-2) and (1-3) state that each location must be occupied by only one facility and each facility must be located in only one location. Since the linear term of (1.1) is easy to solve, most authors ignored it, moreover the non-linear term of (1.1) can be reformulated as

$$x_{ip}x_{jq} = \frac{1}{2} \left(\left(x_{ip} + x_{jq} \right)^2 - x_{ip} - x_{jq} \right)$$

where it is implied that the QAP can be formulated as a convex binary problem. Several researches have been implemented in the QAP in three directions: proposing linearization method for problem (1), developing heuristics/meta-heuristics to find near optimal solution and finding tight lower bound for optimal solution of the QAP. A useful survey was written by Loiola et al. (2006) classified 368 references in these directions. Moreover, the QAP library (QAPLIB) has provided sets of instances with their best known solution and lower bound. In this paper, we study the QAP and particularly, the singleperiod facility layout problem (SFLP). The contributions of this paper are mentioned as follows:

- We develop an efficient algorithm to solve the QAP near optimally.
- We explain some directions for the future research's direction and explain their relation with the QAP.

Remainder of paper is organized as follows: In section 2, directions of research in QAP are reviewed. In section 3, we develop four metaheuristics including, simulated annealing (SA) algorithm, Tabu search (TS) algorithm and a hybrid algorithm of TS algorithm and SA algorithm called as TABUSA for the QAP and their efficiency are next evaluated in 59 instances of QAPLIB. In section 4, conclusions are explained and some suggestions for future research are described.

2. Research's directions of QAP

Almost all the researches in the field of QAP can be divided by three subjects: proposing efficient linearization for the problem (1), finding tight upperbound and lower bound for optimal solution of the QAP. Here, we provide a short description of each direction as follows.

2.1. Linearization of the QAP

In this type of research, the goal is to find an efficient way to linearize the problem (1). The simplest linearization is

$$Min \sum_{q=1}^{n} \sum_{p=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} d_{pq} f_{ij} y_{ipjq} + \sum_{p=1}^{n} \sum_{i=1}^{n} C_{ip} x_{ip}$$
(2.1)

$$\sum_{i=1}^{n} x_{ip} = 1 \qquad \forall p \quad (2.2)$$

$$\sum_{p=1}^{p} x_{ip} = 1 \qquad \qquad \forall i \qquad (2.3)$$

$$y_{ipjq} \leq x_{ip} \qquad \qquad \forall i, j, (2.4)$$

n a

$$y_{ipjq} \le x_{jq} \qquad \qquad \forall i, j, \\ p, q \quad (2.5)$$

$$y_{ipjq} \ge x_{ip} + x_{jq} - 1 \qquad \forall i, j, \\ n \ a \quad (2.6)$$

$$x_{ip} \in \{0,1\}, y_{ipjq} \in \{0,1\} \qquad \begin{array}{c} p, q \\ \forall i, j, \\ p, q \end{array} (2.7)$$

It can be shown that it is not necessary to impose variable y_{ipjq} as binary variables and because of objective function, we can reduced constraints by removing (2.4) and (2.5). Therefore, the linearization of the QAP can be reformulated as

$$\frac{Min \sum_{q=1}^{n} \sum_{p=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} d_{pq} f_{ij} y_{ipjq}}{+ \sum_{p=1}^{n} \sum_{i=1}^{n} C_{ip} x_{ip}}$$
(3.1)

$$\sum_{i=1}^{n} x_{ip} = 1 \qquad \forall p \qquad (3.2)$$

$$\sum_{p=1}^{p} x_{ip} = 1 \qquad \forall i \qquad (3.3)$$

$$y_{ipjq} \ge x_{ip} + x_{jq} - 1 \qquad \forall i, j, p, q \qquad (3.4)$$

$$x_{ip} \in \{0,1\},$$
 (3.5)

Although formulation (3) reduces the computational time of formulation (2), however it is not the most efficient linearization of the QAP. It is probably because of this fact that the non-linearity is linearized based on inequality constraint. Adams and Jhonson (1994) proposed a linearization method that it is the most well-known method in the literature based on some equality constraints:

$$Min \sum_{q=1}^{n} \sum_{p=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} d_{pq} f_{ij} y_{ipjq} + \sum_{p=1}^{n} \sum_{i=1}^{n} C_{ip} x_{ip}$$
(4.1)

$$\sum_{i=1}^{n} x_{ip} = 1 \qquad \qquad \forall p \qquad (4.2)$$

$$\sum_{i=1}^{p} x_{ip} = 1 \qquad \forall i \qquad (4.3)$$

$$\sum_{q \neq p} y_{ipjq} = x_{ip} \qquad \forall i \neq j, p \ (4.4)$$

$$\sum_{j \neq i} y_{ipjq} = x_{ip} \qquad \forall i, p \neq q \ (4.5)$$

$$x_{ip} \in \{0,1\}, y_{ipjq} \in \{0,1\} \qquad \forall i, j, \\ p,q \qquad (4.7)$$

Recently, Zhang et al. (2010) improved Adams and Johnson (1994) linearization as

$$Min \sum_{q=1}^{n} \sum_{p=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} d_{pq} f_{ij} y_{ipjq} + \sum_{p=1}^{n} \sum_{i=1}^{n} C_{ip} x_{ip}$$
(5.1)

$$\sum_{i=1}^{n} x_{ip} = 1 \qquad \forall p \qquad (5.2)$$

$$\sum_{i=1}^{p} x_{ip} = 1 \qquad \forall i \qquad (5.3)$$

$$\sum_{j>i} y_{ipjq} \le x_{ip} \qquad \forall i, p \neq q \ (5.5)$$
$$y_{iniq} = y_{iqin} \qquad \forall i \neq j, \qquad (5.6)$$

$$y_{ipjq} = y_{jqip} \qquad \forall l \neq J, \\ p \neq q \qquad (5.6)$$

$$x_{ip} \in \{0,1\}, y_{ipjq} \in \{0,1\} \qquad \forall i, j, \\ p,q \qquad (5.7)$$

Their linearization was also improved by removing zero flow variables. Here we report a brief numerical implementation as Table 1. comparing the efficiency of the formulations (3), (4) and (5) in 5 instances of QAPLIB as follows. It is shown that computational time of problem depends on structure of objective coefficients as well the size of problems. Moreover, it is shown that the formulation (5) is more efficient linearization than the other linearization.

Table 1. Computational time of different linearization													
	CPU Time												
Instance	(2)	(3)	(4)	(5)									
Chr12a	>2hrs	28.67 sec	9.5 sec	6.29sec									
Chr12b	>2hrs	6.9 sec	9.89 sec	1.09sec									
Chr12c	>2hrs	47.02 sec	21.31 sec	14.15sec									
Had12	>2hrs	>2hrs	>2hrs	1.5hrs									
Nug12	>2hrs	>2hrs	>2hrs	>2hrs									

2.2. Upper bound

Another direction of researches focused on QAP is to find near optimal solution for QAP. Several heuristics and meta-heuristics have been proposed and tested in set of instances existed in QAPLIB. QAPLIB provide several data sets containing 135 instances where best known solution (BKS) and lower bound of each instance are reported. Researchers have focused on improving the best known solution of each instance of QAPLIB as Drezner et al. (2013) or solving all instances of QAPLIB with the minimum gap respect to best known solution as James et al. (2009).

2.4.Lower bound

The last direction of QAP is to find a lower bound for optimal solution. The simplest way of finding lower bound is to sort element of matrix f from smallest to largest, \hat{f} , and sort element of matrix D from largest to smallest, \hat{D} . The value of $\hat{f}^T \hat{D}$ can be considered as a lower bound for optimal solution of QAP. Another lower bound was proposed by Gilmore (1962) as Gilmore-Lawler lower bound. They find the lowest cost of each facility in each location, \underline{f}_{ip} , and convert the QAP to assignment problem as

$$Min \sum_{p=1}^{n} \sum_{i=1}^{n} \underline{f}_{ip} x_{ip} + \sum_{p=1}^{n} \sum_{i=1}^{n} C_{ip} x_{ip}$$
(6.1)

$$\sum_{i=1}^{n} x_{ip} = 1 \qquad \forall p \qquad (6.2)$$
$$\sum_{i=1}^{p} x_{ip} = 1 \qquad \forall i \qquad (6.3)$$

Problem (6) can be solved in polynomial time with $O(n^4)$ using Hungarian method. Another lower

bound can be found by LP- relaxation of problem (5), however the most efficient method proposed in the literature is based on semi-definite programming method (SDP). SDP relaxation can be applied for the QAP as

$$Min \sum_{q=1}^{n} \sum_{p=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} d_{pq} f_{ij} y_{ipjq}$$

$$+ \sum_{p=1}^{n} \sum_{i=1}^{n} C_{ip} x_{ip}$$

$$\sum_{i=1}^{n} x_{ip} = 1 \qquad \forall p \ (7.1)$$

$$\sum_{i=1}^{p} x_{ip} = 1 \qquad \forall i \ (7.2)$$

$$Q = \begin{bmatrix} y & x \\ x & 1 \end{bmatrix} \text{ is positive semi-} (7.3)$$

definite

where Q is $SDP \Leftrightarrow x, y \ge 0, x^2 \ge y$ and Q is a

positive semi-definite matrix if $x^T Q x \ge 0$, $\forall x \ge 0$. 3. Algorithms

In this section, four algorithms, that are, SA, TS and TABUSA are proposed for the QAP. The steps of each algorithm are explained as Figure 1. We compare the efficiency of all algorithms in 59 instances of OAPLIB shown in Table 2. The bold number shows that the algorithm finds BKS of instance and underline shows the best solution between four algorithms. It is shown that GA is the most efficient algorithm and SA is the worst algorithm. We next compare the best proposed algorithm, that is TABUSA, with four algorithms existed in the literature of the QAP, Ramkumar et al. (2008, 2009a&b) and Goldberg and Goldberg (2012). The solution, the gap (respect to BKS) and the computational time of each method are reported in each instance in Table 3.

We evaluate the efficiency of all algorithms in 59 instances (containing burxxx, elsxxx, escxxx, hadxxx, nugxxx, rouxxx, scrxxx, stexxx and thoxxx) of QAPLIB shown in Table 2. The bold number shows that the algorithm finds BKS of instance and underline shows the best solution between four algorithms. We next compare the best proposed algorithm, that is GA, with four algorithms existed in the literature of the QAP, Ramkumar et al. (2008, 2009a, 2009b) and Goldberg and Goldberg (2012) shown in Table 3. It is also shown in Table 4 that our proposed GA performs better than the other algorithm in all instances such that it can solve the most instances with zero gap (53 instances), it is also the best algorithm in terms of largest gap (1.56%) and dominates other algorithms in all instances.

```
Begin
   Input data and algorithm's parameters
         elmax = n \times 10^4; %Total number of movement
         \beta = 0.9997; %cooling rate
         NEIT=n; %movement in each temperature
         T_{in} = 20; %Initial temperature
         K_0 = 10; %Coefficient of accepting unfavorable solution
         fpest = inf % Best value of the algorithm
   Generate initial solution randomly (c_{main}) and evaluate its efficiency (f_{main}).
   Consider the best solution, c_{\text{best}} := c_{\text{main}}.
   Set count = 1; move = 1; T = T_{in}
   While count \leq elmax
         For move = 1 to NEIT
            If \sigma lmax - count \ge 10^4 then replace location of two randomly selected facilities
            Elseif replace location of two pair of randomly selected facilities Endif
            Evaluate the efficiency of neighbor solution (flocal)
            Define \Delta_f = f_{local} - f_{main}
           If \Delta_j < 0 then update c_{main} and f_{main} count := count -1; T = \beta^{-1}T,
           Elseif rand \leq \exp\left(-Del_f/f_{main}(T_0-T)\right) then update c_{main} and f_{main} Endif.
            Update c_{best}, f_{best}, count := count + 1;
         Endfor
         T := \beta T_{e}
   Endwhile
End.
```

```
Figure 1.a. SA Algorithm pseudo-code
```

Begin

```
Input data and algorithm's parameters
      elmax = 3n \times 10^3; %Total number of movement
      Tabulist = 2n; %Size of tabulist
      Tabu = \Pi: %Initial Tabulist
      NEIT = n; %movement before each local search
      feest = inf % Best value of the algorithm
Generate initial solution randomly (c_{main}) and evaluate its efficiency (f_{main}).
Consider the best solution, c_{best} := c_{main}.
Set count = 1; move = 1; Tabusize = 1; Tabu = Tabu \cup c_{main}
While count \leq elmax
      For move = 1 to NEIT
        If elmax - count \ge elmax/2 then replace location of two randomly selected facilities
        Elseif replace location of two pair of randomly selected facilities Endif
        If solution of neighbor, c_{local} \notin Tabulist
          Tabu = Tabu \cup c_{moin}; Tabusize = Tabusize + 1;
          If Tabusize > Tabulist then remove half of solution of Tabulist, Tabusize = Tabulist/2 Endif
          If \Delta_f < 0 then update c_{main} and f_{main},
          Update c_{best}, f_{best}, count \coloneqq count + 1;
      Endfor
      Implement localsearch %find the optimal permutation of three successive facilities
Endwhile
```

End.

Figure 1.b. TS Algorithm pseudo-code

Begin **Input** data and algorithm's parameters $elmax = n \times 10^3$; %Total number of movement Tabulist = 2n; %Size of tabulist Tabu = []; %Initial Tabulist **NEIT = n;** %movement before each local search $\beta = 0.9997$; %cooling rate T_{in} = 20; %Initial temperature $K_0 = 10$; %Coefficient of accepting unfavorable solution feat = inf % Best value of the algorithm Generate initial solution randomly (c_{main}) and evaluate its efficiency (f_{main}). Consider the best solution, $c_{\text{best}} := c_{\text{main}}$. Set count = 1; move = 1; Tabusize = 1; Tabu = Tabu $\cup c_{main}$ While $count \leq elmax$ For move = 1 to NEIT If $elmax - count \ge 10^{2}$ then replace location of two randomly selected facilities Elseif replace location of two pair of randomly selected facilities Endif If solution of neighbor, clocal ∉ Tabulist $Tabu = Tabu \cup c_{main}$; Tabusize = Tabusize + 1; If $\Delta_j < 0$ then update c_{main} and f_{main} count := count - 1; $T = \beta^{-1}T$, Elseif rand $\leq \exp\left(-Del_f/f_{main}(T_0-T)\right)$ then update c_{main} and f_{main} Endif. Update c_{best} , f_{best} , $count \coloneqq count + 1$; Endfor Implement 2-opt local search $T:=\beta T$. Endwhile End.

Figure 1.c. TABUSA Algorithm pseudo-code

Table 4. Optimality gap comparison of algorithms												
Intornal	TADUCA	Algorithms of literature										
Interval	TADUSA	2008	2009a	2009b	2012							
zero gap	42	46	44	49	3							
≤0.1	50	48	46	50	12							
≤1	54	53	52	53	24							
≤2	54	56	55	56	26							
Dominating	73%	81%	75%	51	11%							
Total instances	59	57	59	57	28							
Largest gap	4.12	2.25	3.66	2.48	2.85							

6. Conclusions

In this paper, three directions of research in the QAP are reviewed. We then developed four metaheuristics, (SA, TS, TABUSA and GA) and compared with four existed algorithms in the literature (Ramkumar et al. 2008, 2009 a,b and Golberg and Golberg 2012). The numerical results show that our proposed GA performs is better than proposed algorithm in the literature. Finally, we explain some problems addition as future research's direction as follows:

- SFLP: This problem is a special case of the QAP where parameter d is defined as departmental distance. Proposed algorithms for the QAP can be applied easily for the SFLP.
- Dynamic facility layout problem (DFLP): DFLP is an extension of the QAP such that there are several periods with different departmental material flows and it's objective is to minimize material handling cost of all periods plus relayout cost of departments. Developed algorithms can be tested in a benchmark proposed by Balakrishnan et al. (2000).
- Traveling salesman problem (TSP): TSP is a special case of the QAP that is a special case of the QAP where facilities will be located over a circle.

Developed algorithms can be tested in TSP library benchmark proposed by Reinelt (2001).

- Sequencing problem: A set of jobs will be worked in several machines. There are several types of sequencing problem as single machine scheduling and parallel machine scheduling. In this problem, the solution can be represented as permutation encoding. There is a lot of instance for each type of this problem.
- Stochastic QAP: It is an interesting area to assume uncertain parameters in the QAP. In each instance of QAPLIB, we can consider an interval for each parameter where uncertain parameters deviated from their nominal value in these intervals.

Tab	le 2. Comparison	n of proposed algorithm	1							-			
				âne l	SA		600 C 1	TS		6997 A. J.	TABUSA	1	
n	Name	BKS		CPU time	Solution	RPD	CPU time	Solution	RPD	CPU time	Solution	RPD	
(a) So	lution qualities w	vith CPU time of burx:	xx pro	oblems				- 14 11 1 1					<u> </u>
26	Bur26a	5426670		32.9	5547753	2.23	30.4	5434116	0.14	50.2	5433083	0.12	<u> </u>
26	Bur26b	3817852		33.4	3904762	2.28	30.1	3824830	0.18	49.7	3818041	0.00	_
26	Bur26c	5426/95		34.0	5532348	1.95	31.8	5428558	0.03	4/.2	5427703	0.02	-
20	Bur26a	5821225		33.8	5902155	2.12	20.2	5851202	0.26	40.5	53821525	0.01	
26	Bur266	33808/9		34.0	2009541	2.28	29.3	2704064	0.27	48.5	2782210	0.01	+
26	Bur261	3/82044		32.8	3881039	2.62	29.4	3/94904	0.34	45.4	3/82219	0.00	+
20	Bur26b	7009659		34.9	7224080	1.95	20.7	7000875	0.03	46.9	7008005	0.05	-
(h) C a	bution muslition	with CDU time of alarm		hlama	7254700	1.72	27.1	1077015	0.02	50.5	10/0/05	0.00	+
(0) 30	Elc10	17212549	cx pro	22.4	21868218	27.05	20.8	22224210	20.70	25.0	17260246	0.28	-
(a) So	LIST 9	with CPU time of occur	× ×	oblome	21808218	27.05	20.8	22324310	29.70	23.9	17200340	0.20	+
16	acal 6a	68	AA pro	15.6	72	5.99	16.2	69	0.00	10.0	68	0.00	
16	escl6h	292		13.0	292	0.00	10.5	292	0.00	20.2	292	0.00	+
16	esc16c	160		19.0	162	1.25	20.6	160	0.00	21.1	160	0.00	+
16	esc16d	16		15.5	18	12.50	22.4	16	0.00	19.4	16	0.00	+
16	esc16e	28		16.3	28	0.00	16.2	28	0.00	17.5	28	0.00	-
16	esc16f	0		10.7	0	0.00	23.2	0	0.00	33.9	0	0.00	
16	esc16g	26		15.3	26	0.00	21.1	26	0.00	22.3	26	0.00	1
16	esc16h	996		17.1	996	0.00	21.4	996	0.00	17.2	996	0.00	
16	esc16i	14		14.7	14	0.00	16.7	14	0.00	21.7	14	0.00	T
16	esc16j	8		13.8	8	0.00	16.8	8	0.00	18.1	8	0.00	
32	esc32a	130		95.3	254	95.38	23.0	160	23.08	72.9	130	0.00	
32	esc32b	168		90.4	320	90.48	38.2	196	16.67	79.2	168	0.00	
32	esc32c	642		37.5	704	9.66	40.2	<u>642</u>	0.00	85.3	<u>642</u>	0.00	
32	esc32d	200		38.7	244	22.00	42.0	214	7.00	78.1	200	0.00	
32	esc32e	2		31.6	2	0.00	37.9	2	0.00	78.0	2	0.00	
32	esc32g	6		33.1	<u>6</u>	0.00	41.4	<u>6</u>	0.00	81.2	<u>6</u>	0.00	
32	esc32h	438		40.6	518	18.26	39.6	466	6.39	/5.0	438	0.00	
129	esco4a	110		85./	154	32.70	124.2	<u>116</u>	0.00	445.0	116	0.00	-
128	esc128a	04		244.7	210	228.13	530.0	08	0.25	2187.0	<u>04</u>	0.00	+
(d) So	lution qualities v	vith CPU time of hadx	xx pr	oblems	1676	1.45	12.6	1676	1.45	11.1	1(52	0.00	
12	Had14	1052		12.1	10/0	2.06	13.0	2724	1.43	11.1	2724	0.00	-
14	Had16	3720		15.1	2780	2.00	14./	3720	0.00	14.1	3720	0.00	-
10	Ladio	5358		20.1	5522	2.09	19.0	5420	1.16	22.0	5359	0.00	+
10	Flau 10	6022		20.1	7150	2.41	20.2	7024	1.10	22.0	6022	0.00	-
20	Had20	0722		23.1	/156	5.41	20.2	7034	1.02	21.1	0322	0.00	-
(g) So.	lution qualities v	with CPU time of nugx	txx pr	oblems	(00	2.01	12.4	507	1.20		-	0.00	4
12	nug12	5/8		11.9	600	3.81	13.4	586	1.38	11.6	5/8	0.00	
14	nug14	1014		15.1	1084	6.90	15.1	1016	0.20	14.1	<u>1014</u>	0.00	
15	nug15	1150		16.0	1222	6.26	15.7	1152	0.17	15.1	<u>1150</u>	0.00	-
16	nug16a	1610		17.3	1752	8.82	16.6	1634	1.49	16.9	<u>1610</u>	0.00	1
16	nug16b	1240		17.7	1388	11.94	17.4	1290	4.03	18.7	<u>1240</u>	0.00	
17	nug17	1732		19.2	1884	8.78	18.4	1764	1.85	20.6	<u>1732</u>	0.00	
18	nug18	1930		21.0	2126	10.16	20.6	1970	2.07	22.9	1930	0.00	
20	nug20	2570		23.6	2864	11.44	22.3	2632	2.41	28.5	2570	0.00	
(h) So	lution qualities v	with CPU time of roux:	xx pr	oblems									
12	rou12	235528		11.7	255982	8.68	12.7	240038	1.91	11.1	235528	0.00	
15	rou15	354210		15.9	384298	8.49	16.3	363786	2.70	16.1	354210	0.00	
20	rou20	725522		23.1	804298	10.86	20.5	729774	0.59	26.6	725582	0.01	
(i) Sol	ution qualities w	ith CPU time of scrxxx	x prob	olems		1			1				
12	scr12	31410		12.2	34462	9.72	12.7	31410	0.00	12.1	31410	0.00	
15	ser15	51140		15.8	61808	20.86	15.0	54002	5.60	163	51140	0.00	-
20	scr20	110030		24.4	143882	30.77	22.5	116022	5.45	29.8	110030	0.00	+
(k) So	lution qualities a	with CPU time of story	XX DP	blams	1.0002	50.77	22.0	110022	0.10	27.0	110000	0.00	+
(K) 30.	tail 2a	224416	xx pro	128	244428	802	12.9	225554	4.96	11.5	224416	0.00	+
12	tar12a	229410		12.0	410472	8.92	15.0	255554	4.90	11.5	224410	0.00	+
15	tailba	388214		10.0	4194/2	8.05	10.5	399730	2.97	17.0	388214	0.00	1
15	tail 5b	51/65268		16.7	52247647	0.93	16.2	51881760	0.23	16.5	51765268	0.00	1
17	tail7a	491812		19.0	546896	11.20	18.5	504676	2.62	20.6	<u>491812</u>	0.00	1
20	tai20a	703482		24.6	794058	12.88	21.9	731042	3.92	28.5	705622	0.30	1
20	tai20b	122455319		22.8	146972858	20.02	21.5	123190475	0.60	34.2	122455319	0.00	
25	tai25a	1167256		32.3	1309950	12.22	28.4	1230588	5.43	44.8	1199284	2.74	
30	tai30a	1818146		40.6	2034712	11.91	35.1	1902096	4.62	67.6	1867454	2.71	
40	tai40a	3139370		65.0	3559698	13.39	57.3	3288442	4.75	130.7	3259350	3.82	
50	tai50a	4938796		81.2	5643164	14.26	74.2	5139074	4.06	200.0	5142270	4.12	
(m) Sc	olution qualities	with CPU time of thox	xx pr	oblems				_			_		1
30	tho30	149936		45.8	184932	23.34	35.0	158644	5.81	64.3	150994	0.71	1
40	tho40	240516		76.1	295656	22.93	52.8	255248	6.13	121.0	245646	2.13	1

Tab	Table 3. Comparison of our best algorithm with algorithms in the literature of the QAP																				
				Ramk	umar et al. (2008)		Ramkumar et al. (2009,a)				Ramkumar et al. (2009,b)			Goldberg & Goldberg (2012)			TABUSA			
n	Name	BKS		CPU time	Solution	RPD		CPU time	Solution	RPD		Solution	RPD		CPU Time	RPD		CPU time	Solution	RPD	
(a) Sol	ution qualities	with CPU time of	of bur	xxx problems																	
26	Bur26a	5426670		61.3	<u>5426670</u>	0.00		39.1	5431255	0.08		<u>5426670</u>	0.00					50.2	5433083	0.12	
26	Bur26b	3817852		60.3	3817852	0.00		41.1	3824315	0.17		3817852	0.00					49.7	3818041	0.00	
26	Bur26c	5426795		57.8	<u>5426795</u>	0.00		39.1	<u>5426795</u>	0.00		<u>5426795</u>	0.00					47.2	5427703	0.02	
26	Bur26d	3821225		61.3	3821225	0.00		40.1	3821225	0.00		3821225	0.00		0.15	0.01		46.5	3821525	0.01	
26	Bur26e	5386879		57.8	5386879	0.00		38.4	5386879	0.00		5386879	0.00		0.10	0.01		48.3	5387503	0.01	
26	Bur26f	3782044		59.2	3782044	0.00		38.6	3782044	0.00		3782044	0.00					45.4	3782219	0.00	
26	Bur26g	10117172		57.7	10117172	0.00		37.1	10117172	0.00		<u>10117172</u>	0.00					48.9	10119767	0.03	
26	Bur26h	7098658		57.5	7098658	0.00		37.4	7098658	0.00		7098658	0.00					50.9	7098905	0.00	
(b) Sol	ution qualities	with CPU time	of elsx	xxx problems					-										-		
19	Els19	17212548		-	-	-		8.9	17212548	0.00		17212548	0.00		-	-		25.9	17260346	0.28	
(c) Sol	ution qualities	with CPU time of	of esci	xxx problems					-										-		
16	esc16a	68		3.2	<u>68</u>	0.00		2.2	<u>68</u>	0.00		<u>68</u>	0.00		-	-		19.9	<u>68</u>	0.00	
16	esc16b	292		2.8	292	0.00		1.9	292	0.00		292	0.00		-	-		20.2	292	0.00	
16	esc16c	160		4.0	160	0.00		2.8	<u>160</u>	0.00		160	0.00		-	-		21.1	160	0.00	
16	esc16d	16		4.0	16	0.00		2.8	<u>16</u>	0.00		<u>16</u>	0.00		-	-		19.4	16	0.00	
16	esc16e	28		2.3	28	0.00		1.6	28	0.00		28	0.00		-	-		17.5	28	0.00	
16	esc16f	0		1.1	<u>0</u>	0.00		0.8	<u>0</u>	0.00		<u>0</u>	0.00		-	-		33.9	<u>0</u>	0.00	
16	esc16g	26		2.8	26	0.00		1.9	26	0.00		26	0.00		-	-		22.3	26	0.00	
16	esc16h	996		2.1	<u>996</u>	0.00		1.5	<u>996</u>	0.00		<u>996</u>	0.00		-	-		17.2	<u>996</u>	0.00	
16	esc16i	14		2.0	14	0.00		1.4	14	0.00		<u>14</u>	0.00		-	-		21.7	14	0.00	
16	esc16j	8		2.9	8	0.00		2.0	8	0.00		8	0.00		-	-		18.1	8	0.00	
32	esc32a	130		136.8	130	0.00		89.5	134	3.08		130	0.00		5	0.57		72.9	130	0.00	

32	esc32b	168		110.4	168	0.00	72.9	168	0.00	168	0.00			79.2	<u>168</u>	0.00
32	esc32c	642		54.7	642	0.00	34.6	642	0.00	<u>642</u>	0.00			85.3	<u>642</u>	0.00
32	esc32d	200		74.3	200	0.00	49.0	200	0.00	200	0.00			78.1	200	0.00
32	esc32e	2		46.1	2	0.00	29.4	2	0.00	2	0.00			 78.0	2	0.00
32	esc 32g	6		28.4	<u>6</u> 429	0.00	18.9	6	0.00	<u>6</u>	0.00			 81.2	6	0.00
52	esc 32h	438		65.6	438	0.00	34.9	438	0.00	438	0.00	 17	0.00	 / 5.0	438	0.00
120	esc64a	116		1521.7	110	0.00	 222270.1	116	0.00	 116	0.00	 15	0.00	 2197.0	116	0.00
128	esc128a	04		-	-	-	23370.1	04	0.00	04	0.00	 20	0.00	 2187.0	04	0.00
(d) Sol	ution qualities	with CPU time of	of had	xxx problems	1/22	0.00	1.0	1/22	0.00	1(72)	0.00			 	1(52)	0.00
12	Had12	1652		1.0	1652	0.00	1.0	1652	0.00	1652	0.00	 -	-	 11.1	1652	0.00
14	Had14	2724		2.0	2724	0.00	 2.0	2744	0.75	 2724	0.00	 -	-	 14.1	2724	0.00
10	Had16	5720		3.0	5722	0.05	 3.6	5722	0.05	 5720	0.00	 	-	 17.8	5259	0.00
10	Had16	5356		6.5	<u>5356</u>	0.00	0.4	2326	0.00	<u>5356</u>	0.00	 2.0	-	 22.0	<u>5356</u>	0.00
20	Had20	6922	c	10.6	6922	0.00	10.2	6922	0.00	6922	0.00	 3.0	0.00	 21.1	0922	0.00
(g) Sol	ution qualities	with CPU time of	of nug	xxx problems	570	0.00	 1.0	270	0.00	 570	0.00			 11.6	570	0.00
12	nug12	5/6		1.4	3/8	0.00	1.0	3/8	0.00	<u>5/6</u>	0.00	 -	-	 11.6	5/8	0.00
14	nugl4	1014		3.1	1018	0.39	2.1	1014	0.00	1016	0.20	 -	-	 14.1	1014	0.00
15	nugio	1150		4.0	1150	0.00	2.9	1150	0.00	1150	0.00	 -	-	 15.1	1150	0.00
16	nugl6a	1610		5.6	1610	0.00	 3.9	1610	0.00	1610	0.00	 -	-	16.9	1610	0.00
16	nug16b	1240		5.6	1240	0.00	3.9	1240	0.00	1240	0.00	-	-	 18.7	1240	0.00
17	nugl7	1732		7.3	1732	0.00	5.2	1734	0.12	1732	0.00	-	-	 20.6	1732	0.00
18	nug18	1930		9.6	<u>1930</u>	0.00	6.7	<u>1930</u>	0.00	<u>1930</u>	0.00	-	-	 22.9	<u>1930</u>	0.00
20	nug20	2570		16.1	2570	0.00	11.2	2570	0.00	2570	0.00	3.0	<u>0.00</u>	28.5	2570	0.00
(h) Sol	ution qualities	with CPU time of	of row	xxx problems				-		-					-	
12	rou12	235528		1.1	235528	0.00	1.1	235528	0.00	235528	0.00	-	-	 11.1	235528	0.00
15	rou15	354210		3.0	<u>354210</u>	0.00	2.9	<u>354210</u>	0.00	354210	0.00	-	-	16.1	354210	0.00
20	rou20	725522		11.7	725662	0.02	11.4	725522	0.00	725522	0.00	3.0	0.16	26.6	725582	0.01
(i) Solu	tion qualities	with CPU time o	f scrxx	x problems				-		-					-	
12	scr12	31410		1.1	<u>31410</u>	0.00	11.1	<u>31410</u>	0.00	<u>31410</u>	0.00	-	-	12.1	<u>31410</u>	0.00
15	scr15	51140		3.1	<u>51140</u>	0.00	3.1	<u>51140</u>	0.00	<u>51140</u>	0.00	-	-	16.3	<u>51140</u>	0.00
20	scr20	110030		12.7	<u>110030</u>	0.00	12.3	<u>110030</u>	0.00	<u>110030</u>	0.00	3.0	0.01	29.8	<u>110030</u>	0.00
(k) Sol	ution qualities	with CPU time of	of stex	xx problems				-		-					-	
12	tai12a	224416		1.1	224416	0.00	1.1	224416	0.00	224416	0.00	-	-	11.5	224416	0.00
15	tai15a	388214		3.0	<u>388214</u>	0.00	3.0	388870	0.17	388250	0.01	-	-	17.0	<u>388214</u>	0.00
15	tai15b	51765268		3.1	51765268	0.00	3.1	51765268	0.00	51765268	0.00	-	-	16.5	51765268	0.00
17	tai17a	491812		5.6	493662	0.38	5.5	<u>491812</u>	0.00	494550	0.56	-	-	20.6	<u>491812</u>	0.00
20	tai20a	703482		11.4	706786	0.47	1.4	729204	3.66	709080	0.80	3.0	0.52	28.5	705622	0.30
20	tai20b	122455319		12.5	122455319	0.00	12.4	125286585	2.31	122455319	0.00	-	-	34.2	122455319	0.00
25	tai25a	1167256		33.0	1190574	2.00	32.9	1181072	1.18	1185587	1.57	6.0	1.29	44.8	1199284	2.74
30	tai30a	1818146		83.1	1838380	1.11	82.8	1845582	1.51	1842986	1.37	10.0	1.52	67.6	1867454	2.71
40	tai40a	3139370		354.4	3197384	1.85	346.9	3198114	1.87	3192668	1.70	25.0	2.22	130.7	3259350	3.82
50	tai50a	4938796		1104.1	5049794	2.25	1076.1	5043946	2.13	5061236	2.48	50.0	2.85	200.0	5142270	4.12
(m) So	lution qualitie:	s with CPU time	of tho	xxx problems							_					
30	tho30	149936		118.9	150378	0.29	78.1	150454	0.35	-	-	10.0	0.21	64.3	150994	0.71
40	tho40	240516		501.8	241782	0.53	351.3	242888	0.99	-	-	25.0	0.45	121.0	245646	213

Corresponding Author:

Hossein Shahbazi Department of Industrial Engineering Azad University, South Tehran Branch, Tehran, Iran E-mail: shahbazi.hossein1368@gmail.com

References

- Adams, WARREN P, and TERRI A Johnson. "Improved Linear Programming-Based Lower Bounds for the Quadratic Assignment Problem." DIMACS series in discrete mathematics and theoretical computer science 16 (1994): 43-77.
- 2. Balakrishnan, Jaydeep. "Dplp Balakrishnan Dataset".

http://dspace.ucalgary.ca/handle/1880/46715.

- R.E. Burkard, E. Çela, P.M. Pardalos And L. Pitsoulis. The quadratic assignment problem. In P.P. Pardalos and M.G.C. Resende, editors, Handbook of Combinatorial Optimization, 1998. Kluwer Academic Publishers, Dordrecht, pp. 241-238.
- Drezner, Zvi, and Alfonsas MisevičIus. "Enhancing the Performance of Hybrid Genetic Algorithms by Differential Improvement." Computers & Operations Research (2012).
- Goldbarg, Elizabeth Ferreira Gouvêa, and Marco Cesar Goldbarg. "An Experimental Study of Variable Depth Search Algorithms for the

Quadratic Assignment Problem." Pesquisa Operacional 32 (2012): 165-96.

- Koopmans, Tjalling C, and Martin Beckmann. "Assignment Problems and the Location of Economic Activities." Econometrica: Journal of the Econometric Society (1957): 53-76.
- Loiola, E. M., N. M. M. de Abreu, P. O. Boaventura-Netto, P. Hahn, and T. Querido. "A Survey for the Quadratic Assignment Problem." [In English]. European Journal of Operational Research 176, no. 2 (Jan 16 2007): 657-90.
- Ramkumar, A. S., S. G. Ponnambalam, and N. Jawahar. "A Population-Based Hybrid Ant System for Quadratic Assignment Formulations in Facility Layout Design". International Journal of Advanced Manufacturing Technology 44, no. 5-6 (Sep 2009): 548-58.
- Ramkumar, A. S., S. G. Ponnambalam, N. Jawahar, and R. K. Suresh. "Iterated Fast Local Search Algorithm for Solving Quadratic Assignment Problems." [In English]. Robotics and Computer-Integrated Manufacturing 24, no. 3 (Jun 2008): 392-401.
- 10. Reinelt, Gerhard. "Tsplib—a Traveling Salesman Problem Library." ORSA journal on computing 3, no. 4 (1991): 376-84.
- 11. Sahni, Sartaj, and Teofilo Gonzalez. "P-Complete Approximation Problems." Journal of the ACM (JACM) 23, no. 3 (1976): 555-65.

12. Zhang, Huizhen, Cesar Beltran-Royo, and Miguel Constantino. "Effective Formulation Reductions for the Quadratic Assignment

5/29/2013

Problem." Computers & Operations Research 37, no. 11 (2010): 2007-16.