
Journal of American Science 2013;9(9) http://www.jofamericanscience.org

98

A 3-Tier, Novel, Efficient and Secure Method for Transmission of Decimal Numbers

Dr. Altaf Mukati*

*Professor & Dean, Faculty of Engg. Sciences, Bahria University, 13 National Stadium Road Karachi, Pakistan
Email: altafmukati@gmail.com, altaf.mukati@bimcs.edu.pk

Abstract: The decimal numbers being used in banking transactions, PIN codes and in several other applications
have to be secured and efficient while being transferred over spatial or temporal channels. The present paper is
limited to decimal data, i.e. BCD (Binary Coded Decimal) numbers only, which can be expanded to include all types
of data as well. In the proposed scheme, the BCD numbers are first encoded (1st tier). The 4-bit outputs of an
Encoder are taken as four minterm, which is then minimized through a Logic Minimizer (2nd tier). The encoder is
designed to produce the terms, which when minimized, contain a single PI (Prime Implicant). Subsequently
Huffman Coding or Shannon-Fano Coding is applied for Compression purposes (3rd tier). On the receiving or
retrieving side, parsing of data is carried out to recover PIs which are then expanded to get 4-bit data block. Finally,
these 4-bit blocks are decoded to get BCD numbers.
[Altaf Mukati. A 3-Tier, Novel, Efficient and Secure Method for Transmission of Decimal Numbers. J Am Sci
2013;9(9):98-101]. (ISSN: 1545-1003). http://www.jofamericanscience.org. 14

Keywords: BCD; Logic minimizer; Huffman coding; Data compression

1. Introduction:

 Data compression has revolutionized
information technology and communication
applications. One of the main outcomes of this
revolution is the ever growing internet and the fast
development of mobile and multimedia
communications [1].

 Data compression has an impact on
multimedia applications. It will not be practical to
put images, audio or video on websites without the
use of data compression algorithms [2,3].

 Data compression is popular for two
reasons: (a) People like to accumulate data and hate
to throw anything away. No matter how big a storage
device one has, sooner or later it is going to
overflow. Data compression seems useful because it
delays this inevitability (b) People hate to wait a long
time for data transfers. When sitting at the computer,
waiting for a web page to come in or for a file to
download, we naturally feel that any thing longer
than a few seconds is a long time to wait [4]. The
spread of computing has led to an explosion in the
volume of data to be stored on hard disks and sent
over the Internet. This growth has led to a need for
"data compression", that is, the ability to reduce the
amount of storage or Internet bandwidth required to
handle the data [5].

 “Compression ratio” is the key factor,
which is the measure of the size of a compressed file
to the original uncompressed file. For example,
suppose a data file takes up 50 kilobytes (KB). Using
data compression software, that file could be reduced
in size to, say, 25 KB, making it easier to store on
disk and faster to transmit over an Internet

connection. In this specific case, the "compression
ratio" is of 2:1 [3,6]

Data compression can be either "lossless" or
"lossy". Lossless data compression is used when the
data has to be uncompressed exactly as it was before
compression. Text files are stored using lossless
techniques, since losing a single character can be in
the worst case make the text dangerously misleading.
Archival storage of master sources for images, video
data, and audio data generally needs to be lossless as
well. However, there are strict limits to the amount
of compression that can be obtained with lossless
compression. Lossless compression ratios are
generally in the range of 2:1 to 8:1[3,5,7].
 Lossy compression, on other hand, works
on the understanding that the data doesn't have to be
stored perfectly. Much information can be simply
thrown away from images, video and audio data
when uncompressed; the data will still be of
acceptable quality. Compression ratios can be an
order of magnitude greater than those available from
lossless methods.

 For example, video is generally compressed
using lossy compression, as viewing a reconstruction
of a video sequence, the original is generally not
important as long as the difference do not results in
annoying artefacts [2].

 The Huffman or Shannon-Fano coding,
suggested in this paper, are lossless data compression
techniques. The present scheme has been worked out
for the transmission or storage of decimal numbers
only, represented in the form of BCD numbers.
Sometimes the data files only contain such numbers,
which are of sensitive nature and need secure and
efficient transfer through spatial or temporal channel.

2. The pro
 Th
side can be
2.1 Encod
 W
appropriate
numbers d
terms or fu
here all mi
we want to
compressio
symbols w
data comp
numbers an

Figure 1.

Table 1

No.
0
1
2
3
4
5
6
7
8
9

N
BCD num
0111 & 10
the output
single PI f
even num
numbers, o
This will b
will be wo

O
circuit wil
encoder an
Figure 3 re

Journal of A

oposed method
he whole schem
e depicted as in
er:

Why do we req
ely “code con

directly to the “
unctions will c
inimized funct
o use each PI a
on stage. Mo

which in turn w
pression ratios
nd correspondi

 The proposed

1. Inputs and ou
AB
00
00
00
00
01
01
01
01
10
10

Note that the en
mbers 6,7 & 9

001 produce t
t words of th
for each input.

mber of digits
one may place
be clear later i
rked out throug
ne the receivin
l be used to d

nd decoder circ
espectively.

American Scien

d:
me on the send
n Figure1.

quire an “Enco
nverter”)? If
“Logic Minimi
comprise of tw
tions to contain
as a symbol to

ore PIs may
will not be hel
s. Table 1 sh
ing encoded w

d method of dat

utputs of propo
BCD
000
001
010
011
100
101
110
111
000
001

ncoding is actua
due to the re

two PIs when
he encoder wil
. The present

to input. If
e four zeros in
n this paper w
gh an example
ng or retrieving
do the opposite
cuits are show

nce 2013;9(9)

ding or storage

der” (here mo
we input BC
izer”, then som

wo PIs. We wa
n a single PI,

o be used at da
result in mo

lpful to get hig
hows the BC

words.

ta compression

osed encoder
WXYZ
0000
0001
0010
0011
0100
0101
1010
1100
1000
1111

ally done for th
eason that 011

minimized. A
ll now produc
scheme requir

f there are od
n the beginnin

when the schem
e.
g side, a decod
e function. Bo

wn in Figure 2

99

e

re
CD
me
ant
as

ata
re
gh

CD

n

he
0,

All
ce
es
dd

ng.
me

der
th
&

2.2 Lo

minim
Augus
[8,9].
softwa
consec
compr
and un
PIs in
be bas
bits in
A’BC’
resulta
“1111”
differe
and 8
functio
as fou
A’B, A

Fig

 http://www.jo

ogic minimizer
Not too mu

mization with re
stine and some

This can be
are depending
cutive PIs into
ression ratios.
nderstanding, w
this paper. He

sically a 3-inpu
nput as eight
’, A’BC, AB’
ant term will b
” at the input
ently due to the
8 0s or 8 1s
ons. The adjac
ur bit group r
AB’, AB.

Figure 2. De

gure 3. Design

ofamericanscie

r
uch work has
espect to data
others have do

e implemente
on the requirem
 2, 4, 8 or hig
For the purpo
we have group
ence, the logic
ut K-map solve

minterms, i.
’C’, AB’C, A
be containing t
t of logic min
eir property th
s represent th
cent four bits b
representing fo

esign of propo

of proposed de

ence.org

been done on
compression e
one some good
ed in hardwa
ment. We can

gher, to obtain
ose of demonst
ped two conse
minimizer her

er, which takes
e. A’B’C’, A

ABC’ & ABC.
two PIs. “0000
nimizer, are t

hat four 0s or f
he same mini
before/after are
our minterms

sed encoder

ecoder

n logic
earlier.
d work
are or
group
better

tration
ecutive
re will
s eight

A’B’C,
 Each

0” and
treated
four 1s
imized
e taken

A’B’,

Journal of American Science 2013;9(9) http://www.jofamericanscience.org

100

2.3 Data compressor
 Any lossless data compressing scheme can be
used. Huffman or Shannon-Fano schemes will be more
appropriate here. The data compressor in the proposed
method will get 8 bits in sequence, producing two PIs.
In case of “0000” or “1111” input, the logic minimizer
works differently. It will be clear in the example given
in this paper.
 A table is built simultaneously in the
temporary storage as the minimization process is in
progress. All PIs along with the frequency of
occurrences is being updated in the table. When the
entire data, which may range from few digits to several
kilobytes, is completed then the table so prepared is
used for data compression. As per Huffman or
Shannon-Fano coding algorithms, a symbol which has
high frequency of occurrences are assigned with
shorter codes and the symbols with less occurrences,
get larger codes.

3. The proposed scheme
3.1 Compression procedure

1. Input 4-bit BCD number into an specified
encoder.

2. Make the group of bits into 2n bits where n =
2,3,4...

3. Minimize the group using K-map solver and
store PIs along with their frequency of
occurrences in a temporary storage.

4. If “0000” or “1111” appears at the input of
logic minimizer, then these are treated as single
4-bit group instead of group of 2n bits.

5. Apply any lossless compression technique, like
Huffman or Shannon-Fano coding.

6. Replace each PI with the corresponding code.
7. Send or store the compressed data along with

frequency table.
3.2 Decompression procedure

1. Receive or retrieve the compressed data along
with the frequency table.

2. Perform “parsing” to retrieve PIs.
3. Expand two consecutive PIs to get 8 bits. In

case of “0” or “1” retrieval anytime in the
compressed data, those have to be recovered as
“0000” or “1111”.

4. Start inputting 4-bits at a time to the decoder to
get back the original BCD.

5. Repeat above to find the entire BCD data.
4. Demonstration of scheme
 Let the small string of digits
“37780050378957” is to be sent into spatial channel
(transmission) or temporal channel (storage). The
larger data file spread over several kilo bytes can be
worked out in the similar manner through software
implementation of data compression scheme.

The above digits in BCD form will be as follows:

00110111011110000000000001010000001101111000
100101010111.. (1)

Data after encoding would be as follows:
00111100110010000000000001010000001111001000
111101011100
 After logic minimizer (taking 8 bits), the PIs
would be as follows:
A’B+AB’ AB+BC 0+0 B’+0 A’B+AB’ AB+1
A’B+AC’
 The frequency table prepared in the temporary
storage for data compression is shown in Table 2.

Table 2. PIs versus frequency of occurrences

Function Frequency Probability Symbol
0 3 0.2145 E

A’B 3 0.2145 F
AB’ 2 0.143 G
AB 2 0.143 H
BC 1 0.0715 I
B’ 1 0.0715 J
1 1 0.0715 K

AC’ 1 0.0715 L
The Huffman coding is applied by arranging

symbols in the first column with respect to their
frequency of occurrences as shown in Table 3.

Table 3. Huffman coding
E 0.2145 E 0.2145 E 0.2145 IJKL 0.286
F 0.2145 F 0.2145 F 0.2145 E 0.2145
G 0.143 G 0.143 G 0.143 F 0.2145
H 0.143 H 0.143 H 0.143 G 0.143
I 0.0715 KL 0.143 KL 0.143 H 0.143
J 0.0715 I 0.0715 IJ 0.143
K 0.0715 J 0.0715
L 0.0715

IJKL 0.286 EF 0.429 GHIJKL 0.572
GH 0.286 IJKL 0.286 EF 0.429
E 0.2145 GH 0.286
F 0.2145

 The Huffman tree can be constructed from
table 3, is shown in Figure 4.

Figure 4. Huffman tree

 The compression codes generated can be

shown in the table 3. The compressed codes can be
given as follows:

Journal of American Science 2013;9(9) http://www.jofamericanscience.org

101

1101001100001010000110110100110010110011
Table 3. Huffman codes

Function Symbol Huffman Codes
0 E 10

A’B F 11
AB’ G 010
AB H 011
BC I 0000
B’ J 0001
1 K 0010

AC’ L 0011
 Total number of bits in “uncompressed” data = 56
 Total number of bits in “compressed” data = 40
 Compression Ratio = 40/56 = 1:0.71 or 29%

The decompression process starts by parsing
the compressed data string. This can be shown in the
table 4.

Table 4. Expanded functions
Parsed
data

Symbols
recovered

Expanded function

11010 A’B+AB’ A’BC+A’BC’+AB’C+AB’C’
0110000 AB+BC ABC+ABC’+ABC+A’BC

1010 0,0 0000, 0000
000110 B’,0 AB’+A’B’, 0000
11010 A’B+AB’ A’BC+A’BC’+AB’C+AB’C’

0110010 AB,1 AB, 1111
110011 A’B+AC’ AB’C+AB’C’+ABC’+AB’C’

The data recovered from the expanded
functions can be shown in table 5.

Table 5. Expanded functions v/s data recovered
Expanded function Data

recovered
A’BC+A’BC’+AB’C+AB’C’ 00111100
ABC+ABC’+ABC+A’BC 11001000
0000, 0000 00000000
AB+A’B, 0000 01010000
A’BC+A’BC’+AB’C+AB’C’ 00111100
AB, 1111 10001111
AB’C+AB’C’+ABC’+AB’C’ 01011100

 The data recovered is input to the decoder
shown in figure 3. The final data that will be recovered
as shown in table 6.

Table 6. Truth table of decoder & recovered data

WXYZ ABCD Data
recovered

BCD data

0000 0000 0011 0011
0001 0001 1100 0111
0010 0010 1100 0111
0011 0011 1000 1000
0100 0100 0000 0000
0101 0101 0000 0000
1010 0110 0101 0101
1100 0111 0000 0000
1000 1000 0011 0011
1111 1001 1100 0111

- -- 1000 1000

-- -- 1111 1001
-- -- 0101 0101
-- -- 1100 0111

 Hence the original BCD data obtained from
the decoder can be given as follows:

00110111011110000000000001010000001101111000
100101010111..(2)

Bit stream at (2) is exactly the same as at (1).
Hence the digits finally obtained are:
37780050378957.

5. Conclusion

 The 3-tier proposed method successfully
worked for compression and decompression of BCD
data. The encoding method used and then Boolean
minimization carried out provide 1st level of protection
to the data. Although cryptography is not used, but it
can be used if required. The method has a good scope
for future work. In this paper, the two consecutive PIs
are used to make it a 3-input K-map problem, however,
the larger groups can be tried to get higher
compression ratios. The other methods can also be
explored to treat 0s and 1s. For large volume of data,
the whole system can be developed around software.

References
1. El Qawasmeh, Eyas. and Alfitiani Arif. “Development and

Integration of a New Compression Technique using
Boolean minimization” Jordan University of Science
and Technology and Arab Academy for Banking and
Financial Sciences, 2011.

2. Adler and Mitzenmacher, M. (2001). “Towards
Compression Web Graphs.” Proc. of the IEEE Data
Compression Conference, Utah USA, pp 203-212

3. Sayood K.. “Introduction to data compression” third
edition 2006. Morgan Kaufmann.

4. Salomon D. “Data Compression: The Complete
Reference”, Department of Computer Science,
California State University, Northridge CA, USA, 3rd
ed., ISBN 0-387-40697-2, Springer 2004.

5. Al-laham, M. et.al. “Comparative Study between various
Algorithms of Data Compression Techniques”,
IJCSNS International Journal of Computer Science and
Network Security, VOL.7 No.4, pp 281-291 April
2007.

6. Compressed Image Formats: JPEG, PNG, GIF, XBM,
BMP, John Miano, August 1999

7. Managing Gigabytes: Compressing and Indexing
Documents and Images, Ian H H. Witten, Alistair
Moffat, Timothy C. Bell , May 1999

8. Augustine, J., Feng, W., and Jacob, J. (1995). “Logic
Minimization Based Approach for Compressing Image
Data”, Proc. IEEelhi, India, 1995, pp 225-228.

9. R P Damodare, J Augustine and J Jacob. “Lossless and
lossy image compression using Boolean functions”, IIS,
India 1996.

8/11/2013

