
Journal of American Science 2013;9(11) http://www.jofamericanscience.org

 287

Scenarios Verification in Sequence Diagram

Nazir Ahmad Zafar and Fahad Alhumaidan

College of Computer Sciences and Information Technology, King Faisal University, Hofuf, Saudi Arabia
nazafar@kfu.edu.sa; falhumaidan@kfu.edu.sa

Abstract: The Unified Modeling Language (UML) has become a de-facto standard for analysis, design models and
specification of object oriented software systems. UML structures being graphical in nature have informal semantics
and, hence, it is difficult to develop verification tools for UML specification. Formal methods are proved to be
useful at requirements analysis, specification and design level. Hence linking of UML and formal notations is
required to overcome the deficiencies existing in the UML diagrams. In this paper, an approach is developed by
transformation of UML sequence diagram to transition graph using Z notation. Then formal specification is
described by capturing the hidden semantics by focusing on the syntax and semantics. Finally, scenarios are
generated from the transition graph and verified to show correctness of the diagram. We claim that this approach
will be effective and useful for developing automated tools for verification of UML sequence diagrams. The
resultant formal models are analyzed and validated using Z/Eves tool.
[Nazir Ahmad Zafar and Fahad Alhumaidan. Scenarios Verification in Sequence Diagram. J Am Sci
2013;9(11):287-293]. (ISSN: 1545-1003). http://www.jofamericanscience.org. 38

Keywords: UML; Sequence diagram; Z notation; Integration; Verification

1. Introduction

Although UML has become a de-facto
standard for development of object oriented systems
but its semantics is semi-formal allowing ambiguities
in design of systems (Borges and Mota, 2003) and
(Yeung et al., 2005). The same system can be
described by multiple notations which may cause
inconsistencies. Formal methods have a well-defined
syntax and semantics but are not welcomed at
industrial level. To get full benefits, UML diagrams
and formal methods can be linked for enhancing the
modeling power of these approaches (Shroff and
France, 1997).

Although there exits a lot of work on
integration of approaches but there does not exists
much work on linking UML diagrams with formal
approaches. This is because the hidden semantics
under the UML diagrams cannot be transformed
easily into formal notations. In the existing work, a
mechanism for verifying sequence diagram is
proposed by creating an event deterministic finite
automata model from UML interaction diagram Z
(Chen and Zhenhua, 2011). This work is interesting
and starting point for us. In (Li and Ruan, 2011), an
effort is done to propose a solution by translating
UML sequence diagrams by combining the features
of the description logics and computation tree logic.
Static semantics of UML interaction diagrams is
provided in (Li et al., 2004) to check the well-
formed-ness of the diagram. A study is presented by
formal verification method for Cooperative
Composition Modeling Language based on web-
service composition technique (Xiuguo and Liu,
2011). An approach is demonstrated in (Sun et al.

2001) using XML to visualize TCOZ models into
various UML diagrams. An algorithmic approach is
developed to check a consistency between UML
sequence and state diagrams (Litvak, 2003). In
(Moeini and Mesbah, 2009), it is described a way of
creating tables and SQL code for Z specifications
according to UML diagrams. In (Leading and
Souquieres, 2002), an integrated approach is
developed by combining B and UML. Kim et al.,
2000, present a framework by integrating UML and
Object-Z to support requirements elicitation
supported by a case study. A tool is developed in (Ali
et al., 2007) which takes class diagram and produces
a list of comments on the diagrams. Few other
relevant works can be found in (Miao et al. 2002),
(Mostafa et al., 2007), (Sengupta and Bhattacharya,
2008), (Sarma et al., 2007), (Yang et al., 2010),
(Ameedeen and Bordbar, 2008), (Zafar, 2006), (Zafar
et al., 2012), (Sohail et al., 2009).

Main contribution of the work is to provide
an effective and systematic mechanism for
formalizing and verifying sequence diagram. The
diagram is assumed as a simple one in which
advanced concepts, for example, loops, options,
alternatives are not considered. First of all, formal
specification of sequence models is described. In the
next, the sequence model is transformed to transition
graph by capturing semantics hidden under the
diagram. The order of messages and time sequence
are given primary importance. Further, scenarios are
defined based on the transition graph and are
validated based on the transition function. For an
effectiveness of the approach, transformation
procedure is explained by taking a case study of

Journal of American Science 2013;9(11) http://www.jofamericanscience.org

 288

ATM cash withdraw system. Formal analysis is
provided by Z which is a model oriented
specification language. Z/Eves tool is used for model
analysis because it is a powerful one for analyzing
the specification. The tool provides various
exploration techniques to prove correctness of the
properties. Rest of the paper is organized as: In
section 2, transformation mechanism from sequence
diagram to transition graph is provided. Formal
specification is described in section 3. Conclusion
and future work are discussed in section 4.

2. Sequence Diagram to Transition Graph

The mechanism of transformation from
UML sequence diagram to transition graph is
presented by a case study in this section.

A. Case Study

Sequence diagram is important and good
modeling tool because it provides a dynamic view
showing behavior which is not possible to extract
from statics of the system. The sequence diagram
helps to discover architectural view and logical
statements needed to define the system at early stages
of the design. Separate sequence diagrams can be
integrated easily because of the time dimension.

Sequence diagram represents flow of events,
messages and interactions between objects in two
dimensions. The interaction is in horizontal
dimension and time is defined in the vertical line by
making a two dimensional model as in Figure 1. In
the figure, sequence diagram of ATM cash withdraw
is presented. At first the card is verified then PIN is
entered for authentication. Finally, the cash is
withdrawn if requested amount is less than the
balance.

 Figure 1. Sequence diagram for cash withdraw

B. Transformation Procedure

The transition procedure from sequence
diagram to transition graph is explained in Table 1. In
the table, a, r, d, i, p and c represent the objects: user,
reader, displayer, input device, processor and cashier
respectively. The state of message initiating object is
termed as initial state. If an object a sends a message
m to another object b under the guard condition c
then the next state is represented by s = (m, a, b, c). It
is noted that for two different next states, the
triggering messages might be same. For example, in
the table, s2 = (m2, r, a, c1) and s5 = (m2, r, a, c3),
the messages are same but the states are different. In
case of s2 = (m2, r, a, c1), the card is rejected
because it is invalid card whereas for s5 = (m2, r, a,
c3) it is rejected because the account is inactive. If
there are more than one guard conditions in the
diagram then at least one must be true. If both
conditions are false then the last one option "PIN
request" is triggered for validity of the diagram.

Table 1. Relationship of states and messages

State Event Action State Event

s0 - s10 (m2, i, a, c4)

s1 (m1, a, r, -) card inserted s11 (m9, p, d, -)

s2 (m2, r, a, c1) card rejected s12 (m10, d, a, -)

s3 (m3, r, d, -) card
accepted

s13 (m11, a, i, -)

s4 (m4, r, a, c2) card retained s14 (m12, i, p, -)

s5 (m2, r, a, c3) card rejected s15 (m2, i, a, c5)

s6 (m5, p, d, -) PIN request s16 (m13, p, c, -)

s7 (m6, d, a, -) display PIN s17 (m14, p, r, -)

s8 (m7, a, i, -) PIN entered s18 (m15, r, a, -)
s9 (m8, i, p, -) PIN process s19 (m16, c, a, -)

Figure 2 shows the resultant graph

consisting of set of states and transitions. There are
four types of states, that is, initial state, rejecting,
internal and accepting states. The initial state is
represented by minus sign inside the circle. It is in
fact first state of the object (User) before inserting the
card into the machine. The rejecting states are
represented by the light shaded circles in the
transition graph. In the figure, the set {s2, s4, s5, s10,
s15} is a collection of rejecting states. If any of these
states is reached, cash withdraw operation is
terminated resulting a failure of operation. The only
accepting state is s19 which is represented by the
dark color. It is noted that objects communication is
represented from top to down and time sequence is
captured by left to right by traversing the Figure 2.
There are only six possible scenarios which can be
generated by traversing the graph using top-left
approach. The set of possible scenarios is generated
from transition graph as: S1 = <s0, s1, s2>; S2 = <s0,

Journal of American Science 2013;9(11) http://www.jofamericanscience.org

 289

s1, s3, s4>; S3 = <s0, s1, s3, s5>; S4 = <s0, s1, s3, s6,
s7, s8, s9, s10>; S5 = <s0, s1, s3, s6, s7, s8, s9, s11,
s12, s13, s14, s15>; S6 = <s0, s1, s3, s6, s7, s8, s9,
s11, s12, s13, s14, s16, s17, s18, s19>.

Figure 2. Transition graph based on sequence diagram

3. Formal Analysis

In this section, a generic formal approach is
described based on the sequence diagram in Figure 1
and transition graph in Figure 2. Formal definition of
class diagram, the hidden semantics under the
sequence diagram and interaction among the objects
is defined. The diagram is transformed to transition
diagram. Finally, all possible scenarios of the
diagram are generated and verified.

A. Static Model

The class diagram is represented as: Class
Diagram = <classes: P(C); relationship: C x Relation
x C>, where C is class and P(C) stands for power set
classes. The relation among classes can be
association, generalization, aggregation, composition.
Formal specification of class is presented using Class
schema which consists of three variables namely,
cname, attributes and methods. The attributes
variable is used for storing class attributes and
methods is to define class operations which is a
partial function between the classes. The Name and
Attribute are used at an abstract level of specification.
The schema consists of two parts namely definition
and predicate parts. In definition part, variables are
defined and invariants are defined in the predicate
part. It is stated that input and output of the methods
are attributes of class.

An object is created from the class by the

notation object: Class consisting of same attributes

but different values. The invariants object are same as
in the Class schema.

A class diagram is defined by the schema

CM containing its main components. The first
components classes is used to define set of all
classes. The next three variables, sclasses, whole, and
parts are used to define sets of subclasses, whole and
part classes respectively. Finally, four types of
relations, association, generalization, aggregation
and composition are considered. The first one
relationship association shows how object are
connected to each other. The generalization
relationship is between a child and parent where a
child receives all the attributes and operations that are
defined in the parent. An aggregation relationship
describes a group of objects and the way of
interaction with each other. For example, relationship
between college and university can be defined by the
aggregation relationship showing that the college is a
part of the university. The composition relationship is
a special type of aggregation which is stronger than
aggregation. In aggregation if whole is destroyed the
part may exist whereas in case of composition part
cannot exist without the whole class.

B. Dynamic Model

In the sequence diagram, vertical dimension
represents life line of objects and messages and the
horizontal dimension shows change in states of the
objects. For specification, event is defined by the
schema Event which includes four variables. The first
one name is used to define name of the event. The
next two variables, first and second, represent initial
and next states of communicating objects. The last
one variable condition must be true before execution
of the event. The condition has three values, i.e., null,

Journal of American Science 2013;9(11) http://www.jofamericanscience.org

 290

true or false. The value null is used to represent that
there is no triggering condition.

[EName]; Condition ::� � NULL �� TRUE �� FALSE; [State]

� � Event� �

� name: EName; first, second: State; condition: Condition
� �

Lifeline of an object is defined by the

schema LifeLine given below. The min and max are
used to represent creation and destruction times. In
the predicate part, it is stated that creation time is less
than the destruction time.

The object used in sequence diagram needs

all of its possible states and is called sequence object
which is defined by the schema SObject. In the
predicate part, it is stated that life line of the object is
within the time limits. The activation time of a
message is specified by the schema ActivationTime.
It is stated that the start time is less than the finishing
time of the message.

The Event schema is reused in the definition
of Message to define change in states of objects. The
ActivationTime is included to describe activation time
of a message in the sequence diagram. Finally from
and to variables are used to represent communicating
objects in the message. In predicate part of the
schema, time ordering is defined.

Formal specification of validating messages

in sequence diagram is provided by the SSM model
given below. The schema contains class model,

communicating objects and messages used in the
diagram. In predicate part of the schema, it is stated
that every object in the diagram is an object of some
class diagram. For every message in the sequence
diagram, there exist two objects of some classes in
the diagram such that there is a relation, association,
generalization aggregation or composition among
these objects. For every two objects in sequence
diagram, there is a sequence of messages among the
objects in the diagram. And for every message in the
diagram, there exist two objects which can
communicate.

Dynamic behavior of the sequence diagram

is represented using DSM which contains SSM as
defined above. In the schema, start variable is used to
define the start state of the object triggering the first
event. The states variable represents sequence of all
possible states of the objects. The set of events in the
diagram is represented by the events variable. The
most important is the transition function next which
takes a state, checks guard condition and triggers the
event by moving to the next state of an object. The
set of final states is represented by final.

� � DSM� �

� SSM; start: State; states: seq State; events: seq Event

� next: State � �Condition � Event� � State; final: � State
� � � � � � � � � � � � � � � �

� start � ran states

� � s1, s2: State �� s1 � ran states � s2 � ran states

� �� � event: Event �� event � ran events �� event . first = s1 �

� event . second = s2

� � event: Event �� event � ran events �� � s1, s2: State �� s1 � ran

� states � s2 � ran states

� �� s1 = event . first � s2 = event . second

� � s1: State; cd: Condition �� s1 � ran states �� � ev: Event; s2:

� State �� ev � ran events � s2 � ran states � �s1� �cd� ev�� �

� dom next �� next �s1� �cd� ev�� = s2

� � s: State �� s � final �� s � ran states
� �

Journal of American Science 2013;9(11) http://www.jofamericanscience.org

 291

In the predicate part, it is stated that start
state belongs to the set of possible states. For any two
states, there is an event which triggers for moving
control from one state to the other. For any event,
there are two states completing the execution of the
event after guard condition is true. For every state,
there exists an event and new state in the domain of
transition function. Every final state is in the set of
possible states.

The sequence diagram is transformed to TG
STGraph in which start, states and events have the
same meaning as explained in DSM. The transition
function transition takes a state and triggering event
as input and moves to the next state of an object of
the diagram. The last one is the set of accepting states
of the transition graph.

A scenario is a sequence of events which

may execute after following the order of the
messages. For validation, transition graph and
scenario? are inputs to the schema given below and
validation process is described in the predicate part. It
is stated that the first and last elements of the
scenario are in the set of events of the transition
graph. Every element, other than first and last events,
in the scenario is also in the transition graph.

Scenario seq Event

The sequence diagram is validated using the
schema SDValidation. Transition graph and set of
scenarios are given as inputs to the schema and
validation process is described as same as in case of
above schema.

4. Conclusion

This work is part of our ongoing project on
digging semantics of UML diagram (Zafar, 2012),
(Zafar and Alhumaidan, 2011) and (Alhumaidan,
2012). In this paper, an approach is developed by
identifying ambiguities and removing flaws by
verifying all the possible scenarios existing in the
diagram. Further, consistency between sequence and
class diagram is checked by verifying messages
existing in both the diagrams. Automatic test cases
can be generated from our transition graph, is another
significance of this approach. The resultant approach
can be useful in development of automated tools for
generation and verification of the system’s
specification. Although we have taken a simple
sequence diagram in which advanced concepts, for
example, loops, options, alternative, etc. are not
considered but the advantage of our approach is that
the diagram is fully transformed to transition graph.
Then graph is specified using Z notation and formal
verification is provided using Z/Eves tool. Z is used
because of its abstract and expressive power (Spivey,
1989). The rich mathematical notations in Z made it
possible to reason about behavior of sequence
diagram rigorously. Several type checking tools exist
to support the specification. The Z/Eves is a powerful
tool used here to analyze the specification (Meisels
and Saaltink, 1997).

Acknowledgements:

We would like to thank Deanship of
Scientific Research, King Faisal University, Saudi
Arabia for their funding support to our project.

Journal of American Science 2013;9(11) http://www.jofamericanscience.org

 292

Corresponding Author:
Dr. Nazir Ahmad Zafar
Department of Computer Science
College of Computer Sciences and IT
King Faisal University
Alahsa, 31982, Saudi Arabia
E-mail: nazafar@kfu.edu.sa

References
1. R. Borges and A. Mota, Integrating UML and

Formal Methods, Electronic Notes in Theoretical
Computer Science, 184, pp. 97-112, 2003.

2. W. L.Yeung, K. R. P. H. Leung, J. Wang and W.
Dong, Improvements Towards Formalizing
UML State Diagrams in CSP, Proc. of 12th Asia
Pacific Software Engineering Conference,
Taiwan, 2005.

3. M. Shroff and R. B. France, Towards
Formalization of UML Class Structures in Z,
21st Int'l Conference on Computer Software and
Applications, pp. 646-51, 1997.

4. Z. Chen and D. Zhenhua, Specification and
Verification of UML2.0 Sequence Diagrams
using Event Deterministic Finite Automata, 2011
Fifth Int'l Conference on Secure Software
Integration and Reliability Improvement–
Companion, pp. 41-46, 2011.

5. M. Li and Y. Ruan, Approach to Formalizing
UML Sequence Diagrams, 3rd Int'l Workshop on
Intelligent Systems and Applications (ISA), pp.
1-4, 2011.

6. X. Li, Z. Liu and H. Jifeng, A Formal Semantics
of UML Sequence Diagram, Proc. of the 2004
Australian Software Engineering Conference,
2004.

7. Z. Xiuguo and H. Liu, Formal Verification for
CCML Based Web Service Composition,
Information Technology Journal, 2011.

8. J. Sun, J. S. Dong, J. Liu and H. Wang, A
XML/XSL Approach to Visualize and Animate
TCOZ, Proc. of 8th Asia-Pacific Software
Engineering Conference, pp. 453-60, 2001.

9. B. Litvak, Behavioral Consistency Validation of
UML Diagrams, First Int'l Conference on
Software Engineering and Formal Methods,
2003.

10. A. Moeini and R. O. Mesbah, Specification and
Development of Database Applications based on
Z and SQL, Proc. of Int'l Conference on
Information Management and Engineering, pp.
399-405, 2009.

11. H. Leading and J. Souquieres, Integration of
UML and B Specification Techniques,
Systematic Transformation from OCL
Expressions into B, Proc. of 9th Asia-Pacific
Software Engineering Conference, 2002.

12. S. K. Kim and D. A. Carrington, An Integrated
Framework with UML and Object-Z for
Developing a Precise and Understandable
Specification: The Light Control Case Study,"
Proc. of Seventh Asia-Pacific Software
Engineering Conference, pp. 240-48, 2000.

13. N. H. Ali, Z. Shukur and S. Idris, A Design of an
Assessment System for UML Class Diagram,
Int'l Conference on Computational Science and
Applications, pp. 539–46. 2007.

14. H. Miao, L. Liu and L. Li, Formalizing UML
Models with Object-Z, Proc. of 4th Int'l
Conference on Formal Methods and Software
Engineering, Springer, 2002.

15. A. M. Mostafa, A. I. Manal, E. B. Hatem and E.
M. Saad, Toward a Formalization of UML2.0
Meta-model using Z Specifications, Proc. of 8th
ACIS Int'l Conference on Software Engineering,
Artificial Intelligence, Networking and
Parallel/Distributed Computing, 3, pp. 694-701,
2007.

16. S. Sengupta and S. Bhattacharya, Formalization
of UML Diagrams and Consistency Verification:
A Z Notation Based Approach, Proc. of India
Software Engineering Conference, pp. 151-52,
2008.

17. M. Sarma, D. Kundu and R. Mall, Automatic
Test Case Generation from UML Sequence
Diagrams, 15th Int'l Conference on Advanced
Computing and Communications, pp. 61-65,
2007.

18. N. Yang, H. Yu, H. Sun and Z. Qian, Modeling
UML Sequence Diagrams using Extended Petri
Nets, Int'l Conference on Information Science &
Application, pp. 1-8, 2010.

19. M. A. Ameedeen and B. Bordbar, A Model
Driven Approach to Represent Sequence
Diagrams as Free Choice Petri Nets, Int'l 12th
IEEE Enterprise Distributed Object Computing
Conference, pp. 213-21, 2008.

20. N. A. Zafar, Modeling and Formal Specification
of Automated Train Control System using Z
Notation, IEEE Multi-topic Conference
(INMIC'06), pp. 438-43, 2006.

21. N. A. Zafar, S. A. Khan and K. Araki, Towards
Safety Properties of Moving Block Railway
Interlocking System, Int'l Journal of Innovative
Computing, Information & Control, 2012.

22. F. Sohail, F. Zubairi, N. Sabir and N. A. Zafar,
Designing Verifiable and Reusable Data Access
Layer Using Formal Methods and Design
Patterns, Int'l Conference on Computer Modeling
and Simulation, 2009.

23. N. A. Zafar, Event-Action Based Model for
Identification and Formalization of Relations in

Journal of American Science 2013;9(11) http://www.jofamericanscience.org

 293

UML State Diagrams, Archives Des Sciences
Journal, 65(4), 2012.

24. N. A. Zafar and F. Alhumaidan, Transformation
of Class Diagrams into Formal Specification,
Int'l Journal Computer Science and Network
Security, 289-95, 2011.

25. F. Alhumaidan, A Critical Analysis and
Treatment of Important UML Diagrams
Enhancing Modeling Power, Intelligent

Information Management, 4(5), pp. 231-37,
2012.

26. J. M. Spivey, The Z Notation: A Reference
Manual, Englewood Cliffs NJ, Prentice-Hall,
1989.

27. I. Meisels and M. Saaltink, The Z/Eves
Reference Manual, TR-97-5493-03d, ORA
Canada, 1997.

Nazir A. Zafar was born in 1969 in Pakistan.
He received his M.Sc. (Math. 1991), M. Phil
(Math. 1993), and M.Sc. (Nucl. Engg. 1994)
from Quaid-i-Azam University, Pakistan. He
was awarded PhD in computer science from
Kyushu University, Japan in 2004.

He is Associate Professor at College of Computer Sciences and
Information Technology, King Faisal University, Saudi Arabia.
His current research interests are modelling of systems, formal
approaches, integration of approaches, safety and security
critical systems, etc. He has worked as Dean, Faculty of
Information Technology, University of Central Punjab,
Pakistan. He has leaded various scientific committees.

Fahad M. Alhumaidan was born in 1966 in
Saudi Arabia. He did his PhD from
University of Newcastle Upon Tyne, UK. He
is working as Assistant Professor and Vice
Dean at College of Computer Sciences and
IT (CCSIT), King Faisal University, Saudi
Arabia. He is also Chairman of Computer
Science Department at CCSIT.

His research areas include Software Engineering, Object-
oriented Paradigm, Integration of UML and Formal Methods,
Business Process Management, Workflow Systems, Soft
aspects of Information System, E-Business and Networks.

10/21/2013

