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1.Introduction: 

The study of the approximation property is 
important in Banach space theory. The approximation 
property due to the following fundamental result in 
the theory of operators on Hilbert spaces: if X and Y 
are Hilbert spaces, then the compact operators from 
Y to X are the norm closure of the finite – rank maps. 
The initial conjecture was that every Banach space 
satisfies the approximation property. 

 Let X and Y be Banach spaces. In this paper 
we use the following notations: 
L(X,Y ) the space of bounded linear operators from X 
to Y.  
F(X, Y ) the space of bounded and finite rank 
operators from X to Y. 
C(X, Y ) the space of compact operators from X to Y. 
�∗(X, Y)= {�∗: �: � → �}. 

C(X, Y, �)	the space of compact operators from X to 
Y satisfying ‖�‖ ≤ � where 1≤ λ< ∞. 
In the following, we will denote for isomorphic 
between B-spaces by ≅ 
1. We say that a Banach space has the approximation 
property (in short AP ), if every compact operator is a 
limit of finite rank operators. In fact, this notion can 
be formulate in an equivalent definition as follows: A 
Banach space Y possess the approximation property 
if for every �	> 0 and every compact set K in Y there 
is a finite rank operator �: � → �  such that ‖�� −
	�‖≤ ϵ for every y ∈ �, i.e, a bounded 
linear operator of finite rank operators can be 
represented as �� = ∑ ��

∗�
��� (y) �� , for some 

{��
∗}���

� 	in	�∗ and {��}���
� 	in	�. 

Notice that: A closed subset K of a Banach space Y is 
compact if and only if there is a sequence {��}���

�  in 
Y such that ‖��‖ → 0 and �	 ⊂ �����������{��}���

� .See[1] 

Before we formulate the theorems of the 
approximation property, we need the following 
theorem. 
Theorem 1.1 [1] 
Suppose X and Y are Banach spaces, define on L (X, 
Y) the topology 	�  of uniform convergence on 
compact sets in X. Then, the continuous linear 

functionals on (L(X, Y),	�	) consist of all functionals 
φ of the form �	(�) = ∑ ��

∗(���)
�
��� , for some 

{��
∗}���

� ⊂ �∗,{��}���
� ⊂ �	with ∑ ‖��

∗‖‖��‖ < ∞�
��� . 

The topology τ on L (X,Y) of compact convergence 
is the locally convex topology generated by the 
seminorms of the form	∥ � ∥�=sup {‖��‖: x ∈ �}, 
where K ranges over all compact subsets of �	∀� ∈
�(�, �). Besides, the dual space (�(�, �), �)∗ can be 
identified exactly with the projective tensor product 

�∗⨂��. 
We remark that a B-space X has the approximation 

property if �� ∈ �(�,�)�����������,  where ��  is identity 
operator on X [2]. 
For �∗ we have the following:  
Theorem 1.2 
 There is a Banach space Y with a boundedly 
complete basis such that its dual �∗ of Y is separable 
and does not have the AP.  
To prove theorem 1.2 we need the following result of 
Lindenstrauss. 
Lemma 1.1. 
 If V is a separable Banach space, then there is a 
separable Banach space W such that �∗∗	 has a 
boundedly complete basis, �∗∗/� ≅ �,  and 
�∗∗∗ ≅ �∗ ⊕�∗. 
 
Proof of the theorem 1.2 
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The proof of the theorem 1.2 depends on the fact that 
there is a Banach space which does not have the AP. 
let Y be separable Banach space which does not have 
the AP. By lemma 1.1 there is a separable Banach space 
X such that its �∗∗ has a basis such that �∗∗ �⁄ ≅ � and 
�∗∗∗ ≅ �∗ ⊕ �∗ , where there is a projection from 
�∗∗∗  into �∗ . This projection is the map which 
determines to every functional on �∗∗ its restriction to 
X. Since Y does not have the AP, then the 	�∗ does 
not have the AP. Any complemented subspace of a 
space having the AP must have the AP, therefore 
�∗∗∗ which is a dual of a space �∗∗ with a basis, does 
not have the AP. Since Y and �∗ are separable, then 
�∗∗∗ is separable. □ 
here we clarify the definition of X, let {��}���

�  be a 
sequence which is dense on the boundary of the unit 
ball of Y. The space X consists of all the sequences  
 x = (��, ��,… . . ) of scalars for which  

(1) ‖�‖= sup �∑ ∥ ∑ ���� ∥
���

��������
�
��� �

�

�
		 < ∞ 

(2) ∑ ���� = 0�
���  

The supremum in (1) is taken over all choices of 
integers m and  

�� < �� <. … . < ��. 
Another construction of space X having the 
properties required in theorem 1.2 is given in [3]. [3] 
contains the construction of space X satisfying 
�∗∗ ∕ � ≅ �  also for a large natural class of non–
separable space Y. Every space X obtained in 
theorem 1.2 is not reflexive but has a separable 
second dual. 
2- We shall investigate the approximation property 
by constant independent of compact set K.  
Let λ≥ 1, we say that a Banach space Y has the λ- 
approximation property  
(λ–AP in short), if for every compact set K⊂ � and 
every ϵ>0, there is an operator �:� → �of finite rank 
such that ‖�� − �‖ ≤ � for every y∈ � and ‖�‖ ≤ �. 
We say that a Banach space Y has bounded 
approximation property (BAP in short) if it has the λ 
–AP for some λ and has metric approximation 
property (MAP in short) if it has 1-AP. 
The next result clarifies the relation between the AP 
and the MAP. 
Theorem 2.1 
Let Y be a separable space which is isometric to a 
dual space and which has the AP then Y has the 
MAP. 
For the proof of 2.1 see [4]. 
It follows from 2.1 that, for separable reflexive space, 
the AP implies the MAP. The same is true for non 
separable reflexive space. 
In the fact, for general the BAP does not imply the 
MAP and the AP does not imply the BAP this was 
shown by [5]. 

We say that X has the weak approximation property 
(in short, WAP) if for every � ∈ �(�) , compact 
K⊂X and � > 	0 , there is a �� 	∈ 	�(�)  such that 
‖��� − ��‖ ≤ � for all x ∈ K. We say that X has the 
quasi-approximation property (in short, QAP) if for 
every � ∈ �(�), and � > 	0, there is a �� 	∈ 	�(�) 
such that ‖�� − � ‖ ≤ � . Now we consider dual 
problems for approximation properties. It is well 
known that the AP, BAP, and MAP are not inherited 
from X to �∗. See [6], also in [6] it was shown that 
the WAP, BWAP and QAP are not inherited from X 
to�∗. 
Grothendieck [4] systematically investigated the AP 
and showed the following fact: 
 (a) X has the AP if and only if for every Banach 
space Y, C(Y, X) = �(�,�).���������� 
(b) �∗	has the AP if and only if for every Banach 

space Y, C(X, Y ) = �(�, �).���������� 
Now we introduce a characterization of the AP.  

Lemma 2.1 
Y has the approximation property iff for every 
Banach space X, C(X,Y,1) = F(X,Y,1). 

Proof  
Suppose that Y has the AP. Let X be a B-space with 

�	 ∈ �(�, �, 1) and ϵ > 0. Let � > 0 with 
�

���
<

�

�
. 

Since Y has the AP, by fact (a) there is �� 	∈
�(�, �) such that 

‖�� − �‖ < �. 
Then we see �� 	∈ �(�, �, 1 + �) , and define 

�� =
�

(���)��
. Then �� 	∈ �(�, �, 1)  with ‖�� − �‖ ≤

�

���
‖�� − �‖ +

�

���
‖�‖ ≤ ϵ. Hence �	 ∈ �(�, �, 1).������������� 

Conversely: ��  use fact (a), let X be B-space and 
�	 ∈ �(�, �), then by assumption we have 
 �	 ∈ �(�, �, ‖�‖) = ‖�‖�(�, �, 1) =
‖�‖�(�, �, 1)������������ = �(�, �, ‖�‖)���������������� 	⊂ �(�, �)����������. 

Hence �	 ∈ �(�, �)���������� and the proof is complete. □ 
● Let S be the trace mapping from the projective 

tensor product �∗ ⊗� � to F(Y, Y)∗, the dual space of 
F(Y, Y) is defined by  
(��)(T) = trace (�� ), u∈ �∗ ⊗� �,� ∈ �(�, �), that 
is, if � = ∑ ��

∗ ⊗ ��
�
���  then ( ��)(�) =

∑ ��
∗���� ��

��� .  We shall always regard Y as a 

subspace of �∗∗. Thus the identity operator �� on Y is 
also considered as embedding identifying �� with 
canonical embedding 	��: � → �∗∗.  The following 
results hold for the general version of the metric 
approximation property defined by operator ideal 

�	(in the sense of pietsch, see [7]). In Banach space 
Y we denote the closed unit ball by ��. We say that a 

Banach space Y has the metric �	 approximation 

property (M �	�	�), if for every compact set K in Y 
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and every ϵ > 0 there is an operator T∈ ��(�,�)	such 

that ‖�� − �‖ ≤ � for all y∈ �. 
Notice that: 

 �(�,�) is equipped with the norm topology from 

L(Y,Y). Thus the trace mapping S: �∗ ⊗� 	� →
�(�, �)∗ has norm 1.  
Recall that: if Y is a Banach space. The trace 

mapping S: �∗ ⊗� 	� → �(�, �)∗  with the condition 

�� 	∈ 	 �
∗(��(�,�)∗∗) implies that Y has the M�	�	�, 

where �	 is operator ideal. Indeed, the condition 

�� 	∈ 	 �
∗���(�,�)∗∗�  clarify by using canonical 

identification (�∗ ⊗� 	�)∗=L(Y,	�∗∗).	 
With using the canonical identification 

( �∗ ⊗�� �)∗ =L( �∗, �∗ ) the condition becomes 
equivalent to ��∗ ∈ �∗(��(�,�)∗∗) . Hence, since 

L(Y,�∗∗)	 is canonically identified with L(�∗ ,�∗) 
under the mapping � → �∗ ∘ ��∗ the identity operator 
��	or �� ∘ ��	identifies with (�� 	 ∘ ��)

∗ ∘ ��∗ = ��
∗ ∘ ��

∗ ∘

��∗ = �∗� ∘ ��∗ = ��∗. Besides, an operator ideal �	is 

symmetric if �∗ ∈ �(�∗, �∗) where T ∈ �(�, �). 
Theorem 2.2  

With an operator ideal �,  a Banach space Y has 

M�	�	� if the trace mapping S :�∗ ⊗� � → �(�, �)∗ 
is isometric. 
Proof 
Since ( �∗ ⊗� �)∗ = �(�, �∗∗)  we have 
S∗:�(�, �)∗∗ → �(�, �∗∗) is adjoint of an into 
isometry, for every �	 ∈ �(�, �∗∗).  In particular for 

T=��  there is φ∈ �(�, �)∗∗  satisfying S∗� = �  and 
‖�‖ = ‖�‖ . Hence, �� ∈ 	 �∗���(�,�)∗∗�,  this means 

that Y has the ����□ 

Now, we say that the trace mapping � ∶ �	 ⊗� � →
�(�,�∗)∗ is isometric for every Banach space Y, if a 

Banach space X has the M�	�	�,  where �.  is an 
operator ideal. 
Proposition 2.1 
Let Y be a Banach space does not have the 

����,	 then the trace mapping �:�∗ ⊗� � →
�(�, �)∗ is not isometric, but its dual space �∗  has 

the 	���� , then �:�∗ ⊗� � → �(�, �∗∗)∗  is 

isometric, where in the two cases �	is a symmetric 
operator ideal. 
Proof 
By theorem 2.2, if Y does not have	��	��, then S is 
not isometric. Suppose that �∗  has the 
��	��.	 According to above the trace mapping 

�∗ ⊗� � → �(�∗, �∗)  is isometric. Since �  is a 

symmetric operator ideal, �(�,�∗∗)  is canonically 

identified with �(�∗, �∗)  under the mapping 
� → �∗ ∘ ��∗. Hence W is isometric □ 
 

3-We say that a Banach space Y has λ-bounded 
compact approximation property (λ–BCAP in short) 
if for every ϵ > 0 and every compact set � ⊂ �, there 
is � ∈ �(�, �) such that ‖�� − �‖ ≤ � for all � ∈ �. 
If Y has the λ – BCAP for some λ	 > 0, then Y is said 
to have the bounded compact approximation 
property. 

A Banach space Y is said to have the 
bounded weak approximation property (BWAP in 
short), if for every � ∈ �(�), there is �� > 0  such 
that for every compact set � ⊂ � and for every ϵ > 0, 
there is �� ∈ �(�, ��), such that ‖��� − ��‖ < � for 
all � ∈ �	[8, 9]. 
For spaces Y and �∗ we have the following results. 
Theorm3.1 
Let Y be a Banach space and 1 ≤ λ<∞.Then, the 
following three assertions hold. 

(i) Y Possess the λ – BAP iff � ∈ ���, �������������

 

(ii) Y Possess the λ – BCAP iff � ∈ ���, �������������

 

(iii) Y Possess the BWAP iff for each � ∈ �(�) 

there is a ��>0 such that � ∈ ���, �
�
��������������

. 

For �∗ we have following. 
Theorem 3.2 
Let Y be a Banach space. Then the following three 

assertions are equivalent: 
(i)  �∗ Posses the BWAP. 
(ii)  For every � ∈ �(�∗), there exists a �� > 0 

so that there exists a net( ��
∗)in �∗(�, ��) 

such that �∗∗��
∗�∗ → �∗∗��∗  for every 

�∗ ∈ �∗ and �∗∗ ∈ �∗∗. 
(iii)  For every � ∈ �(�∗)  there is �� > 0  such 

that there are (��
∗)���

� ⊂ �∗ and (��
∗∗)���

� ⊂
�∗∗,  if |∑ �∗∗(�∗��

∗)�
��� | ≤ 1  for all �∗  in 

�∗(Y,	��), then |∑ �∗∗(�	��
∗)�

��� | ≤ 1. 
To prove the above theorems we need the following 
topologies and the relation between them. 

 
Definition 3.1 
Let X and Y be Banach spaces and let S be the linear 
span of all linear fuctionals φ on L(X,Y) of the form 
φ(T) =�∗��  for x∈ �  and �∗ ∈ �∗ , then the weak 
operator topology (wo, in short) on L(X, Y) is 
topology generated by S. 
For a net (��) ⊂ �(X, Y) and � ∈ �(�, �), �� → � in 
(L(X, Y), wo) i�	���	����	��for each x∈ � and	�∗ ∈
�∗, �∗��� → �∗��     (1) 
Definition 3.2 
Let X and Y be Banach spaces, for compact set 

� ⊂ �, � > 0 and � ∈ �(�, �)we put ℬ ={R∈ � (X, 
Y):	����∈�‖�� − ��‖ < � }. 

Let β be the collection of all such ℬ(�,�, �). Then, 
the τ – topology on L(X, Y) is topology generated by 
β. This topology is called the topology of compact 
convergence. 
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By the definitions of BAP, BCAP and BWAP we 
proved the following: 

Y Possess the λ - BAP if and only if � ∈ ���	, �������������	  
(2) 

Y Possess the BWAP if and only if	� ∈ ���	, �������������	  
(3) 
Y Possess the BWAP ⇔for every � ∈ �(�) there is 
�� > 0 such that 

 � ∈ �(�	, ��)������������.                 (4) 
 For a net (��) ⊂ �(�, �)and � ∈ �(�, �), �� → � in 
(L(X,Y),τ) ��	���	����	�� for every compapct 
K⊂ �		����∈�‖��� − ��‖ → 0    (5) 
On other hand there is a topology called the topology 
of pointwise convergence which is defined by the 
strong operator topology at each of x ∈ X (sto, in 
short) on L(X, Y). 
The next theorem shows the relations between τ, sto 
and wo. 
Theorem 3.3 [8] 
Suppose X and Y are Banach spaces, let Z be a 
bounded subset of L(X, Y), and let C be a convex 
subset of X, then 
(i) τ = sto on Z. 
(ii)  (L(X,Y), sto)∗=(L(X,Y),wo)∗ and the form 

of the linear bounded functional φ on 
L(X,Y) is given by �(�) = ∑ ��

∗(���)
�
��� , 

for some (��)���
� ⊂ � and (��

∗)���
� ⊂ �∗ 

 
(iii) X has two locally convex topologies �� 

and	�� such that the dual spaces of X under 
the two topologies are the same, then the ��- 
closure of C is the same as its ��- closure. 
See [10,11] 

Statement 3.1 
The following statements are true from theorem 3.5 

(1) �
���

= �
��

.where C is a convex set in 
L(X,Y) 

(2)  �
�
= �

��
. where C is a bounded convex 

set in L(X,Y) 
(3) The � - closure in �	(�∗) can be identified 

with the �  - closure in �∗(�)	with � > 0, 

that is ���∗, �������������� = �∗��, ��������������. 

(4) Since for � > 0	�∗(�, �)  is bounded and 
convex. Then by (2) and (3) we have 

���∗, �������������� = �∗��, ���������������

. 
 
Proof of theorem 3.1 

(i) Since F(Y, 	� ) is bounded and convex for 

λ>0.there is C in F(Y, 	� ) is bounded and 
convex. such that by Statement 3.1(2) we have 

�
�
= �

��
, implies that ���, ������������ =���, �������������

, 

therefore � ∈ ���, �������������

. By (2) Y has the λ –

BAP iff � ∈ � ��, ���������������

. 

(ii) Since C(Y,	�) is bounded and convex for λ>0 

there is subset K in C(Y, 	� ) is bounded and 
convex. Then, ��� = ����  implies that 

���, ������������ = ���, �������������

 therefore ∈ ���, �������������

. 

By (3) Y has the λ- BCAP iff � ∈ ���, �������������

. 

(iii) From the statement 3.1 (2) we have ��� = ���� 

in C(Y, 	� ) and �
�
= �

��
 in F(Y, 	� ), hence 

���, �
�
�������������=���, �

�
��������������

.  

Now T∈ 
�(�)is	the	limit	of	a	sequnce	of	oprators	T�	with	�inite	rank. 

Then, for �� > 0 a	� ∈ �(�) ⊂ �(�)��������,	that is there is 

�	�� > 0	 such that � ∈ ���, �
�
������������� 

=���, �
�
��������������

������� � ∈ ���, �
�
��������������

, that is Y 

has the BWAP □ 
 
Proof of the theorem 3.2 
We notice that �∗ has the BWAP if and only if for 
every � ∈ �(�∗) there is �� > 0 such that � ∈

�∗��, �
�
���������������

.  By statement 3.6 (3) we have 

���∗, �
�
�������������� = �∗��, �

�
���������������

,  and by 3.3 and 3.5, for 

every � ∈ �(�∗) there is a net (�∝) ⊂ �∗��, �
�
���������������

=

	���∗, �
�
�������������� , ��

∗ → �  in �∗��, �
�
���������������

 for �∗ ∈ �∗	and 

�∗∗ ∈ �∗∗such that �∗∗��
∗�∗ ⟶ �∗∗��∗ so (i)⇔(ii).  

In the following we show that (i)⇔(iii). By theorem 
3.5 (ii) with T ∈ C(Y∗)	 we have (C(Y∗), sto)∗ =
(C(Y∗),wo)∗  and bounded linear functional φ  on 
C(Y∗)	is  
 φ(T) = ∑ y�

∗∗(Ty�
∗)�

���  for {y�
∗}���

� ⊂ Y∗  and 
{y	

∗∗}���
� ⊂ Y∗∗. Since F∗(Y, λ) is balanced and convex 

for λ > 0, then the set C in F∗(Y, λ) is balanced and 
convex. Hence by the separation theorem (see [11- 
theorem 2.2.28]) for every φ ∈ (F∗(Y),wo)∗  such 
that |φ(S∗)| ≤ 1  for	all	S∗	in	the	weak −

closure	of	C	in	F∗	(Y, �
�
), we have |φ(T)| ≤ 1 that is  

|φ(S∗)| = |∑ y�
∗∗(S∗y∗)�

��� | ≤ 1⟹ |φ(T)| =
|∑ y�

∗∗(Ty�
∗)�

��� | ≤ 1 □ 
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