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1. Introduction 

In the planar restricted three-body problem two 
bodies (called the primaries) revolve around their 
center of mass in circular orbits under the influence 
of their mutual gravitational attraction, and a third 
body attracted by the previous two but not 
influencing their motion. It is assumed that the third 
body moves in the plane defined by the two revolving 
bodies. All the three bodies are considered as point 
masses. The problem is to find the motion of the third 
body. 

In fact two concepts of the restricted three body 
problem (R3BP), the combination of which leads to a 
series of useful research tools, are regularization and 

Jacobian integral JC
. What concern us in the present 

paper is Jacobian integral (the only integral of motion 
of R3BP) .which may be considered one of the most 
significant features of the qualitative aspects of 
R3BP. Jacobian integral suggested to Hill (1878) the 
introduction 

of curves of zero velocity for the problem 
named after him and also for R3BP.Also,it should be 
reminded of Hill's famous condition regarding the 
stability of the orbit of the Moon ,which is based 
entirely on the Jacobian integral. On the other hand, 
the Jacobian integral plays an important role in the 
understanding of the totality of possible motions of  

R3BP(e.g. etacMar


 2012). 
Although the countless researches on Jacobian 

integral and its importance in R3BP as could be 
detected at once from  various Internet sites, no 

analytical expression of JC
(to the best of the our  

knowledge) exist. Therefore, the present paper is 
devoted to establish analytical power series 

expressions of the Jacobi constants 
)(

1,2,3JC
 for 

any desired power of the mass parameter . 
 
2. Material and Methods 
2-1 Equations of motion 

The equations of motion for the planar restricted 
three –body problem of non-dimensional variables 

y,x  while rotating with the mean motion 1n   are 
given as, 
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2,1  are the masses of the primaries, 2,1r  are the 
distance of the third body from the two masses 

2,1 and JC
is the Jacobi constant at the Lagrangian 

equilibrium point L. Here a dot over a symbol 
denotes the derivative with respect to the time t. 
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We can write U in a different form as (Brouwer 
& Clemence 1961) 
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The advantage of this expression for U is that 

the explicit dependence on x and y is removed. 
2.2 Location of Lagrangian equilibrium points 

Due to the gravitational force exerted by the 

primaries, thesystem has an equilibrium point at the apex of an equilateral triangle with a base formed by the line joining the two masses.

to be 4L  and the trailing point 5L
.There are three 

more equilibrium points 321 L and L,L
 which lie 

along the line joining the two masses and are called 

the collinear Lagrangian equilibrium points. The 1L  

point lies between the masses 21  and  , the 2L  

point lies outside the mass 2  and the 3L
 point lies 

on the negative x -axis. 
To find the location Lagrangian equilibrium 

points we have to solve the simultaneous nonlinear 
equations: 
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Using Equations (8) ,(6)and (7),into Equations 

(9) and (`10) we get the equations for the location of 
equilibrium points as : 
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The locations of 54 L and L
 when 

1rr 21 
, which by Equations (5.4)and (5.5) we 

get; 
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Since, 0y  in Equation (12) is the solution of 
Equation (10),implying that the equilibrium points 

321 L and L,L
lie along the x axis and satisfy 

Equation (9). 

The approximate locations of 321 L and L,L
 

are illustrated in the following figures: 
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Fig.1: Location of the Lagrangian equilibrium 

point 1L  
 

From Fig.1 we have 
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Hence substituting into Equation (11) we get: 
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Fig.2: Location of the Lagrangian equilibrium 

point 2L  
 

From Fig.2 we have 
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Hence substituting for 1r  in Equation (11) we 
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Fig.3: Location of the Lagrangian equilibrium 

point 3L
 

 
From Fig.3 we have 

,1rr 21   ,xr 21   ,xr 12   

.1
x

r

x

r 21 









  (17) 

Hence substituting for 2r  in Equation (11) we 
get 
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Equations (14),(16) and (18) are the basic 

equations for analytical expressions for 1,2,3JC
. 

 
3. Analytical Expressions of the Jacobi Constants 

1,2,3JC
 

3.1 Analytical expression of the Jacobi constant 

1JC
 
This expression could be obtained is stepwise 

fashion as follows:  ً◌ 
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2- Expand  this equation as power series in   up to 
15

(say) 
3-Inverting the power series of step 2 using Battin’s 
algorithm [1999] or using Mathematica command 

Inverse Series [ ] to get   as power series of   
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as power 

series in
1/3μ we get for the required analytical 

expression of 1JC
 the form: 
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2-Apply the corresponding steps of Section 3.1 with  

21 r1r  ,we get  for the required analytical 

expression of 12j
C

 the form 
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3.3 Analytical expression of the Jacobi constant 
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2- Expand this equation as power series in   up to 
15 (say) 

3- As in the above two sections and 

with  121 rx  and  r1r  , we get for the 

required analytical expression of 3JC
 the form 
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427 972 821 516288  
 
In concluding the present paper analytical 

power series expressions of the Jacobi constants 

)(
1,2,3JC

 at the collinear Lagrangian equilibrium 

points for the planar restricted three –body problem 
was established for any desired power of the mass 

parameter . 
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