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Abstract: Insulin resistance usually precedes the onset of type 2 diabetes. Therefore, studying factors that may 

influence the development of insulin resistance and their mechanisms of action is of huge importance. The aim of 

the present study was to investigate the effect of dietary fat type on the development of insulin resistance in relation 

to PPARγ activation and leptin concentration. Male Sprague–Dawley rats were assigned into maize starch-fed or 

fructose-fed group. The rats consumed diets containing olive oil, maize oil or sheep tallow for 10 weeks. Serum 

glucose, insulin and leptin concentrations were then determined. HOMA-IR was calculated as an index of insulin 

resistance. PPARγ activation was assessed using a PPRE-based ELISA system. Sheep tallow produced the highest 

HOMA-IR in the maize starch-fed group. In the fructose-fed group, rats consuming olive oil were the only rats to 

show significantly higher HOMA-IR and insulin concentration compared to the maize starch-fed group. Neither 
PPARγ activation nor leptin concentration was affected by dietary fat type. In conclusion, dietary fat type, in the 

maize starch-fed group, altered insulin resistance by mechanisms independent of affecting PPARγ activation or 

leptin concentration with sheep tallow showing a deleterious effect. 
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1. Introduction 

Insulin resistance is a risk factor of developing 

both of prediabetes and type 2 diabetes [1]. The role 

of dietary fat type in the development of insulin 

resistance has been widely studied, yet findings 

produced are rather inconsistent. It is generally 

accepted that saturated fatty acids (SFA) increase the 

risk of insulin resistance [2-5]; nevertheless, some 

studies failed to support this [6-8]. n-3 

polyunsaturated fatty acids (PUFA) may be 

beneficial in animals but not in humans [9, 10], 

whereas the role of n-6 PUFA is more controversial 

[11]. The effect of monounsaturated fatty acids 
(MUFA) is yet to be fully elucidated. Some [12-16] 

but not all [17-19] epidemiological and intervention 

studies have found a favourable impact with respect 

to insulin resistance.  

The mechanisms linking dietary fat quality to 

insulin resistance are not fully understood; 

nonetheless, the effect of dietary fat type is believed 

to be mediated, at least partially, through the fatty 

acid composition of cell membranes [20]. More 

recent experimental data also point towards other 

mechanisms that involve direct regulatory effects on 
transcriptional activity and adipocytokines [21, 22]. 

In this study we examined the effect of dietary fat 

type on the ligand-activated transcription factor, 

peroxisome proliferator-activated receptor gamma 
(PPARγ), and the adipocytokine, leptin.  

PPARγ is a member of the peroxisome 

proliferator-activated receptors (PPAR) family. This 

family of transcription factors has fatty acids and 

lipid-derived compounds as natural ligands [23] and 

it plays crucial role in glucose and lipid metabolism 

[24]. Several lines of evidence, which are reviewed 

by Rangwala and Lazar [25], suggest that PPARγ 

activation causes insulin sensitization. PPARγ 

promotes the storage of fat, increases adipocyte 

differentiation and regulates the transcription of 

numerous genes resulting in insulin sensitization [26, 
27]. In fact, thiazolidinedione derivatives, the most 

extensively employed insulin-sensitizing drugs, have 

been found to possess a high affinity for PPARγ [28]. 

Similarly, it has been found that several fatty acids 

can directly bind PPARγ at physiological 

concentrations [26-28]. Results regarding the potency 

of various fatty acids in activating PPARγ are 

inconsistent [11, 21, 29]. Moreover, discrepancies 

may exist when the effect of diets rather than the 

effect of particular isolated fatty acids is studied [21]. 

Fatty acids in general are considered weak 
activators compared to drugs, which are used once 

the disease has already developed, despite this, fatty 

acids can influence transcriptional activity over 
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decades [21] causing considerable effects on insulin 

sensitivity and this could be of clinical interest.  

Leptin, a product of the ob gene, is speculated to 

play a role in the pathogenesis of insulin resistance as 

it has been found to desensitize the activity of insulin 

most notably in the white adipose tissue [30]. Several 
studies have found that leptin is associated with 

insulin resistance independent of fat mass [31-33]. In 

addition, it has been found that leptin may be one of 

the factors predicting the degree of insulin resistance 

[34] and that baseline leptin concentration can predict 

diabetes [35]. However, the regulation of leptin is not 

completely understood with the majority of data 

suggesting that the size of the adipose tissue is a key 

regulator [36]. The effect of different dietary fat types 

on leptin is not known. Conflicting results have been 

reported by both human and animal studies [22, 37-

41]. 
Therefore, the present study aimed at 

investigating the effect of different dietary fat types 

on the development of insulin resistance as well as 

examining possible mechanisms of action of dietary 

fats including its effect on PPARγ activation and 

leptin concentration using a high-fructose diet rat 

model that supplies olive oil, maize oil or sheep 

tallow as the sole source of fat for 10 weeks. 

2. Material and Methods  

Animals  

Adult male Sprague–Dawley rats (n = 36; body 
weight 141-170 g) were purchased from the 

Experimental Animal Unit of Al-Yarmouk University 

(Irbid, Jordan). The animals were acclimatized for 2 

weeks before the experiment. They were housed 

individually in plastic cages with stainless steel wire-

mesh bottom under controlled temperature (22 ± 2°C) 

and 12–h light–dark cycle. All experimental 

procedures involving animals were approved by the 

Institutional Animal Ethics Committee and conducted 

in compliance with the guidelines for animal use. 

Diets 

Six experimental diets were prepared, three of 
them contained maize starch as the main source of 

carbohydrate (normal diets) but differed in their fat 

type (10% w/w olive oil, maize oil or sheep tallow), 

while in the other three, maize starch was replaced 

with fructose to induce insulin resistance (high-

fructose diets). The experimental diets were freshly 

prepared once a week and stored at −18 °C to avoid 

rancidity. The composition of all experimental diets 

is described in Table 1. Dietary supply of vitamins, 

minerals and protein were in accordance with the 

dietary recommended allowances for rats from the 
American Institute of Nutrition (AIN)-93M [42]. The 

major fatty acid composition of the dietary fats used 

in the experimental diets was determined by gas-

liquid chromatography (GLC) and is shown in Table 

2. 

Experimental protocol 

At the beginning of the experiment, animals 
weighed about 185 g and they were assigned into 

maize starch-fed group, consuming normal diets, or 

fructose-fed group, consuming high-fructose diets. 

Each group was further divided into three subgroups 

(n = 6) differing in the type of fat used (olive oil, 

maize oil or sheep tallow). During the experimental 

period, which lasted for 10 weeks, animals were fed 

ad libitum. Body weight and food intake were 

monitored weekly. On the termination day and after 

an overnight fast, animals were anesthetized using 

chloroform. Blood was collected by performing 

cardiac puncture and serum was isolated and stored 
as multiple aliquots at −18 °C until analysis. Finally, 

epididymal fat pads were excised, rinsed, blotted, 

weighed, immediately immersed in liquid N2 and 

stored at −80 °C until analysis. 

Biochemical analysis 

Serum glucose concentration was determined by 

the glucose oxidase method using a commercial kit 

(Glucose liqicolor, Human Gesellschaft für 

Biochemica und Diagnostica mbH, Germany). Serum 

insulin and leptin concentrations were determined 

using enzyme-linked immunosorbent assay (ELISA) 
kits (Linco, St. Charles, MO, USA). The homeostasis 

model assessment of insulin resistance (HOMA-IR) 

was calculated as an index of insulin resistance using 

the equation of Mathews et al. [43]: 

HOMA-IR = fasting insulin (µU/ml) × fasting 

glucose (mmol/l) / 22.5 

DNA binding activity of PPARγ 

The DNA binding activity of PPARγ was 

determined using the ELISA-based TransAM PPARγ 

transcription factor assay kit (Active Motif, Carlsbad, 

CA, USA). This ELISA-based method detects and 

quantifies PPARγ using a 96-well plate to which an 
oligonucleotide containing the peroxisome 

proliferator response element (PPRE) has been 

immobilized. Active PPARγ binds this PPRE and is 

detected through the use of an antibody directed 

against PPARγ. Addition of a secondary antibody 

conjugated to horseradish peroxidase provides a 

colorimetric readout that is quantified by 

spectrophotometry. 

One hundred fifty milligrams of epididymal fat 

was homogenized manually on ice with 75 µl 

complete lysis buffer (lysis buffer AM1,
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Table 1 Composition of the experimental diets 

Ingredient Normal diets (g/kg) High-fructose diets (g/kg) 

Maize starch 600 - 

Fructose - 600 

Casein  140 140 

Sucrose 60·3 60·3 

fat1   100 100 

Fibre  50 50 

Mineral mix (AIN-93M-MX) 35 35 

Vitamin mix (AIN-93M-VX) 10 10 

DL-Methionine 2·2 2·2 

Choline bitartrate  2·5 2·5 

Tert-Butylhydroquinone 0·008 0·008 

Total energy (kJ/kg) 1748·9 1748·9 

Carbohydrate (% total energy) 64·9 64·9 

Protein (% total energy) 13·6 13·6 

Fat (% total energy) 21·5 21·5 
 

1 Olive oil, maize oil or sheep tallow 

AIN American Institute of Nutrition 

Table 2 Major fatty acid composition of the dietary fats used in the experimental diets 

Fatty acid (g/100g total fatty acids) Olive oil Maize oil Sheep tallow 

10:0 ND ND 0·2 

12:0 ND 0·2 0·3 

14:0 ND ND 3·2 

16:0 13·1 11·2 20·2 

16:1n-7 ND ND 0·3 

18:0 2·6 1·7 16·6 

18:1n-9 69.7 29·5 39·4 

18:2n-6 10·8 53·9 2·8 

18:3n-3 0·6 0·8 0·4 

20:0 0·4 0·4 0·2 

Sum SFA 16·1 13·5 40·7 

Sum MUFA 69·7 29·5 39·7 

Sum PUFA 11·4 54·7 3·2 

Unsaturated fatty acids:SFA ratio  5·0 6·2 1·1 

PUFA:SFA ratio  0·7 4·1 0·1 
 

ND not detected, SFA saturated fatty acids, MUFA monounsaturated fatty acids, PUFA polyunsaturated fatty acids 

 

dithiotheritol and protease inhibitor cocktail, added as 

indicated by the manufacturer’s instructions). After 

standing for 30 min on ice, the homogenates were 

centrifuged at 10,000 g for 30 min at 4 °C. The 
infranatant (below the fat cake) of each homogenate 

was collected and the protein concentration was 

determined using a Bradford assay (Bio-Rad, 

München, Germany). Equal amounts (5 µg) of 

protein were used in the assay according to the 

manufacturer’s instructions.  

Statistical analysis  

Data analysis was performed using statistical 

analysis software (SAS version 9; SAS Institute Inc., 

Cary, NC, USA). Statistical significance was 

assessed by two-way ANOVA followed by the least 

significant difference (LSD) test. Data were 

presented as means with standard errors of the mean 

(SEM). A probability of P ≤ 0·05 was accepted as 
being statistically significant. 

3. Results  

Body weight, weight gain, food intake, food 

efficiency ratio and epididymal fat weight 

In the maize starch-fed group, dietary fat type 

did not induce changes in body weight, weight gain, 

food intake, food efficiency ratio and epididymal fat 

weight (P ≥ 0.05; Table 3). On the other hand, in the 

fructose-fed group, weight gain and food efficiency 
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ratio were lowest in rats consuming sheep tallow (P ≤ 

0.05; Table 3), whereas body weight, food intake and 

epididymal fat weight were not affected by dietary fat 

type (P ≥ 0.05; Table 3). 

Serum glucose and insulin concentrations 

Dietary fat type did not affect glucose 
concentration in either maize starch-fed or fructose-

fed group (P ≥ 0.05; Table 3). Whereas dietary fat 

type influenced insulin concentration in the maize 

starch-fed group with sheep tallow showing a 

significantly higher insulin concentration compared 

to olive oil (P ≤ 0.05; Table 3). In contrast, insulin 

concentration was not influenced by dietary fat type 

in the fructose-fed group (P ≥ 0.05; Table 3). 

Noteworthy, rats consuming olive oil, in the fructose-

fed group, were the only rats to show significantly 

higher insulin concentration compared to the maize 

starch-fed group (P ≤ 0.05; Table 3). 

Insulin resistance as determined by HOMA-IR 

The degree of HOMA-IR in the maize starch-fed 

group was highest in rats consuming sheep tallow 

compared to rats consuming either olive oil or maize 

oil (P ≤ 0.05; Table 3). In a different manner, the 

degree of HOMA-IR in the fructose-fed group was 

significantly higher in rats consuming olive oil 

compared to rats consuming maize oil (P ≤ 0.05; 

Table 3). Noteworthy, in the fructose-fed group, rats 

consuming olive oil were the only rats to show 

significantly higher HOMA-IR compared to the 
maize starch-fed group (P ≤ 0.05; Table 3). 

DNA binding activity of PPARγ and serum leptin 

concentration 

Dietary fat type did not induce modifications in 

DNA binding activity of PPARγ or leptin 

concentration in either maize starch-fed or fructose-

fed group (P ≥ 0.05; Table 3). 

4. Discussions 

High-fructose diet has been widely used in 

animals to induce several metabolic disorders 

including hyperglycaemia, hyperinsulinaemia, 

hypertriglyceridaemia, glucose intolerance and 
insulin resistance [44]. Surprisingly, after 10 weeks 

of high-fructose feeding, hyperinsulinaemia and 

insulin resistance, measured by HOMA-IR, were not 

established in our study except in the rats consuming 

olive oil. This is evident as insulin concentration and 

HOMA-IR were not significantly higher in the other 

two dietary fats compared to their controls in the 

maize starch-fed group. 

In fact, two previous studies which used high-

fructose diet to induce insulin resistance did not show 

significant changes in glucose and insulin 

concentrations after 4 weeks of high-fructose feeding 

despite the presence of insulin resistance, measured 

by the intravenous insulin tolerance test (ITT) [45, 

46]. In another study, which lasted for 8 weeks, high-

fructose diet induced hyperinsulinaemia and insulin 

resistance, measured by the steady-state plasma 
glucose (SSPG) method, without hyperglycaemia 

[47]. In addition, a recent study by Chen et al. [48] 

has found that insulin resistance and 

hyperinsulinaemia developed only after 6-8 weeks of 

fructose feeding but without hyperglycaemia. Further 

feeding with high-fructose diet revealed 

hyperglycaemia without significant 

hyperinsulinaemia. Indeed, the duration of fructose 

feeding besides other factors, such as the fat type and 

content of the diet and the method used to measure 

insulin resistance can affect the metabolic glucose 

and insulin concentrations along with the degree of 
insulin resistance.  

Due to the duration of our study, it might be 

reasonable to expect the absence of hyperinsuliaemia 

and the presence of hyperglycaemia and insulin 

resistance, since after 10 weeks of fructose feeding, a 

progressive state of insulin resistance might cause β-

cells failure and impaired insulin secretion, this was 

previously seen in rats fed high-fructose diet for 10-

12 weeks [48]. However, hyperinsuliaemia and 

insulin resistance were observed only in the rats 

consuming olive oil, where the absence of 
hyperglycaemia, hyperinsuliaemia and insulin 

resistance was observed in the rats consuming either 

maize oil or sheep tallow.  

Even though HOMA-IR is not the gold standard 

method to measure insulin resistance, as it relies only 

on the fasting glucose and insulin concentrations, and 

even that some data suggest that it offers little or no 

advantage over the fasting insulin concentration 

alone [49], it is still questionable whether the high-

fructose diet efficiently induced insulin resistance in 

the fructose-fed group and this might imply that it is 

not a reliable group to further study the effect of  
dietary fats, therefore, the following discussion will 

focus on the maize starch-fed group. 

In the maize starch-fed group, sheep tallow 

nicely showed a significant higher HOMA-IR. 

Indeed, in terms of dietary fat type, it is accepted that 

SFA, relative to MUFA and PUFA, appear to be 

more deleterious with respect to fat-induced insulin 

resistance [5]. The results of human studies 

consistently show that the fatty acid composition of 

body tissues (serum lipids, phospholipid in 

erythrocyte membranes, triglyceride in adipose 
tissue, phospholipid in skeletal muscle membranes) 

reflects, at least in part, the fat composition of the 

habitual diet [50]. Indeed, when newly detected 

noninsulin-dependent diabetes mellitus patients were
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Table 3 Body weight, weight gain, food intake, food efficiency ratio, epididymal fat weight and metabolic variables 

for rats fed olive oil, maize oil and sheep tallow for 10 weeks 

 

Maize-starch-fed group Fructose-fed group 

Olive oil Maize oil 
Sheep 

tallow 
Olive oil Maize oil 

Sheep 

tallow 

Body weight (g) 
385·9  

 11·5 

377·0  

 11·5 

389·5  

 6·5 

372·3  

 10·2 

383·0  

 2·9 

342·9  

 16·3 

Weight gain (g) 
200·3a  

 12 

191·6a  

 11·4 

203·9a  

 6·4 

187·3a  

 8·2 

197·7a  

 4·5 

157b  

 15·3 

Food intake (d/day) 
16·9  

  0·4 

16·3  

  0·4 

17·4  

 0·2 

16·5  

  0·4 

16·3  

 0·2 

16·1  

  0·5 

Food efficiency ratio1 0·170a 

0·007 

0·170a 

0·007 

0·170a 

0·005 

0·160a 

0·004 

0·170a  

 0·005 

0·140b  

 0·009 

Epididymal fat weight (g) 
7·8  

 1·0 

5·1  

 0·6 

7·0  

 0·3 

6·3  

 1·0 

5·6  

 0·5 

5·3  

  0·6 

Glucose (mmol/l) 
4·75  

 0·35 

4·69  

 0·56 

7·00  

 0·70 

6·88  

 0·50 

6·54  

 0·73 

7·92  

 0·85 

Insulin (µU/ml) 
11·55c  

 1·61 

12·42bc  

 3·09 

18·49ab  

 2·16 

21·18a  

 2·65 

15·12abc  

 1·24 

15·59abc 

  2·70 

HOMA-IR 
2·53c  

 0·50 

2·79c  

 0·93 

5·38ab  

 0·87 

6·48a  

 0·91 

3·69bc  

 0·32 

5·32ab  

 1·13 

leptin (ng/ml) 
5·60  

 1·17 

3·47  

 0·63 

5·22  

 0·44 

6·17  

 1·28 

4·87  

 0·57 

3·31  

 0·59 

PPARγ activation (OD) 
0·022  

 0·006 

0·034  

 0·007 

0·051  

 0·015 

0·056  

 0·012 

0·044  

 0·007 

0·051  

 0·012 

Values are means  SEM (n = 6) 
a,b,c Mean values within a raw with unlike superscript letters are significantly different (P ≤ 0.05) 
1 Weight gain/food intake 
HOMA-IR homeostasis model assessment of insulin resistance, PPARγ peroxisome proliferator-activated receptor 

gamma, OD optical density 

 

investigated and compared with healthy controls, 

they had considerably higher proportions of SFA and 

lower proportions of linoleic acid in the serum 

cholesterol esters [51]. Subjects with glucose 

intolerance showed an intermediate situation [51]. 

Therefore, substituting SFA with unsaturated fatty 

acids may produce some health benefits, these 

benefits include; improved insulin sensitivity, a 

reduction in the abdominal subcutaneous fat area and 
a higher membrane fluidity [52-54]. In our study, 

olive oil and maize oil representing MUFA and 

PUFA respectively had the same effect on HOMA-

IR, in the maize starch-fed group, and both showed 

better insulin sensitivity compared to sheep tallow 

(representing SFA). 

The biochemical and molecular processes 

linking dietary fat to insulin resistance remain 

unresolved. In this study we examined the effect of 

dietary fat type on DNA binding activity of the 

transcription factor PPARγ. Many fatty acids and 
their derivatives are ligands of PPARγ [26, 27]. 

Results regarding the potency of various fatty acids 

in activating PPARγ are inconsistent [11, 21, 29], but 

it has been suggested that the activation of PPARγ by 

fatty acids increases with chain length and degree of 

unsaturation of the fatty acid [55]. Therefore, SFA 

may be considered poor ligands of PPARγ, and 

because PPARγ activation results in the up-regulation 

of insulin sensitization [25], a decreased activation of 

PPARγ by SFA may lead to reduced insulin 

sensitivity. Nevertheless, if this was the case in our 

study, differences in PPARγ activation between 
different dietary fat types, in the maize starch-fed 

group, would have been observed. The comparable 

effects of the different dietary fat types used in this 

study suggest that the deleterious effect of sheep 

tallow was independent of PPARγ activation. 

Conversely, the comparable effects of the different 

dietary fat types could be due to the inability to 

isolate the effect of particular fatty acids when the 

effect of diets containing olive oil, maize oil or sheep 

tallow, which are blend of different fatty acids, is 

studied. 
In the maize starch-fed group, dietary fat type 

did not affect leptin concentration which is consistent 

with several studies [22, 40] and contrast others [39, 
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41]. Indeed, the percentage of dietary fat used, the 

duration of each study, animal vs. human studies and 

the complex regulation of leptin may have 

contributed to the inconsistency produced by 

different studies. As a matter of fact, dietary fat can 

directly or indirectly regulate leptin. ob gene 
expression, adiposity and insulin can be involved in 

the dietary fat regulation of leptin. In this study, ob 

gene expression was not examined, but the activation 

of PPARγ, a transcription factor that represses ob 

gene expression [28] and thus may contribute to a 

lower leptin concentration, was. We have found that 

PPARγ activation, in the maize starch-fed group, was 

not affected by dietary fat type; in a similar 

behaviour, there were no changes in leptin 

concentration. 

It has been demonstrated that dietary fat type 

can have different regulatory effects on body-fat 
accumulation, adipogenesis and fat oxidation [41]; 

besides, circulating leptin is generally positively 

correlated with adiposity in humans and rodents [41]. 

We have found that dietary fat type, in the maize 

starch-fed group, did not significantly influence body 

weight or epididymal fat weight which is a better 

predictor of circulating leptin than either 

retroperitoneal or peritoneal depots [40]; therefore, 

this may have contributed to the comparable leptin 

concentrations observed in our study. 

The role of hormones in leptin regulation is 
important. A prime candidate for such regulation is 

insulin. Insulin can stimulate ob gene expression and 

leptin production [56, 57]. However, changes in 

insulin status produced by dietary fat type, in the 

maize starch-fed group, did not influence leptin 

concentration in our study. It can be speculated that 

the effect of insulin to stimulate glucose uptake and 

metabolism is more important than the direct effect 

of insulin per se in regulating leptin secretion. 

Otherwise, it can be suggested that the presence of 

frank hyperinsulinaemia is required for an observed 

shift in circulating leptin. In addition, it is important 
to point out that serum analyses were carried out after 

an overnight fast; it is well known that fasting results 

in fall in circulating leptin [58]. Therefore, this 

fasting-induced effect should be taken into 

consideration.  

Finally, we have shown that, in the maize starch-

fed group, dietary fat type altered insulin resistance 

by mechanisms independent of affecting PPARγ 

activation or leptin concentration with sheep tallow 

showing a deleterious effect. 
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