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1. Introduction 

Mixture models play an important role in many 

applicable fields, such as medicine, psychology, 

cluster analysis, life testing, reliability analysis and 

etc. Mixtures of lifetime distributions occur when 

two different causes of failure are presented, each 

with the same parametric form of lifetime 

distributions. Many authors have studied the finite 

mixtures of lifetime distributions. Among them are 

Teicher [32], Titterington et al. [33], McLachlan and 

Basford [23], Lindley [20], McCulloch and Searle 

[22]. The mixed Weibull distribution as a model for 

atmospheric data was proposed by Falls [15], who 

used the method of moments for obtaining the 

estimators from a complete sample. The maximum 

likelihood estimation of parameters in mixed Weibull 

distribution with equal shape parameter from 

complete and censored Type I sample was considered 

by Ashour and Jones [9]. Jaheen [16] used the 

maximum likelihood of mixture distribution. Nassar 

and Mahmoud [26], Nassar [25] presented statistic of 

characteristic this models. One of those who were 

interested in statistical inference about mixtures 

distribution parameters Rider [30], Al-Hussaini [6]. 

Chen et al. [13] considered the Bayes estimation for 

mixtures of two Weibull distribution under Type I 

censoring. They obtained Bayes estimate 

approximately for mixture distribution consist of two 

models from Weibull distribution based on Type II 

censoring. Al-Hussaini et al. [7] and Kao [18] studied 

properties of mixture distribution consisting of two 

models from Gompertz and parameters estimate by 

used maximum likelihood and Lindley [19] method 

for Bayes estimate and John [17] used moment 

method and maximum likelihood estimate of 

parameters for mixture distribution consist of two 

models from gamma. Abu-Zinadah [3] presented 

mixture consists of k models from exponentiated 

Pareto distribution for lifetime distribution and found 

maximum likelihood estimate and Bayes parameters 

of mixture based on Type II censoring. Bakoban [11] 

studied two parameters of mixture from 

exponentiated gamma distribution, reliability and 

failure rate function by maximum likelihood estimate 

and Bayes by used Lindley approximately. Badr and 

Shawky [10] studied two parameters for mixture of 

exponentiated Frechet distribution. 

  Record values and the associated statistics are of 

interest and importance in many areas of real life 

applications involving data relating to meterology, 

sport, economics, athletic events, oil, mining surveys 

and lifetesting. Many authors have studied records 

and associated statistics. Among them are Ahsanullah 

[4-5], Resnick [29], Raqab and Ahsanullah [28], 

Nagaraja [24], Arnold et al. [8], Ragab [27], Abd-

Ellah [1-2], Sultan and Balakrishnan [31] and 

Mahmoud et al. [21] and El-Sagheer [14]. 

   Let ��, ��, … , �� be a sequence of  independent and  
identically distributed  (iid) random variables with 

cdf F(x) and pdf f(x). Set �� = max��, ��, … , ��� , � ≥ 1, we say that �� is an 
upper record value of this sequence and denoted by ���� if �� > ����, � > 1. For more detail and 

references see Nagaraja [24], Ahsanullah [5] and 

Arnold et al. [8]. 

     In this paper, the basic idea of  Lindley [19] 

approximate form Bayes estimation is used in the 

case of mixtures of two EFD based on upper record 

values. The approximate Bayes estimates are 

obtained and compared with their corresponding 
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maximum likelihood estimates for different sample 

size.  

 

2. Mixture of k components exponentiated Frechet 

distribution 

Assuming that ����, ����, … , ���� are the first 
n upper record values arising from a sequence {��} of 
independent and identically distributed (iid) random 

variables from EFD with pdf as (see, Titterington et 

al. [33] ��� = ∑ ���������� ,                                     (1) 
where ����, � = 1,2, … , ! is the�"# pdf components 

from finite mixture distribution with k components 

from exponentaited Frechet distribution with shape 

parameter$ = 1, �� mixing proportion satisfies the 

conditionals 

 ∑ �� = 1,			0 ≤ �� ≤ 1���� , 
���� = �����(�")*1 − (�")*�,-��,			� >																																		0,			�� > 0.	                              (2) 
The cumulative distribution function (cdf) of 

finite mixture with k components from exponentiated 

Frechet distribution with $ = 1 as /�� = ∑ ��/������� ,                                (3) 

where/��� is the�"# cdf components, /��� = 1 − 1 − (�")*�,- , � > 0,			�� > 0. (4) 
Then, the reliability function of mixture 

distribution 0�� = 1 − /�� = ∑ ��0���,����                 (5) 

where 0��� = 1 − (�")*�,- ,			� > 0, �� > 0.        (6) 
The failure rate for any distribution is ℎ�� = 2"�

3"�,                                                   (7) 
thus, the failure ratefor mixture distribution of k 

component is 

ℎ�� = ∑ ��ℎ������� , ℎ��� = 2-"�3-"�.             (8) 
Now, when  ! = 2, the pdf,cdf,  reliability and 

failure rate functions for finite mixture of two 

components from EFD, respectively (see, Badr and 

Shawky [8] are  

��� = ���(�*4���1 − (�*4�,*�� +
1 − ����(�*4��� 61 − (�*47,8�� , � > 0, ��, �� > 0,                                                                             

                                                                       (9) 

/�� = � 91 − 61 − (�*47,*: + 

         1 − �� 91 − 61 − (�*47,8:,           (10) 
0�� = � 61 − (�*47,* + 1 − p� 61 − (�*47,8, (11) 

ℎ�� = 2"�
3"� =

<,*=)*4")8��=)*4�>*)*?��<�<,8")8=)*4��=)*4�>8)*
<��=)*4�>*?��<���=)*4�>8 ,                          

                                                                  (12) 

where �� = � and �� = 1 − ��. 
 

3. Maximum likelihood estimator 

Let ��, ��, … , �� be a sequence of  iid random 

upper record values from mixture EFD with cdf F(t) 

and pdf f(t) as ����� = ������(�"@)*1 − (�"@)*�,-��,							�� > 0,																																										�� > 0                              (13) 
/���� = 1 − 61 − (�"@)*7,- , �� > 0, �� >																														0,			� = 1, 2.                                 (14) 
Then, the likelihood function (see, Arnold et al. 

[8]) can be written as follows 

ABC; �E = ���; C�∏ 2"@;C�3"@;C�
������ ,                 (15) 

where C = ��, ���, by taking the logarithm of (15), 

we get 

 GBC|�E = logLABC|�EM = ∑ logN���; C�O −����																											∑ log	N0��; C�O������ .                        (16) 
Assuming that the parameters �� and ��	are 

unknown and p is known, the likelihood equations 

are given by G� = PQ
P,- =

∑ R �
2"@�

P2-"@�P,- S − ∑ N �
3"@��

P3-"@�P,- O���������� = 0.         (17)             
Differentiation (13) for ��, we get T�����T�� = ������(�"@)*B1 − (�"@)*E,-�� 
                          {logL1 − (�"@)*M + ����} 
                = �����!����,	                              (18)                                           
 !���� = V��� + ���� and  
 V��� = logL1 − (�"@)*M.                             (19)                        

Similarly, from (14), we have 

 P3-"@�P,- = 0����V���.                                    (20)                                                                           
Therefore 

 G� = ∑ !����W���� − ∑ W�∗���V���,����������                                    � = 1, 2,	  (21) 
where W���� = 2-"@�2"@� ,    W�∗��� = 3-"@�3"@� . 
 

The solution of the two nonlinear likelihood 

equations G� = 0 and G� = 0 (from (17)) yields the 
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MLEs �Y�,Z and �Y�,Z for two parameters ��, ��, 
respectively. The MLEs of 0�� and ℎ�� are given, 
respectively, by (11) and (12) after replacing �� and �� by their corresponding MLEs �Y�,Zand �Y�,Z. 

 

 

4. Bayes estimation 

Let [�and [� be independent random variables. 

The joint prior density for random vector	C =[�, [��, is thus given by \C� = \��, ��� = \���\���.             (22) 
Let [� be  follows Gamma distribution with 

shape parameter ]� and scale parameter$ = 1, i.e. ^B]� , 1E, the pdf for [� is 
\�B��E = ,-_-)*=)>-ГNa-O ,				]� > 0,			�� > 0.         (23) 
Then, the joint prior probability density function 

for random vector C is 
 

\C� = 1ГN]�OГN]�O ��a*����a8��(�,*?,8�,		 
            		�� > 0, ]� > 0, � = 1, 2.                (24)                          
 

It is well known that the posterior density 

function of bgiven the observation (data), which is 

denoted by cC|d�, is given as cC|d� = eC|d�fC�
g eΩ C|d�fC�iC,						                      (25)                                                                                              

where AC|d� is given by (15), \C� by (24) and Ω is 

the region in the CjCk plane on which the posterior 

density cC|d� is positive. 
The Bayes estimator for VC�, under squared 

error loss function, is given by 

Vl = mNVC|n = d�O = o VC�cC|d�pCΩ  

           = g qC�eC|d�fC�iCΩ
g eC|d�fC�iCΩ

.                          (26)                                                                                               
The ratio of the integrals in (26) may thus be 

approximated by using a form due to Lindley [18], 

which reduces in the case of two parameters, to  the 

form Vl ∗ = V∗C� + r
�+ s�t�� + s�t�� +																												�� NGuv∗ w�� + G��∗ x�� + G��∗ x�� + Gvu∗ w��O,	                        

                                                                    (27) 

where y = ��, ���,				t = ∑ ∑ V��z��,�������� z�� =(i, 

j)th element in the matrix ∑ , G = logNAC|d�O , ∑ = −N{C�O�� , {C� =
LG��M,			G�� = P8Q

P,-P,@.	 For | ≠ �,t�� = V�z�� +
V�z��, w�� = BV�z�� + V�z��Ez��, x�� = 3V�z��z�� +

V�Bz��z�� + 2z���E, s� = P�
P,@ , s = logN\C�O , Guv∗ =

PQ**P,* , PQ*8P,* , G��∗ = PQ*8P,8 , Gvu∗ = PQ88P,8 .                          (28) 
Now, we apply Lindley's form (27), we first 

obtain the elements z��, |, � = 1,2as follows 

								z�� = − Q88� , z�� = − Q**� , z�� = z�� = Q*8� ,                                                             
                                                                             (29) 

where � = G��G�� − G��� ,                                         (30) 

                                                                                             G� = PQ
P,* ={∑ W����!���� − ∑ W�∗���V���}���������� ,            (31)                                   

 G� = PQ
P,8 ={∑ W����!���� − ∑ W�∗���V���}����������                                                          

                                                                   (32) G�� = G�� = −{∑ ���� + ∑ ∅���},				����������          

                              | = 1,2, . . . , �,               (33) 
                                      ���� = !����!����W����W����,		 
        ∅��� = W�∗���W�∗���. 
Differentiate (21)with respect to��, we get 

 

G�� =	 TG�T�� = �NW����!�����
�

���
+ !��������������

− W����!�������������  

−∑ Nq"@�3� -"@�3"@�3"@� − q"@�3-"@�3� "@�
B3"@�E8 O������ .                                                                         

                                                                     (34) 

Differentiate (19), (1), (20) and (5) for ��we get, 

respectively, P�-"@�P,- = −����,                                            (35)                                                                                                 
 P2"@�P,- = �� P2-"@�P,- = �������!����,              (36)  
                                                                              P3-"@�P,- = 0����V���,                                   (37)   
                                                                                                            

 
P3"@�P,- = ��0����V���.                                                                            
                                                                     (38) 

By using (35) – (38)  and (34), we get 

G�� = −�� ��NW��������
�

���
− !��������������

+ �������W����!��������� � 
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+∑ Nq8"@�3-"@�3"@� − q8"@�3-8"@�<-
B3"@�E8 O}������ ,                                                                           

                                                                     (39) 

 G�� =−��{∑ ����� + ∑ W�∗���V���������}���������� ,                                                            

                                                                     (40) 

for	� = 1, 2,			� = 1,2 and� ≠ �, but 1 − ��W���� =��W����, 
where ����� = W�������� − !�����W������W����, W����

= ��������� , W�∗��� =
0����0��� , 

 

����� = 1 − ��W�∗���, 			���|� = �����/��� ,			� = 1, 2. 
Then G�� = PQ*P,* =−��{∑ ����� − ∑ W�∗���V���������}���������� ,                                               

                                                                  (41) G�� = PQ8P,8 =−��{∑ ����� − ∑ W�∗���V���������}���������� ,                                               

                                                                 (42) Guv∗ = PQ**P,* =−��{∑ P�*"@�P,* − ∑ V���� �W�∗��� P�*"@�P,* +����������
����� P�*∗"@�P,* � ,                                                  (43) 

Gvu∗ = PQ88P,8 =−��{∑ P�8"@�P,8 − ∑ V���� �W�∗��� P�8"@�P,8 +����������
����� P�8∗"@�P,8 � .                                                   (44) 

Differentiate (33) for��, we obtain G��∗ = PQ8*P,* =−����{∑ P�"@�P,* − ∑ V���� P∅"@�P,* }���������� ,                                                          

                                                                (45) G��∗ = PQ*8P,8 =−����{∑ P�"@�P,8 − ∑ V���� P∅"@�P,8 }���������� , for � ≠ �,
�, � = 1, 2,                                                      (46) 
where T�����T�� = ����TW����T�� � − 2���uW����

+ ��W����{!�����TW����T�� 	� 
+2W����!���� P�-"@�P,- }, 

thus 

TW����T�� = ���T����� T��� − �����T���� T���⁄⁄
�����= !����W������W����, TW�∗���T�� = V���W�∗��������. 

 

4.1 Bayes estimation under quadratic loss function 

Estimation of two parameters 

The two parameters ��, ��can be estimate by 

using Lindley approximation form (27), as follows 

 

Bayes estimation of parameter Cj 
Put �� = V∗�� in (27) for values|, � = 1,2 as 

follows 

V�∗ = TV∗
T�� = 1, V�∗ = ∂φ∗

∂�� = 0,		 
V��∗ = ∂�V∗

T��T�� = 0, V��∗ = V��∗ = 0 
 t = V��∗ z�� + V��∗ z�� + V��∗ z�� + V��∗ z��	,				t = 0. 

By using (28), we get t�� = V�∗z�� + V�∗z��,			t�� = σ��, S�� = σ��, w�� = V�∗z�� + V�∗z���z�� = z��� , w�� = z��z��,  x�� = 3V�∗z��z�� +V�∗z��z�� + 2z��� � = 3σ��σ��, x�� = 3V�∗z��z�� + V�∗z��z�� + 2z��� � =z��z�� + 2z��� , 

s = ln R 1ГN]�OГN]�O ��a*����a8��(�,*?,8�S , s� =
TsT��

= ]� − 1��� − 1, 
s� = P�

P,8 = a8���,8 − 1.                                                                                                         
                                                                  (47) 

By using pervious relations (43) - (47) and (27), 

we get the Bayes estimator for�� under quadratic loss 
function, �Y�,�. 
Bayes estimation of parameter	Ck 

Put �� = V∗�� in (27) for values|, � = 1,2, as 
follows 

V�∗ = TV∗
T�� = 0,			V�∗ = TV∗

T�� = 1, V��∗ = 0,			V��∗ = 0,
V��∗ = V��∗ = 0, t = V��∗ z�� + V��∗ z�� + V��∗ z�� + V��∗ z��	,				t = 0, 

then 

 t�� = V�z�� + V�z��	 = z��, t�� = V�z�� +V�z�� = z��, w�� = z��z��	,				w�� = z��� , x�� = σ��σ�� + 2σ��� , x�� = 3σ��σ��. 
As before, we can get the Bayes estimator for	�� 

under quadratic loss function, �Y�,�. 
Bayes estimation of reliability function 
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Put V∗�� = 0��� in (27) for values|, � = 1,2, 
where 0��  defined by (5), then V�∗ = ��0���V��, V�∗ = ��0���V��,V��∗ = ��0���V���, V��∗ = ��0���V���, V��∗ = V��∗ = 0, t= V��∗ z�� + V��∗ z��, 
then t�� = V�∗z�� + V�∗z��	 = N��0���V��Oz�� + N��0���V��Oz��, 

 t�� = N��0���V��Oz�� + N��0���V��Oz��,  w�� = BV�∗z�� + V�∗z��Ez�� , w�� = N��0���V��Oz��� + N��0���V��Oz��z��, w�� = N��0���V��Oz��� + N��0���V��Oz��z��, x�� = 3V�∗z��z�� + V�∗Bz��z�� + 2z���E, x��= 3N��0���V��Oz��σ��+ N��0���V��Oz��z�� + 2z��� �, x�� = 3N��0���V��Oz��z��+ N��0���V��Oz��z�� + 2z��� �. 
As before, we can get the Bayes estimator 

for	0�� under quadratic loss function, 0Y�. 
 

Bayes estimation of failure rate function 

PutV∗�� = ℎ��in (27) for values|, � = 1,2, 
where ℎ��  defined by (7), then V�∗�� =<-3"��8 {0������!��� − ���0���V��}. 
Then V��∗ = <-3"��� Nm� − m�O, 
where m� = B0��E�N0��!�������!��� − 0���������� +������!���0���V��− B0��E�V��L������!���+ 0���V��M, m� = 2��0��0���V���0������!���− ���0���V���, ���, ����, 0��, 0���, !���are defined in (1), 
(2), (5), (6) and (19), for values|, � = 1,2, we get 

V��∗ = N�*∗��8∗O3"��� ,  m�∗ = �
B3"�E8 N���������!���0���V�� −��������!���0���V���, m�∗ 	= − �

B3"�E� �������!���0�� −��0������V�����0���V��O. 
As before, we can get the Bayes estimator 

for	ℎ�� under quadratic loss function, ℎY�. 
 

4.2 Bayes estimation under LINEX loss function 

On the basis of the LINEX loss function, see 

Zellner [34] and Calabria and Pulcini [12],  We 

define the Bayes estimator under LINEX of c =cC�,	whereC is unknown parameter, as follows c�e = − �
  lnNm(�¡ |d�O ,				x ≠ 0,              (48) 

where 

m(�¡ |d� = g (� ¡ABC|�E\C�pCΩ
g ABC|�E\C�pCΩ

. 
Let V∗θ� = (� ¡,�, we can use Lindley 

approximation form (27) for getthe estimators of 

unknown parameters as follows 

 

Bayes estimation of parameter Cj 
Put V∗C� = (� ,* in (27), we get 

		V�∗ = Pq∗
P,* = −x(� ,* , V�∗ = Pq∗

P,8 = 0, 	V��∗ =
x�(� ,* , V��∗ = 0, for values	|, � = 1, 2. 

				V��∗ = P8q∗
P,@P,- = 0,		t = 0, t�� = V�∗z�� +

V�∗z��, 		t�� = −x(� ,*z��,			t�� = −x(� ,*z��. 
Then 			w�� = BV�∗z�� + V�∗z��Ez�� , w�� =−z��� x(� ,* ,			w�� = −z��z��x(� ,*, 				x�� = 3V�∗z��z�� + V�∗Bz��z�� + 2z���E, x��= −3σ��σ��c	(� ,* , x�� = −z��z�� + 2z��� �x(� ,* . 

By using the pervious  relations and (48), yield 

the Bayes estimator under LINEX loss function, �Y�,e 
of ��. 

 

Bayes estimation of parameter Ck 
Put V∗C� = (� ,8 in (27), we get 

			V�∗ = Pq∗
P,* = 0, V�∗ = Pq∗

P,8 = −x(� ,8 , V��∗ =
¤8¥∗
¤¦*8 = 0, 	V��∗ = P8q∗

P,88 = x�(� ,8,for values				|, � =
1,2, 

			V��∗ = P8q∗
P,*P,8 = 0, 	t = 0,			t�� = V�∗z�� +V�∗z�� , 	t�� = −x(� ,8z��, t�� = −x(� ,8z��. 

Then 			w�� = V�∗z�� + V�∗z���z��, w�� = −x(� ,8z��z��, w�� = −c(� ,8z��� , x�� = 3V�∗z��z�� + V�∗Bz��z�� + 2z��� E, x��= −c(� ,8z��z�� + 2z��� �, x�� = −3c(� ,8z��σ�� 
As before, we can get the Bayes estimator 

for��under LINEX loss function, �Y�,e. 
 

Bayes estimation of reliability function 

Put	V∗C� = (� 3"� in (27) for values	|, � =1,2, where 0��  defined by (5), then 
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				V�∗ = Pq∗
P,- = −x��(� 3"�0���V��,		V��∗ =

P8q∗
P,@P,- = x�����0���0���(� 3"�V����, 

			V��∗ = P8q∗
P,-8 =

−x��BV��E�0���(� 3"�{��0��� + 1	},			t�� =V�∗z�� + V�∗z��, 		t�� = −x(� 3"�V��N��0���z�� + ��0���z��O, 		t�� = −x(� 3"�V��N��0���z��	 +��0���z��O. 
Then 		w�� = −x(� 3"�V��N��0���z��� 	+ ��0���z��z��O, w�� = −x(� 3"�V��N��0���z��� +��0���z��z��O, 				x�� = 3V�∗z��z�� + V�∗Bz��z�� + 2z��� E, 			x�� = −x(� 3"�V��N3z��z����0���+ ��0���Nz��z�� + 2z��� O, 			x�� = −c(� 3"�V��N3z��z����0��� +z��z�� + 2z��� ���0���O. 
As before, we can get the Bayes estimator 

for	0(t)  under LINEX loss function, 0Ye��. 
 

Bayes estimation of failure rate function 

Put V∗C� = (� #"�in (27) for values	|, � = 1,2, 
where ℎ��  defined by (7), then 

			V�∗ = Pq∗
P,- = −  <-3"��8 (� #"�§�, 

where 						§� = �0������!��� − ���0���V���, 			V��∗
= − x��		0���¨ (� #"�{B0��E�N������0�� 6!���7

�

− 0����������} 

+��!�������0���V��O − x��§��
B0��E�− 2	§���0���V��}, 

		V��	∗ = −x���� (� #"�0���¨ {0���N
−x§�§�
B0��E�+ ����!���0���V��− φ��0�������!���O −2§�0��0���V��}, 			t�� = V�∗z�� + V�∗z��,  

	t�� = −x(� #"�0���� {��§�z�� + ��§�z��}, 
 

t�� = −  =)©ª4�
3"��8 {��§�z�� + ��§�z��}, 		w�� =V�∗z�� + V�∗z���z�� 		w�� =−  =)©ª4�

B3"�E8 {��§�z��� + ��§�z��z��}, 		w�� =
−  =)©ª4�

3"��8 {��§�z��� + ��§�z��z��}, 
 x�� = 3V�∗z��z�� + V�∗Bz��z�� + 2z��� E, 
		x�� = −x(� #"�0���� {3��§�z��z��+ ��§�z��z�� + 2z��� �}, 			x�� =−  =)©ª4�

3"��8 {3��§�z��z�� + ��§�z��z�� + 2z��� �}. 
As before, we can get the Bayes estimator for ℎ��  under LINEX loss function, ℎYe��. 
 

5. Simulation Study 

We obtained, in the above sections, MLEs and 

Bayesian estimates of the vector parameters C =��, ���, reliability function 0�� and failure rate 

function	ℎ�� for mixture of EFD with two 

components. We can obtain Bayes estimation by using 

quadratic and LINEX loss functions. The MLEs are 

obtained as well. In order to assess the statistical 

performance of these estimates, a simulation study is 

performed for samples of different sizes. We can 

usethe root meansquare errors(RMSEs) and biases 

compare between these estimators. The following 

algorithm will be used to generate the samples of 

upper record values and then calculate the estimators: 

1. Determine optional values of two prior 

parameters	]�, ]�, then generate two random 

variables	��, �� from Gamma distributions. 

2. Generate random sample of size n from 

uniform distribution«0,1�. 
3. Generate random sample of size n from 

mixture exponentiated Frechet distribution, � = 0.5, ��, ��are obtained from step 1, where 

cdf is obtained in (10). 

4. The MLEs of C = �Y�,Z, �Y�,Z�of the 

parameters vector	y = ��, ��� obtained by solving, 
iteratively, the equation G� = ∑ L!���W����M − ∑ LW�∗���V���M,������ 	| =����1,2, … , �, � = 1, 2. 

The estimators 0YZ�v� and ℎYZ�v� of the 

functions 0�� and h(t) are then computed at some 

values �v. 
5.The Bayes estimates under quadratic loss 

function for parameters vector �Y� = B�Y�,�, �Y�,�E, 
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0Y® and ℎY® by used Lindley approximately 

defined by (4.2) taking into account the compensation 

necessary each time to calculate parameters � = ��, ���,	0��and ℎ��	which previously 

contained in section5. We calculate Bayes estimators 

under LINEX loss function of parameters �Ye =�Y�,e, �Y�,e�, 0Ye and ℎYe by used the necessary 

compensation and mentioned in section6 and 

compensation in �Ye = − �
  ln	Nm,B(� ,EO. 

6. The above steps (2-5) are repeated 1000 times, 

then we calculated biases and the root mean error 

square root for different sample sizes n. In all above 

cases the prior parameters ]� = 2, 	]� = 1.5	which yield the values �� = 0.8107, �� = 0.384095 are preparing two real 

values. The true values of R(t) and h(t) when � = �v =0.75, are computed to be 00.75� = 0.834717, ℎ0.75� = 0.784527. 
The root mean square error (first entries) and the 

biases value ( second entries) are displayed in Tables 

1-4. The computational results were computed by 

using ³´�ℎ(µ´�|x´	9.0. 
 

6. Concluding Remarks 

Based on results which obtained in Tables 1-4, 

we compared between MLEs, Bayes estimators under 

quadratic and LINEX loss functions for parameters, 

reliability and failure rate functions for mixture EFD 

with two components of EFD in different sampling of 

upper record values. The Bayes estimators are derived 

in approximate forms using Lindley's method. 

 

 

Table1: Estimated RMSEs (first entries) and 

biases(second entries) of different estimators for �� �Y�,e:	x= 2.5 �Y�,� �Y�,Z � 
0.02321 0.00457 0.29473 5 

-0.24576 -0.62845 -0.31527 

0.01290 0.00385 0.26178 10 

-0.63566 -0.66252 -0.66243 

0.01268 0.00108 0.23452 15 

-0.63983 -0.80962 -0.69235 

0.01238 0.00107 0.13698 20 

-0.64357 -0.87316 -0.78436 

 

 

 

 

 

 

Table2: Estimated RMSEs (first entries) and biases 

(second entries) of different estimators for �� �Y�,e:	x= 2.5 �Y�,� �Y�,Z � 
.19188 .00834 0.02237 5 

-0.89326 -0.81967 -0.91843 

.01222 .00807 0.01098 10 

-0.92115 -0.85631 -0.95431 

.01219 .00563 0.01095 15 

-0.93522 -0.89564 -0.94852 

.01208 .00358 0.01087 20 

-0.95421 -0.94643 -0.96844 

 

 

 

 

Table3: Estimated RMSEs (first entries) and biases 

(second entries) of different estimators for R(t) 0Ye��:	x= 2.5 0Y��� 0YZ�� � 
0.25154 0.60427 0.06275 5 

-0.59596 -0.25212 -0.18943 

0.17986 0.57747 0.05008 10 

-0.60342 -0.27963 -0.22387 

0.14953 0.43275 0.02003 15 

-0.62745 -0.49387 -0.44769 

0.14485 0.41872 0.01549 20 

-0.66894 -0.53643 -0.45987 

 

 

Table4: Estimated RMSEs (first entries) and biases 

(second entries) of different estimators for h(t) ℎYe��:	x= 2.5 ℎY��� ℎYZ�� � 
0.26053 0.12594 0.25632 5 

-0.74578 -0.28801 -0.44823 

0.25976 0.12068 0.24017 10 

-0.75985 -0.44236 -0.55483 

0.24473 0.01887 0.23815 15 

-0.76682 -0.56822 -0.60832 

0.23986 0.01782 0.15489 20 

-0.77659 -0.66548 -0.68549 

 

Our observations about the results are stated in 

the following points: 

1. In Table 1, the Bayes estimator under 

quadratic loss function is best from interims value of 

mean square error root comparison of Bayes estimator 

under linex loss function and maximum likelihood 

estimator, respectively, for all value in this table. In 

terms biased value the best estimator for Bayes 

estimator under quadratic loss function comparison of 

the maxi- mum likelihood estimator and Bayes 
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estimator under linex loss function, respectively, for 

all value in this table. We note that, from the Table, 

data decreeing of mean square error root and biased 

value at increasing for sample size in this Table.2. In 

Table 2, the Bayes estimator under quadratic loss 

function is best from interims value of mean square 

error root comparison of maximum likelihood 

estimator and under linex loss function, respectively, 

for all value in this table. In terms biased value the 

best estimator for the maximum likelihood estimator 

comparison of under linex loss function and estimator 

under quadratic loss function, respectively, for all 

value in this table. We note, from the Table data 

decreeing mean square error root and biased value at 

increasing for sample size in this Table. 

3. Table3, shows that the MLE is best from 

interims value of mean square error root comparison 

of Bayes estimator under LINEX loss function and 

Bayes estimator under quadratic loss function, 

respectively, for all value in this table. In terms biased 

value the best estimator for Bayes estimator under 

LINEX loss function comparison of Bayes estimator 

under quadratic loss function, respectively, for all 

value in this table. We note, from the Table, data 

decreeing mean square error root and biased value at 

increasing for sample size. 

4. From Table4, the Bayes estimator under 

quadratic loss function is best from interims value of 

mean square error root comparison of maximum 

likelihood estimator and under linex loss function, 

respectively, for all value in this table. In terms biased 

value the best estimator for Bayes estimator under 

LINEX loss function comparison of the maximum 

likelihood estimator and Bayes estimator under 

quadratic loss function, respectively, for all value in 

this table. We note, from the Table data decreeing 

mean square error root and biased value at increasing 

for sample size. 
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