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Introduction 

Earlier conventional methods for error 
identification assumed that all errors are referred to 
network measurements. This assumption was based on 
that, using conventional techniques, errors in 
parameters are reflected as measurements errors. The 
method proposed by [1] used Lagrange multipliers to 
distinguish between measurements and parameters 
errors. However, [1] has identified four cases in which 
this method fails to identify the erroneous quantity; 

1) When the error occurs in a measurement that 
is part of a critical measurements k-tuple. 

2) When the error occurs in a parameter that is 
part of a critical parameter k-tuple. 

3) When the error occurs in a measurement or 
parameter that is part of a critical measurement-
parameter k-tuple. 

4) When the error is in a measurement that is 
critical for network observability. 

The conclusion of [1] recommended the use of 
PMUs to identify these errors. 

This article presents a mathematical approach to 
detect the correlation between measurements or 
parameters forming critical k-tuples using Pearson’s 
coefficient [2] and proposes the use the of linear 
Karhunen-Loeve Trasform (KLT) algorithm [3] to 
decorrelate measurements or parameters forming 
critical k-tuples. Utilizing KLT to 
decorrelatedependant data helped in identifying errors 
in the first two cases where the method proposed in [1] 
failed to do. Thus, the number of PMUs expected to be 
required to identify unidentifiable error will be less 
that when applying the recommendations of [1]. 

Different methods, techniques and algorithms [4] 

are used to solve the problem of optimum placement 
of PMUs. The purpose of these approaches is to 
maintain network observability and estimating system 
state. 

Integer Linear Programming (ILP), as explained 
in [5], is considered the most common procedure used 
to solve the optimum PMU placement problem to 
achieve network observability. This article utilizes the 
same procedure. However, new problem constraints 
are introduced to consider the placement of PMUs to 
achieve errors identifiability as well. 
Measurements and Parameters Errors 
Identification using Lagrange Multipliers Method 
[1] 

A. Problem Formulation 
The mathematical formulation of measurement 

model is given as; 
� = ℎ(�, ��) + � (1) 
where; 
z is the measurements vector 
x is the vector of system state variables 
p� is a vector containing network parameter 

errors 
h(x, p�) is a nonlinear function relating the 

measurements to system states and network parameter 
errors 

e vector of measurements errors 
Zero injection buses can be considered as an 

equality constraint given by; 
�(�, ��) = 0 (2) 
Network parameter vector can be modeled as; 
� = �� + ��  (3) 
where p  and p�  respectively represent the 

assumed and true value of parameters. 
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Assuming that parameters are error free, the 
following equality constraint may be used; 

�� = 0 (4) 
Considering the above, the solution of the 

Weighted Least Squares (WLS) estimation problem as 
defined by [6] can be formulated as an optimization 
problem that is subject to constraints as follow; 

Minimize	�(�) =
�

�
�′� 	� (5) 

Subject to �(�, ��) = 0 
�� = 0 

where; 
�= � − ℎ(�, ��) is the measurement residual 

vector and 
W is the inverse of the measurement error 

covariance matrix. 
The Lagrange of the optimization problem of 

equation (5) is given as; 

� =
�

�
���� − ���(�, ��) − ����  (6) 

Two Lagrange multipliers are introduced; the 
first (μ) is related to the constraint of zero injection 
buses, and the second (λ  ) is related to error free 
parameters constraint. 

Optimality conditions can be obtained as; 
��

��
= ��

��� + ��
�� = 0 (7) 

��

��
= ��

�	� 	�+ ��
�	� + � = 0 (8) 

��

��
= �(�, ��) = 0 (9) 

��

��
= �� = 0 (10) 

 
where 

�� =
��(�,��)

��
 (11) 

�� =
��(�,��)

��
 (12) 

�� =
��(�,��)

���
 (13) 

C� =
��(�,��)

���
 (14) 

Equality constraint (4) allows the substitution 
p� = 0  into h(x, p�)  and c(x, p�)  to become h(x, 0) 
and c(x, 0)  respectively. These will be denoted as 
h�(x)and c�(x) . The measurements model and zero 
injection equations will become; 

� = ℎ�(�) + � (15) 
��(�) = 0 (16) 
Note that equations (15) and (16) do not include 

parameter errors as explicit variables. h�(x)andc�(x) 
will be substituted with their first order Taylor 
expansion to obtain the following linear equations; 

��	∆� + � = ∆� (17) 
��	∆� = − ��(��) (18) 
where; 
x�is the initial guess of the system state vector, 
∆x = x − x�and 
∆z = z − h�(x�). 

Equations (7), (17) and (18) can be reformulated 
in matrix presentation as; 

�
0 ��

�� ��
�

�� � 0
�� 0 0

�.�
∆�
�
�
�= �

0
∆�

− ��(��)
� (19) 

This system of equations can be solved using the 
same iterative solution used for WLS state estimation 
problem. The system solution will provide the 
estimated values of state variables, measurement 
residuals and Lagrange multiplier μ. 

B. Calculation of Normalized Lagrange 
Multiplier 

Detection of erroneous measurements is carried 
out using the normalized residual method as explained 
in [6] and using the residuals vector obtained from 
equation (19). 

Recalling that the gain matrix G  is calculated 
using 

� = ��
�� �� (20) 

The hat matrix K is defined as 
� = ���

����
��  (21) 

The measurements residual sensitivity matrix S�  
is calculated as 

�� = �− �  (22) 
Measurements residuals covariance matrix is 

then calculated using 
Ω = �� 	����

�  (23) 
whereR� is the measurement covariance matrix. 
The normalized residual of measurement i can be 

obtained by 

��
� =

|��|

�Ω��
 (24) 

Erroneous parameters, on the other hand, are 
selected to be those that corresponds to the largest 
normalized Lagrange multiplier λ. 

Equation (8) is used to calculate the Lagrange 
multiplier λ as follows 

� = − �� ���+ ���� 

which can be reformulated in matrix form as 

� = − �
� ��

��
�
�

�
�
�� 

The sensitivity matrix corresponding to errors in 
parameters is defined as; 

�� = − �
� ��

��
�
�

 (25) 

Therefore, 

� = �� �
�
�� (26) 

The matrix given by equation (19) will be used to 
calculate the covariance of λ  by reformulating the 
equation as 

�
∆�
�
�
�= �

0 ��
�� ��

�

�� � 0
�� 0 0

�

��

.�
0
∆�

− ��(��)
� 
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Note that, at the solution of (19) c�(x) = 0. 
The inverse matrix above can be arranged as 

below 

�
0 ��

�� ��
�

�� � 0
�� 0 0

�

��

= �
�� �� ��
�� �� ��
�� �� ��

� (27) 

Therefore, 

�
∆�
�
�
�= �

�� �� ��
�� �� ��
�� �� ��

�.�
0
∆�
0
� 

From the above; 
�= ��Δ� (28) 
� = ��Δ� (29) 
Let Ψ = [E� E�]

�, then 
� = Ψ.Δ� (30) 
Knowing that u = [r μ]� 
���(�) = Ψ.� ��.Ψ�  (31) 
The covariance of Lagrange multiplier λ can then 

be calculated as 
Λ = ���(�) = ��.���(�).��

�  (32) 
Finally, the normalized Lagrange multiplier for 

parameter i can be obtained as 

��
� =

��

�Λ��
 (33) 

 
Decorrelating Measurements or Parameters k-
Tuples 
A. Identifying the Correlation between 
Measurements or Parameters 

In this article, data correlation is considered 
instead of dependence since correlation offers a 
broader class of statistical relationships that includes 
dependence. Correlation between data is identified by 
correlation coefficients. Since linearized model 
equations are used for error identification, Pearson’s 
coefficient [2] will be used as it is the most commonly 
used coefficient that is sensitive to linear relationships. 
Pearson’s coefficient is defined as; 

�(�, �) = ����(�, �) =
���(�,�)

����
 (34) 

and−1 ≤ �(�, �) ≤ 1 
wherex and y are two data items the correlation 

coefficient among which is to be identified. 
cov(x, y) is the covariance between data 	x  and 

data y. 
σ�andσ�  are the variances of data x and data y 

respectively. 
Pearson’s coefficient ρ(x, y)  represents the 

degree of linearity in the relationship between xand y. 
Therefore, a coefficient of +1 indicates a perfect 
positive (directly proportional) relationship, a 
coefficient of -1 indicates a perfect negative (inversely 
proportional) relationship and a coefficient of any 
value in between represents the linear dependence of 
data. One important aspect is when the coefficient is 

equal to zero that means that there is no relationship 
between the corresponding data items. Ideally, the 
correlation coefficients matrix is symmetrical and has 
its diagonal elements equal to unity. 

For a vector of n  data items, the covariance 
matrix is given as; 

Σ = �

��� ��� ⋯ ���
��� ��� ⋯ ���
⋮

���

⋮
���

⋱
⋯

⋮
���

� (35) 

Pearson’s Coefficient matrix is given as; 

Σ = �

��� ��� ⋯ ���
��� ��� ⋯ ���
⋮

���

⋮
���

⋱
⋯

⋮
���

� (36) 

where�
− 1 ≤ ���≤ 1	for � ≠ �

���= 1	for � = �
� 

The covariance matrix for measurements 
residuals Ω and the covariance matrix for parameters 
residuals Λ are obtained from equations (23) and (32) 
respectively. These matrices can be used to calculate 
the correlation coefficients matrices for measurements 
and parameters residuals. However, the calculation of 
correlation between measurements and parameters 
cannot be directly obtained despite the possibility to 
calculate the covariances between these quantities, this 
is due to the fact that correlation coefficient matrices 
are built based on equal number of data observations 
(i.e. square covariance matrices). In what follows, an 
indirect method for calculating the covariance matrix 
between measurements and parameters will be 
deduced and used to obtain the correlation coefficients 
matrix between the two quantities. 

Equations (7) and (8) can be re-written as; 
��

�	� 	� = −��
�� (37) 

��
�	� 	�+ � = −��

�� (38) 

These equations can be expressed in the matrix 
form as; 

�
��

�� 0

��
� �

� �
�
�
�= �

−��
�

−��
�� [�] (39) 

Therefore, r and λ can be expressed in terms of μ 
as; 

�
�
�
�= �

��
�� 0

��
� �

�

��

�
−��

�

−��
�� [�] (40) 

Following equation (25); 

��� = �
��

�� 0

��
� �

�

� �

�
−��

�

−��
�� (41) 

whereS��  is the sensitivity matrix between 

measurements and parameters residuals. 
From equations (30) and (31), 
���(�) = ���

����
� (42) 

whereE� is calculated from equation (27). 
The combined covariance matrix of 

measurements and parameters Ζ  can, then be 
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calculated as; 

Ζ = ��� ��
�
�
�� = ��� 	���(�)���

�  (43) 

Equations (34) and (36) can, then, be used to 
calculate the correlation coefficients matrix for 
measurements and parameters. However, it is to be 
noted that the resulting matrix needs to be utilized in 
its reduced form by eliminating elements that 
represent the correlation between parameters and those 
that represent the correlation between measurements 
and maintain only those elements that represent the 
correlation between measurements and parameters. 
B. Test Results for Correlation Coefficients 

Correlation coefficients matrices for IEEE 14, 30 
and 57-bus test networks are calculated for the test 
cases presented by [1] where parameters are 
unidentifiable or having very close values of their 
normalized Lagrange multipliers. 

Table (I) extracts unidentifieable parameters or 

parameters having very close λ�  values as yielded 
from the test cases presented in [1] and shows the 
correlation coefficients of these parameters. 

From Table I, it is shown that the inability of the 
conventional error identification algorithm to identify 
the erroneous quantity is due to the high correlation 
between the erroneous quantity and other quantities. 
The effect of correlation can be mainly visualized 
when examining the above 14-bus test cases (shown 
shaded) where error is once introduced to x����  and 
once gain introduced to x����� . Error could be 
identified for the first case since the correlation 
coefficient between the erroneous quantity and other 
quantities is low. However, the error in x�����, in the 
second case, could not be identified due to the high 
correlation coefficient between x����� and x����. 

 
Table ICoorelation Coefficients between 
Unidentifiable Parameters or Parameters having 
Close Values of Normalized Lagrange Multiplier 

Network 
Examined 
Parameters 

Correlation 
Coefficient 

30-Bus ���� ∗, ���� -0.98942 
14-Bus ������ ∗, ���� 1.0 

30-Bus �������� ∗, ������ 1.0 

14-Bus 
����� ∗, ������ -0.42067 
�����, ������ ∗ 0.910899 

30-Bus 
������, ������ ∗ 0.989001 
������ ∗, ������ -0.9914 
������ ∗, ������ -0.9916 

30-Bus ������, ������ ∗ 0.982575 

14-Bus 
������, ������ ∗ 0.98453 
������, ����� -0.93201 

* Indicates parameter where error is introduced 
 

C. Decorrelating Dependant Measurements or 
Parameters 

As explained in section II (B), the main reason 
behind the presence of critical k-tuples of parameters 
and the inability to identify the erroneous quantity, 
either it was a parameter or a measurement, is the 
presence of strong correlation (high correlation 
coefficient) between the erroneous quantity and other 
measurements or parameters. The correlation can also 
be viewed from the presence of non-zero values in the 
off-diagonal elements of the covariance and, 
consequently, the correlation coefficient matrices. 

Decorrelation is defined as a process that is used 
to reduce (or eliminate) the correlation between data. 
The process has wide application in signal and image 
processing using linear and non-linear algorithms that 
are aimed at diagonalizing the correlation coefficient 
and correlation matrices while preserving the aspects 
of the decorrelated data. Linear Karhunen-Loẻve 
Transform (KLT) [3] is considered the most common 
algorithm among other linear and non-linear 
algorithms. This section will illustrate the application 
of KLT to decorrelate measurements and parameters 
and will investigate the behavior of the error 
identification algorithm on decorrelated data. 

Considering that R is the generalized correlation 
coefficients matrix that includes either measurements 
or parameters, it was shown by [7] that R  can be 
diagonalized to R� by multiplying R by another matrix 
Φ, called the KLT matrix, as per the equation; 

�� = Φ���Φ (44) 
with Φ  being a matrix having its columns 

representing the Eigen vectors of R, the diagonalized 
matrix R�  is actually a matrix having its diagonal 
elements representing the Eigen values of R. 

KLT matrix Φ can, also, be used to transform a 
set of data to a decorrelated set. The following 
equations can be used to transform the measurements 
residuals r  and parameters residuals λ  to their 
corresponding decorrelated sets. 

�� = Φ��	� (45) 
�� = Φ��	� (46) 
Therefore, the covariance and correlation 

coefficients matrices for r�  and λ�  will be diagonal 
(i.e. decorrelated). 

A covariance matrix can be diagonalized without 
calculating the correlation coefficients matrix, as 
proved by [8] using the equation; 

Χ = Υ�	Σ	Υ (47) 
where; Σ is the original (correlated) covariance 

matrix and Χ is the diagonalized one. 
In the above equation, Υ is matrix holding the 

Eigen vectors of Σ as its columns and can be used to 
transform a set of data to a decorrelated set. Therefore, 
the decorrelated measurements and parameters 
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residuals expressed in equations (45) and (46) can be 
expressed in terms of Υ as below; 

�� = Υ�	� (48) 
�� = Υ�	� (49) 

The decorrelated covariance matrices Ω� and Λ� 
can be calculated using Equation (47). The 
decorrelated normalized measurements residuals (r��) 

and normalized parameters Lagrange multipliers (λ��) 
can be calculated using Equations (24) and (33) 
respectively after substituting r, λ, Ω and Λ with their 

decorrelated counterparts r� , λ� , Ω�  and Λ� 
respectively. The parameter or measurement in the 
unidentified suspect set that corresponds to the largest 

r�� or λ�� will be the erroneous quantity 
D. Simulation Results for Data Decorrelation 
The following test cases were conducting by 

introducing errors to parameters that for critical k-
tuples with other parameters or measurements. 

Test Case 1: Errors are individually introduced to 
different parameters of IEEE 14-bus test network as 
shown by Table (II). 

 
Table II: Test Case 1: Simulated Errors 

Sub-Case Parameter True Value Erroneous Value 
a ������ 0.1999 0.5 
b ������ 0.348 0.7 

 
Tables III and IV show the values of the highest 

normalized residuals for different parameters and 
measurements, resulting from errors introduced by test 
cases 1(a) and 1(b), before and after applying data 
decorrelation. 

 
 

Table III: Test Case 1(a): Error Identification 
Results 

Measurement/Parameter 
��/�� 

(Excluding 
Decorrelation) 

���/��� 
(Including 
Decorrelation) 

����� 6.7902 0.5269 
������ 6.7667 4.4250 
����� 4.6628  
������ 4.6505  
����� 4.3490  

 
Table IV: Test Case 1(b): Error Identification 
Results 

Measurement/Parameter 
�� /��  

(Excluding 
Decorrelation) 

��� /���  
(Including 
Decorrelation) 

������ 27.7765 6.7735 
������ 27.7706 46.8020 
����� 27.5534 6.9430 
����� 26.8986 2.9573 
����� 20.5636 5.1666 

Test Case 2: Errors are individually introduced to 
different parameters of IEEE 30-bus test network as 
shown by Table (V). 

 
Table V: Test Case 2: Simulated Errors 

Sub-Case Parameter True Value Erroneous Value 
a ������ 0.1292 0.5 
b ������ 0.2087 0.6 

 
Tables VI and VII show the values of the highest 

normalized residuals for different parameters and 
measurements, resulting from errors introduced by test 
cases 2(a) and 1(b), before and after applying data 
decorrelation. 

 
Table VI: Test Case 2(a): Error Identification 
Results 

Measurement/Parameter 
�� /��  

(Excluding 
Decorrelation) 

��� /���  
(Including 
Decorrelation) 

������ 15.4741 0.0484 
������ 15.4470 4.2831 
������ 15.3713 0.0205 
������ 15.2465 0.7348 
������ 9.0775  

 
Table VII: Test Case 2(b): Error Identification 
Results 

Measurement/Parameter 
�� /��  

(Excluding 
Decorrelation) 

��� /���  
(Including 
Decorrelation) 

������ 24.836 4.235 
������ 27.7589 24.967 
������ 21.4546 12.652 
������ 13.257  
������ 12.6138  

 
Optimum Placement of PMUs using ILP 

In what follows we will explain the basic 
problem formulation as explained in [5]. We shall then 
present the modifications and extensions to the 
existing procedures to allow for network errors 
identification. 

A. Problem Formulation 
The objective function of the Optimum 

Placement Problem (OPP) of PMUs is to render the 
full network observable using a minimum number of 
PMUs. For an n -bus system, the PMU placement 
problem can be formulated as follows: 

min∑ ��.��
�
�  (50) 

s.t.�(�) ≥ 1� 
whereX  is a binary decision variable vector, 

whose entries are defined as: 

��= �1	
0
��	�	���	��	���������	��	���	�

��ℎ������
� (51) 

w�is the cost of the PMU installed at bus i 
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f(X)is a vector function, whose entries are non-
zero if the corresponding bus voltage is solvable using 
the given measurement set and zero otherwise. 

1�is a vector whose entries are all ones. 
The procedure for building the constraint 

equations follows the below series of steps; 
1) Step 1: No flow or injection measurements 

are present. 
2) Step 2: Power Flow measurements are 

available. 
3) Step 3: Power injection measurements are 

available. 
Description for the procedure for building the 

constraint equations will be provided using a 7-bus 
sample system that is shown by Figure (1). 

 
Figure 1 7-Bus Sample System 
The binary connectivity matrix A of the sample 

network is defined as follows: 

��,� = �
1
1
0

�
��	� = �

��	�	���	�	���	���������
��ℎ������

  (52) 

The constraints function f(X) is, then, given as: 
�(�) = �.� (53) 
where X is a vector representing the solvability of 

each bus and it has a non-zero value if the bus voltage 
is solvable and zero otherwise. 

Step 1: No Flow or Injection Measurements are 
Present 

This step assumes that no flow or injection 
measurements are present in the network. This will 
help building up the full constraints function. 

The binary decision vector X  for the sample 
network is in the form; 

� = [��������������]
� (54) 

Matrix A for the sample network is obtained as; 

� =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1 1 00 00 0
1 1 10 01 1
0 1 11 01 0
0 0 11 10 1
0 0 01 10 0
0 1 10 01 0
0 1 01 00 1⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (55) 

The general constraint, for this case, is that; at 
least one PMU should be placed at each bus in order to 
render all links, directly connected to this bus, 
observable. Therefore, for each bus, the constraint 

function f(X), as obtained by Equation (53), can be 
written as: 

�(�) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧
�� = �� + ��
�� = �� + �� + �� + �� + ��
�� = �� + �� + �� + ��
�� = �� + �� + �� + ��

�� = �� + ��
�� = �� + �� + ��
�� = �� + �� + ��

�

≥ 1
≥ 1
≥ 1
≥ 1
≥ 1
≥ 1
≥ 1

 (56) 

The ‘+” operator serves as a logical “OR”. For 
example, the constraint of bus 1 can be interpreted as; 
At least one PMU can be placed at either bus 1 or 2 to 
render bus 1 observable. 

Since, at this stage, no flow or injection 
measurements are considered, it is assumed that each 
group of buses forms an observable island on its own. 
Therefore, a minimum of one PMU shall be placed at 
any of the buses in the group. 

Step 2: Considering Flow Measurements 
When a flow measurement is introduced at any 

branch, this implies that the two observable island 
connected by this branch can be grouped into one 
observable island. 

The mathematical interpretation of the above is 
that the two constraint functions of the two buses 
connected by the measured link can be grouped into 
one new constraint function which is the “sum” of the 
two original functions. Again, the “+” operator is used 
to indicate that the PMU can be placed at any of the 
buses forming the new observable island. 

In the sample network shown by Figure (1), 
active and reactive measurements are introduced in the 
link between buses 1 and 2. Therefore, these two buses 
along with their connecting link will be considered as 
a new observable island that has a constraint function 
given as; 

������ = �� + �� = �� + �� + �� + �� + �� 	≥ 1 
(57) 

Hence, the new constraint function for network 
observability will be given as; 

�(�) =

⎩
⎪
⎨

⎪
⎧
������ = �� + �� + �� + �� + ��
�� = �� + �� + �� + ��
�� = �� + �� + �� + ��
�� = �� + ��
�� = �� + �� + ��
�� = �� + �� + ��

�

≥ 1
≥ 1
≥ 1
≥ 1
≥ 1
≥ 1

 

(58) 
Step 3: Considering Power Injection 

Measurements 
In this step, injection measurements, including 

pseudo-measurements for zero injection buses, will be 
considered in addition to the flow measurements 
introduced in Step 2. 

The analysis of this step is based on the fact that; 
if the voltage phasors at the buses directly connected 
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to the bus with injection measurements are known, 
then the voltage phasor at the bus of injection 
measurements can be calculated using Kirchhoff’s 
Current Law. 

There are two methods to proceed with this step; 
 Non-linear constraint formation, and 
 Topology transformation. 
Topology transformation method is proposed by 

[5] to maintain the linearity of the problem. 
Considering the sample network of Figure (1), 

bus 3 is shown to be a zero injection bus. Therefore, if 
the voltage phasors at buses 2, 4 and 6 are known, the 
same for bus 3 can be calculated using KCL. Hence, 
bus 3 can be merged with any of the adjacent buses. 
For the given illustrative example, bus 3 will be 
merged with bus 6 to form a new bus 6’ and the 
network will be as shown by Figure (2). 

 
Figure 2 7-Bus Sample Network with Injection Bus 
Eliminated 

 

The constraint functions for the merged buses 3 
and 6 will be eliminated and a new constraint function 
for the newly introduced bus 6’ will be developed as 
below; 

��′ = �� + �� + ��′ 	≥ 1 (59) 
and the new constraint function for network 

observability will be given as; 

�(�) =

⎩
⎪
⎨

⎪
⎧
������ = �� + �� + �� + �� + ��
�� = �� + �� + �� + ��
�� = �� + ��
��′ = �� + �� + ��′

�� = �� + �� + ��

�

≥ 1
≥ 1
≥ 1
≥ 1
≥ 1

 

(60) 
The solution of the objective function given in 

(50) that is subject to the constraints given by 
Equation (60) can be obtained using ILP. 

The solution may yield the placement of a PMU 
on one of the fictitious buses (such as 6’). In this case, 
the PMU can be placed at either of the buses that were 
merged to create the fictitious bus (i.e. bus 3 or 6). 

It is sometimes recommended to add a backup set 
of PMUs that is redundant to the primary set obtained 
from above method. The backup set shall be, on its 
own, capable of maintaining network observability. 

The backup set is chosen in a similar manner as the 
primary set except that all x�  terms in the constraint 
function that correspond to buses which were 
previously selected to have PMUs will be excluded 
from the new constraint function for the placement of 
the backup set. 

B. Limitations to the Existing Approach 
The use of the above approach offers the 

following limitations; 
1) The approach is instance-based, that, the 

solution for the strategical placement of the PMUs is 
based on certain measurement scheme for the given 
network topology. Therefore, a change in this scheme, 
caused by the elimination of a measurement from the 
network model due to being erroneous, might change 
the solution obtained. Considering that having 
erroneous measurements in a network is a dynamic 
process, the placement of PMUs will dynamically 
changed with the change of the measurement scheme. 

2) Since different types of PMUs are 
manufactured by different companies with various 
measuring capabilities, the assumption that each PMU 
has multi-channel that is capable of measuring bus 
voltage phasors and line current phasors incident to 
that bus limits the application of this approach to 
PMUs having the same features. 

The approach is mainly concerned with network 
observability. However, it does not cover providing 
critical measurements with redundancy should these 
measurements be erroneous and eliminated from the 
network model causing the network not to be fully 
observable. 

C. Modifications to Existing PMU OPP Solution 
using ILP 

The modification introduced in this article 
complements the OPP solution using ILP mentioned 
above. However, the approach followed by the 
modified method is intended to overcome the 
limitations offered by the exiting method and extend 
the implementation of this method to cover; 

1) Measurements criticality assessment. 
2) Identification of erroneous measurements and 

parameters. 
The proposed approach considers that the 

network to be analyzed is already observable and that 
the placement of the additional PMUs is intended to 
maintain its observability even in case of loss of a 
single measurement. PMUs considered for our study 
are single-channel type that are capable of measuring 
only voltage phasors at network buses. 

The problem of error identification in cases 
where there is a strong correlation between a 
measurement and a parameter which one of them is 
erroneous is also considered in the proposed approach. 

The proposed method as per the description 
above can maintain the network observability and 
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error identification capability in case of single error in 
a parameter or conventional measurement. However, 
in case of a simultaneous error in a parameter or 
conventional measurement and their redundant PMU, 
the method will fail to maintain the function it is 
intended for. Therefore, the need to provide redundant 
set of PMUs that replace the original set in case of 
their total failure may be required. Providing this 
backup set of PMUs will involve major impact on the 
network costs. Therefore, it is important to study the 
network measurement scheme and assess the 
vulnerability of each measurement to errors. This 
assessment will be used as a measure to weight the 
necessity to increase the redundancy level of each 
measurement. 

The use of single-channel type PMUs that are 
capable of measuring bus voltage phasors is 
considered in this thesis as it provides more practical 
implementation of the OPP problem solution using 
ILP. However, this limited capability of the utilized 
PMUs will cause each network bus to be initially 
considered as an observable island on itself. 

Recalling the rules for network observability 
using PMUs [1], an error in PMUs used to connect 
observable islands can only be identified if at least 
three PMUs are installed in each observable island. 
Therefore, the OPP problem formulation explained 
above will be reconsidered as below; 

Step 1: No Flow or Injection Measurements are 
Present 

This step assumes that no flow or injection 
measurements are present in the network. This will 
help building up the full constraints function. 

A new matrix D will be used to identify buses 
that are part of an observable island. When no flow or 
injection measurements are considered, each bus will 
be forming a single observable island on its own. 
Therefore, matrix D can be defined as; 

��,� = �
1
0
��	� = �
��ℎ������

� (61) 

In other words, this matrix will be a diagonal 
unity matrix. 

The constraint function will be given as; 
�(�) = �.�	 ≥ 3 (62) 
The general constraint, for this step, is that; at 

least three PMUs should be placed at each bus in order 
to render the whole network observable and to enable 
error identification in any of the PMUs. For the 
sample network given by Figure (1), the constrain 
function will be given as: 

The ‘+” operator serves as a logical “OR” which, 
along with the right-hand side of the inequality, can 
represent the general constraint mentioned above. For 
example, the constraint of bus 1 can be interpreted as; 
At least one PMU can be placed at either bus 1 or 2 to 
render bus 1 observable. 

 

�(�) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧
�� = ��
�� = ��
�� = ��
�� = ��
�� = ��
�� = ��
�� = ��

�

≥ 3
≥ 3
≥ 3
≥ 3
≥ 3
≥ 3
≥ 3

 (63) 

Step 2: Considering Flow Measurements 
When a flow measurement is introduced at any 

branch, this implies that the two observable islands 
connected by this branch can be grouped into one 
observable island. 

The mathematical interpretation of the above is 
that the two constraint functions of the two buses 
connected by the measured link can be grouped into 
one new constraint function which is the “sum” of the 
two original functions. The “+” operator is used to 
indicate that the PMU can be placed at any of the 
buses forming the new observable island. 

In the sample network shown by Figure (1), 
active and reactive measurements are introduced in the 
link between buses 1 and 2. Therefore, these two buses 
along with their connecting link will be considered as 
a new observable island that has a constraint function 
given as; 

������ = �� + �� = �� + �� 	≥ 3 (64) 
Hence, the new constraint function will be given 

as; 

�(�) =

⎩
⎪
⎨

⎪
⎧
������ = �� + ��
�� = ��
�� = ��
�� = ��
�� = ��
�� = ��

�

≥ 3
≥ 3
≥ 3
≥ 3
≥ 3
≥ 3

 (65) 

Step 3: Considering Power Injection 
Measurements 

This step will process the constraint function in a 
similar fashion as explained in [5]. 

Considering the sample network of Figure (1), 
bus 3 is shown to be a zero injection bus. Therefore, if 
the voltage phasors at buses 2, 4 and 6 are known, the 
same for bus 3 can be calculated using KCL. Hence, 
bus 3 can be merged with any of the adjacent buses. 
For the given illustrative example, bus 3 will be 
merged with bus 6 to form a new bus 6’ and the 
network will be as shown by Figure (2). 

The constraint functions for the merged buses 3 
and 6 will be eliminated and a new constraint function 
for the newly introduced bus 6’ will be developed as 
below; 

��′ = ��′ 	≥ 3 (66) 
and the new constraint function for network 

observability will be given as; 
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f(X) =

⎩
⎪
⎨

⎪
⎧
f����� = x� + x�
f� = x�
f� = x�
f�′ = x�′

f� = x�

�

≥ 3
≥ 3
≥ 3
≥ 3
≥ 3

 (67) 

The solution of the objective function given in 
(50) that is subject to the constraints given by 
Equation (67) can be obtained using ILP. 

The solution may yield the placement of a PMU 
on one of the fictitious buses (such as 6’). In this case, 
the PMU can be placed at either one of the buses 3 or 
6. 

Critical measurements are identified in earlier 
literatures [6] as being those measurements whose 
removal from the measurement set will render the 
network unobservable. Additionally, the method 
presented in [1] and improved in this article has 
identified another source of unidentifiable 
measurements and as being those measurements that 
are strongly correlated with network parameters. 

Measurement defined to be critical for network 
observability can be identified as those measurements 
having null columns in the measurement error 
covariance matrix Ω as defined by Equation (23) [5]. 

For measurements that are critical to network 
observability, an incidence matrix B  can be 
constructed such that; 

��,� = �1
0
��	Ω�,� = 0

��ℎ������
� (68) 

A constraint function g(X) can, then, be obtained 
to provide the constraint for the placement of PMUs to 
increase the redundancy of these measurements. 

�(�) = �.�	 ≥ 1 (69) 
For measurements that are strongly correlated 

with parameters, these can be identified as the critical 
measurement-parameter pair that has a correlation 
coefficient equals to unity. The correlation coefficients 
between measurements and parameters can be 
obtained from the associated matrix R��  that can be 
obtained from Equations (34) and (43). Therefore, an 
incidence matrix C can be constructed such that; 

��,� = �
1
0

��	R�� �,�
= 1

��ℎ������
� (70) 

A constraint function j(X) can, then, be defined 
to provide the constraint for the placement of PMUs to 
enable the identification of errors occurring in either 
of the correlated quantities. 

�(�) = �.�	 ≥ 1 (71) 
The overall constraint function F(X)  can be 

formed by combining the constraint functions f(X) , 
g(X) and j(X) given by Equations (62), (69) and (71) 
respectively. Thus, 

�(�) = �

�(�)

�(�)

�(�)

≥ 3
≥ 1
≥ 1

� (72) 

D. Solution Algorithm 
1) Run the algorithm presented in Section III 

(D). 
2) Build the binary decision vector X  as 

explained in Equation (54). 
3) Built the bus incidence matrix A as explained 

by Equation (52). 
4) Construct the basic network observability 

constraint function f(X) as explained by Equation (53) 
considering the no power flow or injection 
measurements are available. 

5) Refine f(X)  to include the available power 
flow measurements. 

6) Refine f(X)  to include power injection 
measurements including zero (pseudo) injections. 

7) Construct the incidence matrix for critical 
measurements B  as explained by Equation (68) and 
calculate the relevant constraints function g(X)  as 
explained by Equation (69). 

8) Construct the incidence matrix for critical 
measurement-parameter pairs C  as explained by 
Equation (70) and calculate the relevant constraint 
matrix j(X) as explained by Equation (71). 

9) Construct the overall constraint function F(X) 
as explained by Equation (72) and use it along with 
the objective function given by Equation (50) to obtain 
the ILP solution. 

In this algorithm, the impact of installation costs 
of each PMU is not considered. Therefore, all w�s will 
be given equal value. 

E. Simulation Results 
Test Case 3: IEEE 14-Bus Test Network 
This test is applied to IEEE 14-bus test network 

with a measurement scheme that offers a completely 
measured network. Therefore, no critical 
measurements exist for this test case. 

Since the resulting requirement for PMUs are not 
related to network observability and measurement 
criticality, it should be expected that the proposed 
PMU is resulting from strongly correlated 
measurement-parameter pairs. Upon examining the 
measurements-parameters correlation coefficient 
matrix R�� , the following table shows the 
measurement-parameter pairs that have a correlation 
coefficient of unity. 

 
Table VIII Test Case 3: Measurement-Parameter 
Pairs with Unity Correlation Coefficients 

Measurements Parameters 
���� ���� 
���� ���� 
���� ������ 

���� ������ 

 
The resulting binary decision vector calculated 
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for the given network measurement scheme has 
indicated that only bus 8 is required to be provided 
with PMU. It can be seen from the above table that the 
placement of a PMU at bus 8 will help identifying an 
error that may occur at any of the strongly correlated 
measurements and parameters. 

Test Case 4: IEEE 30-Bus Test Network 
This test is applied to IEEE 30-bus test network 

with a measurement scheme that offers a completely 
measured network. Therefore, no critical 
measurements exist for this test case. 

Since the resulting requirement for PMUs are not 
related to network observability and measurement 
criticality, it should be expected that the proposed 
PMU is resulting from strongly correlated 
measurement-parameter pairs. Upon examining the 
measurements-parameters correlation coefficient 
matrix R�� , the following table shows the 
measurement-parameter pairs that have a correlation 
coefficient of unity. 

 
Table IX Test Case 4: Measurement-Parameter 
Pairs with Unity Correlation Coefficients 

Measurements Parameters 
����� ����� 
����� ����� 
������ �������� 

����� ������� 

������ ������� 

������ �������� 

������ �������� 

������ ���� �� 
������ ���� �� 
������ ������ 
������ ������ 

 
The resulting binary decision vector calculated 

for the given network measurement scheme has 
indicated that only buses 10, 11, 12, 24 and 26 are 
required to be provided with PMUs. It can be seen 
from the above table that the placement of a PMUs at 
buses 10, 11, 12, 24 and 26 will help identifying an 
error that may occur at any of the strongly correlated 
measurements and parameters. 

  
Conclusion and Future Work 

The approach presented by this article has 
successfully implemented an optimized PMU 
placement solution to accommodate the requirements 

for network observability and errors identification. 
Although the article has provided a mean to calculate 
the cross-correlation between measurements and 
parameters, the method proposed was not useful to 
apply the same decorrelation technique used with 
measurement-parameter k-tuples. Therefore, it is 
recommended that future works may deduce a 
combined covariance matrix from which the 
measurements and parameters cross-correlation 
coefficients may be calculated and the decoleration 
technique may be applied. 

The procedure for obtaining optimally placed 
backup set of PMUs was presented in [5]. Although 
this procedure will increase the redundancy of the 
measurements obtained from the PMUs, its application 
is only limited to where network observability is of 
concern. The need to provide redundancy for the 
existing measurement scheme depends mainly on the 
vulnerability of the existing measurements to be prone 
to error. This vulnerability varies from one 
measurement to another. Therefore, it would be useful 
if measurement vulnerability weighting factor is 
developed and introduced to the basic ILP problem 
formulation to control the redundancy level required 
for each measurement. 
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