Aligning properly the staffs to their particular work-ambitions as a pre-requisite condition for aligning properly the organizations to fulfill their public missions: a comparative study

Dr. Amgad Hamed Omara

Assist. Prof. in Business Administration, Vice-Dean for Education&Students' affairs, Faculty of Commerce, Menoufia University, Egypt.

Email: amgadomara63@yahoo.com.

Abstract: This research is tackling at win-case occurred between the tasks required by the staffs and the mission required by the organization. It highlights to what extent the nature of some organizations activity affects the conjunction state that's found between the tasks that the employees are doing and the mission that the organizations is fulfilling. It practically takes universities as a field-study in order to show that the mission of universities is just a tautology of the distributed tasks done by the teaching, research, and community-serving staffs. The contributions done by the latter is actually representing the branched sub-components of the whole mission of the former. Accordingly this research is interested in showing, through a problem oriented method, that's based upon hypothesizing, how the Egyptian universities compared with the foreign ones are currently having sort of deficiency in getting their missions done; as it ought to be. Due to the lack or deficiency in aligning the staff to work at the level that they are personally looking forward to, particularly when they are spontaneously put to strive for properly locating their universities at the required position in terms of the missions' fulfillment. The main conclusion that's gotten by statistically testing the hypotheses is hub-revolved around considering the systems of education, research and community-serving are deficient in empowering staffs to be aligned to their personal work-ambitions, which is an urgent condition for the universities' proper fulfillment of the whole missions. Accordingly, it is far recommended by this research to consider such a co-occurrence case of people doing well tasks for organizations doing well missions.

[Amgad Hamed Omara. Aligning properly the staffs to their particular work-ambitions as a pre-requisite condition for aligning properly the organizations to fulfill their public missions: a comparative study. *J Am Sci*2017; 13(7):63-96]. ISSN 1545-1003 (print); ISSN 2375-7264 (online). http://www.jofamericanscience.org.7. doi:10.7537/marsjas130717.07.

Key words: Aligning staffs to the organization ambitions, aligning staffs to their particular work-ambitions, by management conditional empowerment, by systems institutional empowerment, staff-organization interest non-consensus, staff-organization interest consensus.

Introduction:

Sometimes people's performance never comes at the level that allows their organization to get fitting for being able to fulfill their mission. The reason in such cases is most probably returning to the very conditional nature of the certain organization activity. Particularly in those organizations that are principally playing an intellectual or even ideological role. All over the world universities are entrusted to play three main roles within the context of their mission; the educational role of teaching students and qualifying graduates, the academic role of conducting the basic and applied researches, and the social role of serving the community individuals, groups and organization.

In universities whether professors and their academic assistants are personally getting satisfied in terms of their personal work ambitions they work in the same direction of fulfilling their organization mission. They would like to be reputable and valued lecturers and teachers, and this is a condition for having their universities well ranked as reputable and valued educational institute. They would like to be the

best in conducting the accumulative, advanced, and original pieces of research, and this is a condition for getting their universities highly positioned on the map of the world-wide research institutes. They would like to be locally, nationally and even internationally finger-pointed as community people who have efficient resolutions for the environment problems, efficient means to get balanced when facing crises and efficient ways to treat with the life extended complexities, and this is a condition for getting their universities not only to be societal inseparable entities that joint at the hip in the varied community problematic issues but also to be trustworthy organizations that are considered as a party or place to target by the different levels of community units.

Herein there is a forced coinciding that may identically reach a type of unification between organization's people or academic staff very personal ambitions concerning the tasks they do and the universities very public ambitions concerning the missions required by them. The nature of the university's activity or field of work makes the

capability of the organizations to fulfill their mission is a function in the staff fulfilling to their personal task-ambitions.

Research problem:

In order to satisfy the condition of hitting the reality in applied studies, this research has considered the significance of two important issues. First, is to follow in reality the phenomenon indicating the problem and to assure the foundation of the problem that's reasoning it. Second, is to have a criterion that's showing the positive and negative facets of both phenomenon and problem. An exploratory study that's based upon asking directly through an initial questionnaire (120) of the academic staffs, who are actually working on the fulfillment of the three-fold mission in (8) target universities was conducted. The

respondents were appointed by the universities as members in the top-boards of student affairs, postgraduate studies and research affairs, and community-serving affairs. The subject of the preliminary simplified was revolved around the efficiency /deficiency of their universities in fulfilling their missions and then about the efficiency/ deficiency of these universities in relation to the alignment of the staffs to their very particular workambitions as a condition for fulfilling well the universities' missions. The staffs number as being asked in the different target groups of universities are shown by the table (1) while the respondents' opinions around the two subjects of the research phenomenon and problem have completely been shown in detail by the Table (2) and (3) in order.

Table (1): Distribution of the universities' staffs or respondents in the exploratory study

Egyptian	Three-fold Mi	ssion		Total	Foreign	Three-fold Mi	ssion		Total
universities	Edu.	Res.	Com.s.	Total	universities	Edu.	Res.	Com.s.	Total
Cairo	5	5	5	15	Lincoln	5	5	5	15
Alex.	5	5	5	15	Hull	5	5	5	15
Asuit	5	5	5	15	Leeds	5	5	5	15
Menoufia	5	5	5	15	Bangor	5	5	5	15
Total	20	20	20	60	Total	20	20	20	60

Source: prepared by researcher

Table (2): efficiency/deficiency of Egyptian versus foreign universities in fulfilling the mission

Mission]	Egyptian universitie	es .	Total	Mission		Foreign universitie	S	Total
aspects	efficient	neutral	deficient	Total	aspects	efficient	neutral	deficient	Total
Edu.	2	2	16	20	Edu.	15	3	2	20
Res.	1	0	19	20	Res.	18	1	1	20
Com.	3	1	16	20	Com.	17	0	3	20
Total	6	3	51	60	Total	50	4	6	60

Source: based upon the data collected by the exploratory study

Table (3): efficiency/deficiency of Egyptian versus foreign universities in aligning staff to the personal work-ambitions

Task	E	gyptian universit	ies	Total	Task		Foreign universiti	es	Total
aspects	efficient	neutral	deficient	Total	aspects	efficient	neutral	deficient	Total
Edu.	3	2	15	20	Edu.	14	2	4	20
Res.	2	1	17	20	Res.	18	0	2	20
Com.	3	3	14	20	Com.	16	1	3	20
Total	8	6	46	60	Total	48	3	9	60

Source: based upon the data collected by the exploratory study

Table (4): aligning people to their particular work-ambitions as a condition for fulfilling properly the organization mission

14	ibic (+). diigiiiig	people to their p	difficular wor	K amornons t	as a condition to	i rumming proper	Ty the organiza	tion imagion	
Task	Eg	yptian universities		Total	Task	Fo	reign universities		Total
aspects	disagree	neutral	agree	Total	aspects	disagree	neutral	agree	Total
Edu.	1	1	18	20	Edu.	0	0	20	20
Res.	0	2	18	20	Res.	1	1	18	20
Com.	1	0	19	20	Com.	0	1	19	20
Total	2	3	55	60	Total	1	2	58	60

Source: based upon the data collected by the exploratory study

As being shown in the left-hand side by the bottom row in Table (2) the deficiency of the Egyptian universities in fulfilling their mission as it properly should be is totally proved through the respondents' opinions by (51) individuals or (85%) of the target group of the university staff. This was for (9) individuals or (15%) who have been come in the neutral position or even pointed out to the efficiency of these universities in fulfilling their missions.

The same result was indicated again in detail in the case of the different roles that are done within the context of the three-fold mission as well. The responses with the deficiency in fulfilling the roles of education, research and community-serving were (16), (19), (16) out of (20) in each case, these were equal to (80%), (95%), and (80%) of the target particular subgroups in order as shown by left-hand side rows (1), (2), and (3) in Table (2). This was for (4), (1), and (4) or (20%), (5%) and (20%) of the same target subgroups in order who have gone to the efficiency of the Egyptian universities in fulfilling the three roles included in the mission they are entrusted to play.

In contrast, the right-hand side of the bottom row of the same Table (2) is showing that the efficiency of

the foreign universities is totally proved through the respondents' opinion by (48) individuals or (80%) of the target group of the university staff. This was for (12) individuals or (20) who have been come in the neutral position or even pointed out to the deficiency of these universities in fulfilling their missions. The same result was indicated again in detail in the case of the different roles that are done within the context of the three-fold mission as well. The responses with the efficiency in fulfilling the roles of education, research and community-serving were (15), (18), (17) out of (20) in each case, these were equal to (75%), (90%), and (85%) of the target particular sub-groups in order as shown by right-hand side rows (1), (2), and (3) in Table (2). This was for (5), (2), and (3) or (25%), (10%) and (15%) of the same target sub-groups in order, who have gone to the deficiency of the foreign universities in fulfilling the three roles included in the mission they are entrusted to play.

As a consequence, the research Phenomenon could be state-expressed as "compared with the efficiency case that's found in the foreign universities, there is a deficiency in the Egyptian universities in fulfilling their missions as it should be done".

In responding to the second question in the structured interviews, the different target groups in both types of universities have gone to justify the deficiency of the **Egyptian** universities and the efficiency of the **foreign** universities in properly fulfilling their missions by the deficiency of the former and the efficiency of the latter in aligning their staffs to their very particular work ambitions.

At the left-hand side of the bottom row of Table (3), the deficiency of the **Egyptian** universities in aligning staffs to their particular work-ambitions is totally proved through the respondents opinions by (46) individuals or (77%) of the target group of the university staff. This was for (14) individuals or (23%) who have been come in the neutral position or even pointed out to the efficiency of these universities in fulfilling their missions. This percentage is increased to reach (46) out of (51) individuals or (90%) of the number of individuals who said with these universities' deficiency in fulfilling their mission as it should be. The same result was indicated once again in detail in the case of the different roles that are done within the context of the three-fold mission as well. The responses with the deficiency in aligning staffs in the roles of education, research and communityserving were (15), (17), (14) out of (20) in each case as shown by lift-hand side rows (1), (2), and (3) in Table (3), these were equal to (75%), (85%), and (70%) of the target particular sub-groups in order. This was for (5), (3), and (6) or (25%), (15%) and (30%) of the same target sub-groups in order who have gone to

the efficiency of the **Egyptian** universities in aligning people to their particular work-ambitions concerning the three roles included in the mission they are entrusted to play.

At the right-hand side of the bottom row of the Table (3), the efficiency of the foreign universities in aligning staffs to their particular work-ambitions is totally proved through the respondents' opinions by (48) individuals or (80%) of the target group of the university staff. This was for (12) individuals or (20%) who have been come in the neutral position or even pointed out to the deficiency of these universities in fulfilling their missions. This percentage is increased to reach (48) out of (50) individuals or (96%) of the number of individuals who said with these universities' efficiency in fulfilling their mission as it should be. The same result was indicated again in detail in the case of the different roles that are done within the context of the three-fold mission as well. The responses with the efficiency in aligning staffs in the roles of; education, research and communityserving were (14), (18), (16) out of (20) in each case as shown by right-hand side rows (1), (2), and (3) in Table (3), these were equal to (70%), (90%), and (80%) of the target particular sub-groups in order. This was for (6), (2), and (4) or (30%), (10%) and (20%) of the same target sub-groups in order who have gone to the deficiency of the foreign universities in aligning people to their particular work-ambitions concerning the three roles included in the mission they are entrusted to play.

As a consequence, the research problem could be state-expressed as "compared with the case in the foreign universities, there is a deficiency in the Egyptian universities in aligning their staffs to their particular work-ambitions".

Asking the target groups of respondents in the two types of universities, if the alignment of the staffs to their very particular work ambitions is a condition for the universities' capability to fulfill properly the mission required by them, the answers have come as shown by the Table (4).

By the final row the staff in both the types of universities have agreed with considering the alignment of university people or staffs to their personal work-ambitions is a condition for fulfilling properly the universities' missions. In the negative facet of both the research phenomenon and problem that's represented in the **Egyptian** universities. Since there is deficiency in fulfilling properly the universities' mission and deficiency of aligning staff to their particular work ambitions, as previously shown in the left-hand sides of Tables (2) and (3) in order, people who consider the conditional case are (55) out of (60) or approximately (92%)of the target respondents. In the positive facet of both the research

phenomenon and problem that's represented in the foreign universities. Since there is efficiency in fulfilling properly the universities' mission and efficiency of aligning staff to their particular work ambitions, as previously shown in the right-hand sides of Tables (2) and (3) in order, people who consider the conditional case are (58) out of (60) or approximately (97%) of the target respondents. The number of respondents indicating the conditional concerning either the negative or positive facets, in the details or the roles included in the mission has gone to range between (18) and (20) individuals, that's respectively equal to (90%) and (100%).

As a consequence, it could be sum up to the say that "the phenomena of deficiency and efficiency of the Egyptian and foreign universities in order in properly fulfilling their missions is conditionally based upon the deficiency and efficiency of these universities in order as well in aligning their staffs to their very particular work-ambitions".

The question raised by this, so as to open an area of hypothesizing, does the deficiency/efficiency in aligning the university staffs to their very particular work-ambitions return to the deficiency/efficiency of the universities' currently adopted systems of education, research, and community-serving in empowering staff to do so? This is going to be covered in detail by next portion.

Research Hypotheses:

The area of hypothesizing is hub-revolving around the deficiency/efficiency of aligning the universities' staffs to their very particular work-ambitions, as a condition for properly fulfilling the universities' public missions, is return to the deficiency/efficiency of institutionally empowering these staffs through the currently adopted teaching, research, and community-serving systems. This is going to be tackled in detail as being shown below.

Hypothesis (1)

• Sub-hypothesis (1/1) or positive facet

The efficiency of the **foreign** universities in aligning the teaching staffs to their very particular work ambitions - as a condition for properly fulfilling the universities' sub-missions of teaching - is return to the efficiency of the currently adopted teaching system in institutionally empowering these staffs for doing so.

• Sub-hypothesis (1/2) or negative facet

The deficiency of the **Egyptian** universities in aligning the teaching staffs to their very particular work ambitions - as a condition for properly fulfilling the universities' sub-missions of teaching -is return to the deficiency of the currently adopted teaching system in institutionally empowering these staffs for doing so.

The variables to be covered by the measure that's prepared for examining this hypothesis concerning its

positive and negative facets, could be shown as follows:

1) specializations 2) courses and syllabuses,3) teaching methods andtechniques4)machinery and tools, 5) buildings and places, 6) regulations and bylaws, 7) teaching plans and burdens 8) teaching distribution and time-tables, 9) exams and studentevaluation, 10) office-hours and academic guiding, 11) student care, 12) complains and suggestions, 13) updating and modernization, 14) labor market-needs self-development, orientation, 15) disciplinary considerations, 17) ways of acceptance, 18) sponsorship, finance and funding, 19) rewarding and punishment20) co-operational education, 21) postgraduate studies proceeding, 22) gaining foreign universities' support, 23) education services, 24) student affairs services, 25) student interest groups, 26) scholarships and grants, 27) allowances and exceptions 28) liberalization of time.29) liberalization of age, 30) liberalization of place, 31) liberalization of the one-system, 32) quality criteria and conditions 33) library and references, 34) procedures facilities,35) considering graduates' employment, 36) considering graduates' feedback, 37) graduates' career path planning, 38) staff development programs 39) climate and behavior code of ethics, 40) Studenttraining programs.

Hypothesis (2)

• Sub-hypothesis (2/1)or positive facet

The efficiency of the **foreign** universities in aligning the research staffs to their very particular work ambitions - as a condition for properly fulfilling the universities' sub-missions of research - is return to the efficiency of the currently adopted research system in institutionally empowering these staffs for doing so.

• Sub-hypothesis (2/2) or negative facet

The deficiency of the **Egyptian** universities in aligning the research staffs to their very particular work ambitions - as a condition for properly fulfilling the universities' sub-missions of research - is return to the deficiency of the currently adopted research system in institutionally empowering these staffs for doing so.

The variables to be covered by the measure that's prepared for examining this hypothesis concerning its positive and negative two facets could be shown as follows:

1) conferences, 2) symposiums, 3) seminars and discussion, 4) research plans, 5)conducting applied research, 6) conducting basic research, 7) considering original research, 8) establishing research links, 9)research scholarships and grants, 10) research publicity, 11)sharing in periodicals and journals, 12) up-to date the references, 13) dept. or group research, 14) individual research, 15) research budget and funding resources, 16) researchers psycho and time

management training, 17) research marketing programs, 18) research staff education and technical training, 19) searching the research needs and fields, 20) considering the interdisciplinary research, 21) research specialist units, 22) methodology supportingcenters, 23) qualitative research domain, 24) quantitative research domain, 25) data collection staff and research-aiding services and, 26) data entry and processing staff, 27)measures establishment and testing, 28) statistic testing centers, 29) utilizing practically the research outputs,30) evolutionary extended research, 31) co-research tasks, 32) foreignpartner and international research programs, 33) national plan oriented research, 34) research references, library, links, and internet sites, 35) data collecting training, 36) reviewing the research quality conditions, 37) reviewing the plagiarism criteria, 38) distinguished group of creative researchers, 39) internal development research center, 40) bank of research ideas and proposals.

Hypothesis (3)

• Sub-hypothesis (3/1)or positive facet

The efficiency of the **foreign** universities in aligning the community-serving staffs to their very particular work ambitions - as a condition for properly fulfilling the universities' sub-missions of community serving - is return to the efficiency of the currently adopted community-serving system in institutionally empowering these staffs for doing so.

• Sub-hypothesis (3/2) or negative facet

The deficiency of the **Egyptian** universities in aligning the community-serving staffs to their very particular work ambitions - as a condition for properly fulfilling the universities' sub-missions of community serving -is return to the deficiency of the currently adopted community-serving system in institutionally empowering these staffs for doing so.

The variables to be covered by the measure that's prepared for examining this hypothesis concerning its positive and negative facets could be shown as follows:

1) providing advisory work and training programs, 2), project academic guiding and supervising, 3) company-problem resolving, 4) conducting particular researches, 5) serving individuals, groups, private companies, governmental bodies and authorities, 6) treating the local council faced-problems, 7) developing the local community 8) conducting the feasibility studies of projects, 9) supervising the establishment and running of the small projects, 10) discovering and facing the area ecological problems, 11) directing the work of agricultural, industrial, and commercial companies, 12) supporting the governorate strategies and policies, 13) creating opportunities for employment, 14) fitting the staffing of companies, 15) contributing in recycling and public cleaning, 16) facing the area seasonal problems, 17) directing the work of air, water, and soil pollution, 18) contributing the urban planning, 19) contributing the housing and architectural cleaning, 20) contributing the parks beauty and fitting, 21) directing the cultural entities effort with the environmental issues, 22) encouraging tourism and museum works, 23) helping in traffic and car movement organizing, 24) organizing the community work of NGOs, 25) campaigning for the removal of the endemic diseases 26) fighting and epidemic diseases,27) working for supporting the health maintenance varied programs, 28) controlling the use of pesticides and chemical fertilizing, disseminating of the environment awareness and culture, 30) developing the community awareness of urbanization significance, 31) directing the consuming behavior of the public services, 32) directing the community entities concerning the public responsibilities, 33) culturing the society in relation to the roles of the different serving-authorities,34) enlightening people around their public and individual duties and rights, 35) directing the community around the norms of socially accepted code of ethics and behavior, 36) making the gradual filtration of community traditions toward the best, 37) sharing in and utilizing the environment local and international agreements and conferences,38)spreading easily the governmental calls for development and security, 39) getting people familiar and comfort concerning the climate and weather ups and downs, 40). fighting the negative effects of the dire need and poverty.

Literature review:

Strategic management is not a matter of intellectually and documentary having a map of the organization philosophy, vision, mission, strategy, policy, programs, tactics, and techniques (Dess 1987, Mintzberg 1994, and King & Walker 2014), and it is not even a matter of establishing structurally the units that take the responsibility of getting these aspects accomplished or practically taken place into effect (Ring & Perry 1985, Bryson 1995, and Dulek & Campbel 2015). It is additionally a matter of gaining organization's support of the (Barnett&Burgelman1996, Elenkov et al, 2005, and Miles 2017). In order to have an effective strategic management to the organization, every single individual is urgently invited not only to share concerning the development of the strategic aspects, or to share in supporting the units directly responsible about executing these aspects, but also they are permanently entrusted to exert personally every possible effort to serve and get forward the adopted strategic orientation (Judge & Zeithaml 1992, Armstrong 2006, and Paborikar 2013). In terms of the organization people, strategic orientation should be

positioned as a belief to espouse by the organization individuals and groups, and this should extend to cover all the organization's life-time (Kearns & Scarpino 1996, Boxall, *et al.*, 2007, and Paborikar 2014a).

From this perspective strategic orientation is thought of as a human resource management issue (Cool & Schendel 1987, Conner & Prahalad 1996, and Boxall & Purcell 2003), authors interested in field of human resource and human resource affairs management were and still proportionally involved in considering the strategic management as one of the all-inclusive human resource relevant themes (Dyer & Reeves 1995, Brewster et al., 2000, and Guest 2011). Their calls and interests are revolving around making a type of congruence between the personnel objectives and the organizational objectives (Rogers & Wright 1998, Bowman, et al., 2002, Uhl-Bien & Arena 2017). On the one hand, they admit that sometimes and at some points in the work-life the contradiction between the two parties' goals is exceptionally going to occur (Huff1990, Armstrong 2006 and Chatham & Sutton 2012). According to such a view, whenever this happen a gigantic sanction that spoils the strategic orientation is being born (Purcell 1999, Holbeche 2004, and Janssens & Steyaert 2009). Herein the goalconflict should no way be eliminated (Teece, et al., 1997, Ramos-Rodriguez & Ruiz-Navarro 2004, and McGee, et al., 2005). On the other hand, they find a big room for keeping the goal-congruence between people and the organization in which they work (Andrews 1971, Spender 1996, Noe et al., 2007). They have gone to say that in some organizations the identical case of personnel and organization objectives is automatically befallen (Oliver 1991, Suchma1995, and Burke & Cooper 2006). In this the strategic aspects of organization are come as a function of the strategic interests of the individuals. In other words, people's very particular work-ambitions are representing a condition for the success of organization's strategic planning (Mintzberg & Waters 1978, Andrews 1980, and Robbins & Coulter 2012).

In this research we are practically tackling one of these organizations in which the mission cannot be properly fulfilled but through the condition of enabling people to have their very particular work ambitions properly satisfied. The organization is the university, and the strategic aspect we are considering is the mission. And the multidimensional question that logically floats up is; (1) can the university be a good teaching and qualifying organization without having good professors? Meeting the ambition, that professors are personally looking forward to concerning their teaching tasks, is a condition for meeting the ambition of the university concerning its top-assured position as an educating institute? (2)can the university be a good

organization without research having good researchers? Meeting the ambition, which professors are personally looking forward to concerning their research tasks, is a condition for meeting the ambition of the university concerning its top-reputation position as a research institute? (3) can the university be a good community-serving organization without having its staffs meeting their ambitions? The foundation of those staffs that are personally looking forward to the community-serving tasks is a condition for meeting the ambition of the university to be top-accredited as a community-serving organization. In words, the proper fulfillment of the university ambition concerning its whole triple-dimensional mission is tautologically a function in the proper fulfillment of the staff particular ambitions concerning their detailed tasks.

Herein the strategic orientation is thought of, not only as an organization top issue that the management of the latter should efficiently and effectively interested in for pushing the staffs to work on, but also it is thought of as staffs' issue that they directly work on without waiting for being pushed by the organization management to do so (Schuler 1992, Johnson et al., 2004, Audebr and 2010). Strategic orientation should be freely allowed as a path to both the management and staffs to work together for its success within the context of an overall constitution that's permanently governing all the organization parties concerning such relevant movements; as much as the management of organization staffs should fairly have the opportunity in working on and supporting the strategic orientation (Gagnon & Michael 2003, Westerman & Cyr 2004, Van-Riel 2008). The constitution that's pointed out to is effectually embodied in the university's governing systems of education, research and community-serving. The staffs should be aligned to their task-ambitions as a condition for fulfilling the organization mission; however they cannot be allowed to do so but through being empowered by these systems.

In this research literature review, it is interested in covering two main points within the context of human resource strategic management approach; how people could be automatically aligned to their workambitions and how these people could be empowered through the systems to be able to do so.

Aligning people to their very particular work-ambitions:

As long as one's alive, he has no way but to be ambitious. Yes it something to argue around, whether the talk is about the degree or level of someone's ambition concerning a particular thing, but there is no doubt that it is the driving factor of people's life (Chorn 1991, Boswell 2006, Gutierrez et al., 2007 and Posner 2010).

It is a commonsense to consider people as ambitious alive entities. This is actually taken place when seeing them distributing their ambitions in the different fields of life (Bechet & Walker 1993, Gagnon *et al.*, 2008, and Chen 2010).

Work is one of the most important fields in which people looking forward to achieve their ambitions. Some people consider themselves in a superior position compared with others, as long as they feel achieving their work ambitions (Benbya & McKelvey 2006, Khadem & Khaddar 2008, and Andersson *et al.*, 2015). When organizations hire people to work as employees, management pays too much effort to fit their personal ambitions behind the work to the ambitions of the organization behind employing them (Cable & Judge 1996, Rubino 1998, and Gutierrez & Serran 2008).

This issue has occupied an extended room in management literature particularly to those authors concern with the area of human resource management (Ostroff *et al.*, 2005, Gutierrez 2009, and Chong *et al.*, 2010). Too much amount of written work was about aligning people to the organization objectives, values, polices, vision, mission, strategies, programs, procedures, tactics and techniques (Michael & College 1997, Chan & Reich 2007, Camarinha-Matos 2008, and Kaufman *et al.*, 2013).

Due to the nature of some organizations' activity management has no need to exert this amount of effort for having the people-organization consensus around the target ambitions (Chakraborty 1991, Argandona 2003, and Robinson & Robinson 2008). In these organizations we find work ambitions to both are nearly the same, if not identical (Meglino & Korsgaard 2007, Beehr, *et al.*, 2009, Sullivan *et al.*, 2010).

This congruency in ambitions is alternatively enabling organization to have another option instead of the big effort done by the management for achieving the co-ambition fitting (Burn & Szeto 2000, Branson 2008, Alas 2009, and Pasion-Caiani2015). This could be permanently occurred by making the work governing-systems spontaneously enabling people to achieve their private work-ambitions for gaining the fulfillment of the organization ambitions, in other words having an automatically workable system that makes the tasks done by the employees serving all the time in the interest of the organization's mission.

Empowering people institutionally by the organizations' systems:

The equation of performance was classically total viewed in terms of the way it used to be occurred (Cacioppe 1998, Wooddell 2009 and Geroy *et al.*, 2015), as an outcome of the desire multiplied by the capability (Argyris 2001, Seibert et *al.*, 2004, and Shulagna 2009). In the part of desire most of the

motivation schools and organizational behavior studies were completely interested in making employees behaviorally working for the attainment of the organization goals (Wilkinson 1988, Ford & Fottler 1995, and Pelit *et al.* 2011). They have gone into considering management, from the start to the end, as getting things done through the best of others (Spreitzer 1995, Valadares 2004, and Pelit 2011). They believe that the material the management should work on is the employees' behavior (Steiner 1979, Mintzberg 1994 and Johnson *et al.* 2008).

On the other side, there was a large stream of management authors who were more interested in focusing upon capability of people (Conger & Kanungo 1988, Spreitzer et al. 1997, Mehrabani & Shajari 2013). Some of them have considered the internally-sourced or self-capabilities that are innately given to people to be talent or getting ready-made mental and physical attribute (Spreitzer 1995, Quinn & Spreitzer 1997, and Wang & Lee 2009). According to this view people in organization were classified into competent or incompetent (Keller 1995, Honold 1997 and Kaymakcı & Barbican 2014). The effort of management toward this attributes was focused on just utilizing and directing this innate capability for the interest of the performance efficiency (Bowen and Lawler 1995, Herrenkohl, et al. 1999, and Pardo & 2003). According to this empowerment, as a somehow management function, has narrowly come within the context of finding out and employing the people who are already able to perform the certain duty, task or job (Thomas & Velthouse 1990, Klagge 1998, Bookman & Morgen 2004).

Some others have had another view to the empowerment. They consider it as externally-sourced capabilities, which come from external factor (Rapport 1984 and Florin & Wandersman 1990). In terms of this perspective, external empowerment was allowed to the organization people (Zimmerman 1984 and Saeman 1992, Hoskisson et al. 1999) either technically through education and training or managerially by the allocated job, the position, the level of management, the formal authority, the delegation of bigger authority, or constitutionally by the system. Using system in this gives an open, permanent, room-free, flexible, and all-out opportunity for external empowerment. This opportunity is going to be fairly allowed to those who are naturally or supportively capable. So the empowerment function of management is to allow all the opportunities for the organization people being empowered.

To sum up, in this research we argue that getting people, who are the university staffs, properly aligned to their task-ambitions, as a condition for the organizations, or the universities, properly attaining

their target mission, is actually based upon making those people, or staffs, properly empowered, and the best way to do so is through the systems rather than anything else.

Research methodology:

Population and sample:

Despite the fact that the universities' academic staffs are collectively representing a countable and ready-recorded research population, that's theoretically pushing toward the use of one of those probability samples, particularly the stratified random sample, there was a big problem in practically accomplishing the probability condition of the randomness. Unselecting to such a sampling option was due to the inconvenience of communicating with those very busy academic staffs. As a consequence it was alternatively depended upon the non-random sampling, or particularly the quota sample. So as to be able to meet at least the condition of distributing the sample equally between the two types of universities and then proportionally according to the detailed subsections within the two sections of the target population as being found in the reality of field-study. The sample size was 400 units (Field 2009), and the sampling unite was the PhD-holder academic staffmember.

Instrumentation:

Questionnaire was the instrument that depended upon for collecting the primary data in purpose of this research. It is designed to contain three main questions. One was covering the research phenomenon, it was asking about the university efficiency/deficiency in fulfilling the mission. The second was about re-assuring widely the research problem, it was asking about the efficiency/deficiency of the university concerning the alignment of staffs to their particular work-ambitions. The third was about the university efficiency/deficiency in institutionally empowering by the systems the staffs to be aligned to their work-ambitions.

In this, there were three sub-questions, which were covering the efficiency/deficiency of the university in using every single one of its three systems - education, research, and community-serving - in aligning academic staff members to their particular work-ambition. Worth mentioning to highlight that the other conditions of the questionnaire's validity and reliability were properly covered. The lowest value of alpha that's indicating the questionnaire reliability was (0.862) if item deleted and the square root statistically indicating its validity was (0.928).

The questionnaire was administered in terms of distributing and collecting both personally and by-mail according to the convenience, and the process of data collection takes about four to five months.

Research limits:

On the one hand, this research is academically focused on literally reviewing three main themes; the organization mission, the alignment of the staff in relation to their particular ambition, and the institutional empowerment of the staff. So any other topics are research irrelevant. On the other hand, it is practically covering eight of the universities, which are working in Egypt and UK as a field study. Four Egyptian universities those are; Cairo University, Alex University, University, Sohag and University. In addition to four foreign universities those are; Hull University, Lincoln University, Leeds University and Bangor University. So any other workplaces are not empirically included in the research field study.

Research field study

Reality-based reassurance:

Based upon the wide investigation done by the use of questionnaire to the research population, through its representative sample, the concern in this portion is to re-assure within the reality of the field study, the actual existence of three research structural aspects. Those are; the research phenomenon, the research problem, and the relationship between the research problem and phenomenon.

Despite of being principally assured, in the phase of research exploratory study, that these three methodical aspects are hitting the reality in the organizations selected to be the research applied or field-study.

This crucial step is just looked at as a practical justification to continue in conducting such a type of problem-oriented research.

However the widened re-assurance that's further occurred by collecting the opinions of research sampling units was considered as a pre-requisite step for going into the process of finding out the reasons behind the research problem, in other words, it was methodologically required before practically involved in examining the research hypotheses.

Re-assuring the research phenomenon

Concerning the question directed to verify once again the research phenomenon, that was to what extent you consider that your university is efficient/deficient in properly fulfilling its triple-field mission, which includes teaching, research, and community-serving. The respondents' answers have come, as distributed on a Likerttype five-cell scale, in case of both the Egyptian and foreign universities working in Egypt, as being shown in Table (5).

Committing with the comparative method that's practically adopted by this research, the phenomenon was twin followed up so as to clarify its two facets, the positive facet or the efficiency in fulfilling properly the university mission as well as the negative facet or

the deficiency in fulfilling properly the university mission. This was occurred in the two sections of the research population, in both the foreign and Egyptian universities.

Table (5): the efficiency/ deficiency of universities working in Egypt concerning the fulfillment of their missions

S.sc.			The foreign	universities					The Egyp	tian universities		
		represented	in 4 universitie	es and 200 sam	pling units			represen	ted in 4 univer	sities and 200 sa	impling units	
Sta.	V.E(1)	E(2)	N(3)	D(4)	V.D (5)	W.Av.	V.E (1)	E(2)	N(3)	D(4)	V.D (5)	W.A
Edu.	110	60	9	13	8	349/200	3	12	3	67	115	879/200
Edu.	55%	30%	4.5%	6.5%	4%	= 1.745	1.5%	6%	1.5%	33.5%	57.5%	=4.395
Res.	102	56	10	18	14	386/200	6	16	9	68	101	842/200
Res.	51%	28%	5%	9%	7%	= 1.980	3%	8%	4.5%	34%	50.5%	=4.210
C.Ser.	99	62	15	13	11	375/200	10	12	4	74	100	842/200
C.Ser.	49.5%	31%	7.5%	6.5%	5.5%	=1.875	5%	6%	2%	37%	50%	=4.210
	311/3	178/3	34/3	44/3	33/3	370/200	19/3	40/3	16/3	209/3	316/3	854/200
T.Av.	=103.7	=59.3	=11.3	=14.7	=11	=1.850	=6.3	=13.3	=5.4	=69.7	=105.3	4.270
	51.85%	29.65%	5.65%	7.35%	5.50%		3.15%	6.65%	2.70%	34.85%	52.65%	

Source: based upon the primary data collected via the field-study VE = very efficient VD = very deficient

By the final row, in the right hand side of the Table (5) it was found that phenomenon was clearly appeared in its positive facet concerning the foreign universities. The efficiency of fulfilling the mission in this type of universities was statistically indicated by the responses of (163) sampling units which equal to (81.5%) of the (200) units, those allocated to such a sample section. While around (26) units or (12.85%) of same sample section, have oppositely gone with the deficiency of these universities concerning the same issue. The number of respondents who were having a neutral situation did not exceed (11) units or (5.5%). This positive tendency of the research phenomenon in the section of foreign universities is indicated twice again though accounting the weighted average to show an average value of (1.85) that's far less than the ranking value of the middle cell of the employed fivecell scale or (3) with a difference of (1.25).

In detail, the rows from (1) to (3) are highlighting the facet of efficiency concerning the fulfillment of every single one of the triple roles included in the universities' mission. The number of units who have supported the efficiency or positive facet of the phenomenon in detail has recorded (170), (158) and (161) sampling units or (85%), (78%) and (80.5%) of the target sample-section size, concerning the education, the research, and the community-serving in order. Opposing to those, the numbers of the individuals who said by the deficiency in fulfilling properly these roles were (21), (32), and (24) equal to (10.5%), (16%), and (12%) according to the same ordering. Respondents who have gone with the neutral case were represent (9), (10), and (15) units or (4.5%), (5%), and (7.5%) respectively as well. The weighted average value did not exceed (1.980).

On the other side, By the final row, in the left hand side of the Table (5) it was found that phenomenon was clearly appeared in its negative facet concerning the Egyptian universities. The deficiency of fulfilling the mission in this type of universities was statistically indicated by the responses of (175) sampling units which equal to (87.5%) of the (200) units, those allocated to such a sample section. While

around (20) units or (9.8%) of same sample section, have oppositely gone with the efficiency of these universities concerning the same issue. The number of respondents who were having a neutral situation did not exceed (6) units or (2.7%).

This negative tendency of the research phenomenon in the section of Egyptian universities is indicated twice again though accounting the weighted average to show an average value of (4.270) that's far greater than the ranking value of the middle cell of the employed five-cell scale or (3) with a difference of (1.27).

In detail, the rows from (1) to (3) are highlighting the facet of deficiency concerning the fulfillment of every single one of the triple roles included in the universities' mission. The number of units who have supported the deficiency or negative facet of the phenomenon in detail has recorded (182), (169) and (174) sampling units or (91%), (84.5%) and (87%) of the target sample-section size, concerning the education, the research, and the community-serving in order. Opposing to those, the numbers of the individuals who said by the efficiency in fulfilling properly these roles were (15), (22), and (22) equal to (7.5%), (11%), and (11%) according to the same ordering. Respondents who have gone with the neutral case were represent (3), (9), and (4) units or (1.5%), (4.5%), and (2%) respectively as well. The weighted average value exceeded (4.39).

Re-assuring the research problem:

Alike what we have done in detail concerning the wide confirmation of the research phenomenon, the same steps were followed once again to re-verify the foundation of the research problem within the reality of the research field study. The questionnaire was included the question number two that was about "to extent the university is efficient/deficient in properly aligning staffs to their particular work-ambitions as a condition for properly fulfilling the universities' mission. The answers of the those staffs; who have been included as sampling units, in both the two types of universities, in relation to this question have statistically organized by the Table (6).

Table (b): the efficien	ncy/aericien	cy of the	toreign and	ı Egyptian i	universities i	n property a	angning the	stairs to tr	ieir particula	ar work-amb	itions
S.sc.			The foreign	universities					The Egyp	tian universities		
S.SC.		represented	in 4 universit	ies and 200 sa	mpling units			represent	ted in 4 univer	sities and 200 sa	impling units	
Sta.	V.E (1)	E(2)	N (3)	D (4)	V.D (5)	W.Av.	V.E (1)	E(2)	N (3)	D (4)	V.D (5)	W.A
Edu.	106	58	8	15	13	371/200	14	11	16	70	89	809/200
Euu.	53%	29%	4%	7.5%	6.5%	= 1.885	7%	5.5%	8%	35%	44.5%	=4.045
Res.	100	61	11	21	7	374/200	12	12	9	76	91	822/200
Res.	50%	30.5%	5.5%	10.5%	3.5%	= 1.870	6%	6%	4.5%	38%	50.5%	=4.110
C.Ser.	92	80	5	12	11	370/200	21	18	7	72	82	776/200
C.Ser.	46%	40%	2.5%	6%	5.5%	=1.850	10.5%	9%	3.5%	36%	41%	=3.880
	298/3	199/3	24/3	48/3	31/3	372/200	47/3	41/3	32/3	218/3	262/3	802/200
T.Av.	=99.3	=66.3	=8	=16	=10.4	=1.868	=15.7	=13.7	=10.7	=72.7	=87.3	=4.011
	49.65%	33.15%	4%	7.35%	5.50%		7.85%	6.85%	5.35%	36.35%	43.65%	

Source: based upon the primary data collected via the research field-study E = efficient D = deficient N = neutral

As shown in the right hand side by the final row of the table (6), the research problem has taken the positive facet in the foreign universities, the number of staffs who have gone with considering the efficiency of this type of universities in aligning the staffs for their particular work-ambitions, that are come in the interest of the foreign universities' missions, was (166) sampling units or (82.8%) of the allocated number of sample section; or (200) individuals.

In contrast, the number of the staffs who found their universities deficient concerning the same subject was (26) individuals which is equal to (12.85%) of the sample section size. The neutral position is represented by just (8) individuals or (4%). This was further confirmed by the weighted average that was (1.868) which is less than ranking value of the scale's middle cell or (3) with a difference of (1.132).

In terms of the efficiency/deficiency of the foreign universities in aligning the staffs to their particular work-ambitions, in the different three aspects of the university mission, it was found that the number of staffs who are considering the foreign universities efficiency in the different cases was ranged between (161) individuals or (80.5%) and (172) individuals or (86%). On contrary the individuals' number in the other side was ranged between (7) or (3.5%) and (13) individuals or (6.5%). The number of staffs who have come in the neutral position did not go above (11) individuals or (5.5%). This means that the positive orientation which is taken by the problem in total is existed partially in detail as well, concerning the alignment of staff to their particular ambitions in education, research, and community-serving. The maximum value of the weighted average was (1.882) this was less than (3) or the rank value of the scale's middle cell.

In the left hand side of the final row in the Table (6), figures have totally indicated the negative facet of the research problem. the number of staffs who have gone with considering the deficiency of this type of universities in aligning the staffs for their particular work-ambitions, that are come in the interest of the universities' missions, was (160) sampling units or (80%) of the allocated number of sample section; or (200) individuals.

In contrast, the number of the staffs who found their universities efficient concerning the same subject was (30) individuals which is equal to (15%) of the sample section size. The neutral position is represented by just (11) individuals or (5.5%). This was confirmed by the weighted average that was (4.011) which is greater than ranking value of the scale's middle cell or (3) with a difference of (1.011).

In terms of the efficiency/deficiency of the governmental universities in aligning the staffs to their particular work-ambitions, in the different three aspects of the university mission, it was found that the number of staffs who are considering governmental universities efficiency in the different cases was ranged between (154) individuals or (77%) and (167) individuals or (88.5%). Dissimilar to this, the number of individuals in the other side was ranged between (24) or (12%) and (39) individuals or (19.5%). The number of staffs who have come in the neutral position did not go above (16) individuals or (8%).

This means that the negative orientation which is taken by the problem in total is existed partially in detail as well, concerning the alignment of staff to their particular ambitions in education, research, and community-serving. The minimum value of the weighted average was (3.880) this was greater than (3) or the ranking value of the scale's middle cell.

In accordance with the above statistical readings to the practically collected data around the research problem, it could be recognized that the problem is existed in the reality of the universities as the research field study.

However it takes the positive facet in the foreign universities, which means that these universities are efficient in relation to the staffs' alignment to their particular work-ambitions, while it takes the negative facet in the Egyptian universities, which means that these universities are deficient regarding the staffs' alignment to their particular work-ambitions.

Based upon this reading, it could be argued that the alignment of people to their particular workambitions as one of the conditions required for properly fulfilling the organization mission was considered by the former or the foreign universities while unconsidered by the latter or the Egyptian

universities. This is going to be more explained by the next portion.

\bullet Re-assuring the problem-phenomenon connecting:

In addition to the basic establishment to the research problem within the context of the exploratory study, there are two ways to depend upon to get the research problem re-assured once again. The first was to build directly upon the reality, that's expressed directly by the target respondents. This was occurred by asking these respondents directly through the questionnaire around the connection between the research phenomenon and problem. The second was to building upon analyzing the reality, that's occurred through utilizing the statistic in establishing sort of connection between the research phenomenon and

problem based upon the respondents' answers concerning the existence of each.

• Establishing by reality the problemphenomenon connection:

For doing so, the questionnaire was included a direct question that's numbered (3) to establish this relationship through the direct opinions of the sampling units in the two types of universities, the question was "regardless of your university efficiency/deficiency concerning both the proper fulfillment of the mission and the proper alignment of the staffs to their particular work ambitions, to what extent you may agree/disagree that there is a link between the latter issue and the former one". The answers have come as distributed on the research five-scale by the Table (7).

Table (7): verifying practically the phenomenon-problem connection through the direct respondents' opinions around both of them in conjunction.

S.sc.		Fore	ign and Egy	ptian univer	sities represe	ented in (4 u	niversities a	nd 200 sam	pling units)	each.	
	Definitely	agree (1)	Agre	e (2)	Neuti	ral (3)	Disag	ree (4)	Absolutely	disagree (5)	W.
Sta.	Foreign	Egyptian	Foreign	Egyptian	Foreign	Egyptian	Foreign	Egyptian	Foreign	Egyptian	average
Edu.	113	105	62	55	8	11	8	12	9	17	723/400
Edu.	56.5%	52.5%	31%	27.5%	4%	5.5%	4%	6%	4.5%	8.5%	=1.808
Res.	109	116	57	60	13	10	12	9	9	5	682/400
Res.	54.5%	58%	28.5%	30%	6.5%	5%	6%	4.5%	4.5%	2.5%	=1.705
C.Ser.	92	89	65	67	16	16	10	18	17	10	768/400
C.Sel.	46%	44.5%	32.5%	33.5%	8%	8%	5%	9%	9.5%	5%	=1.920
	314/3	310/3	184/3	182/3	37/3	37/3	30/3	39/3	35/3	32/3	724/400
T.Av.	=104.7	=103.3	=61.3	=60.7	=12.3	=12.3	=10.0	=13	=11.6	=10.7	=1.811
I.Av.	52.3%	51.6%	30.7%	30.3%	6.15%	6.15%	5%	6.5%	6.15%	5.4%	
	52	!%	30.	5%	6.1	5%	5.5	8%	5.7	7%	

Source: based upon the primary data collected via the research field-study

Based upon the approximation allowed by the total average, it could be concluded that, within the context of the specified field study and the investigated representing sample units, about (82.5%) of the whole sample size or (330) out of (400) individuals have gone, via their direct opinions, with considering the connection between efficiency/deficiency of the universities working in Egypt in fulfilling the mission as properly required by them, and efficiency/deficiency of these universities in aligning staffs to their very particular work-ambitions. Conversely, around (11.5%) or (46) individuals out of the same sample size have unconsidered, via their direct responses, this connection. The rest of the sample units or (26) individual that's equal to (6%) have directly expressed neither agree nor disagree concerning such a connection. This means that the relationship between the research problem and phenomenon is proved by the opinions of the sample units through directly asking them about this relationship. The same direction was confirmed as well by the weighted average value that was (1.811), which located within the ranking values of agreement cells and pointed out to a difference of (1.189) less than (3) or the middle cell ranking value. Standard deviation value was.

Reading vertically the above displayed Table (7), in order to follow the connection between the research problem and the research phenomenon, in the two sections of the sample that are representing the foreign and Egyptian universities. It was found that this relationship is established in the foreign universities as well as the Egyptian ones. In the foreign universities the numbers of the respondents who have stood with the relationship existence versus those who have stood against its existence, were (166)out of (200) individuals or (83%) of the sample section versus (22) or (11%) of same sample section size. This proves the foundation of the relationship in terms of the foreign universities' sample representatives. In this sample section, since it has previously been established that both the research phenomenon and the research problem have come in the positive facet, as shown by the Table (6), it could be confirmed that the relationship in this case is taking the positive facet as well. This means that there is a relationship between the efficiency of the foreign universities concerning the proper fulfillment of their public mission and the efficiency of these universities regarding the alignment of their staffs to their particular workambitions. In the Egyptian universities the numbers of the respondents who have stood with the relationship existence versus those who have stood against its

existence, were (164) out of (200) individuals or (82%) of the sample section versus (24) or (12%) of same sample section size. This proves the foundation of the relationship in terms of the Egyptian universities' sample representatives. In this sample section, since it has previously been established that both the research phenomenon and the research problem have come in the negative facet, as shown by the Table (6), it could be confirmed that the relationship in this case is taking the negative facet as well. This means that there is a relationship between the deficiency of the Egyptian universities concerning the proper fulfillment of their public mission and the deficiency of these universities regarding the alignment of their staffs to their particular workambitions.

Reading horizontally the above demonstrated table (7), so as to recognize the connection between the research problem and phenomenon concerning every single one of the roles required by the universities within the context of its mission, it has found that relationship is established in the field of, education, research, and community-serving.

Since the agreement percentages were (83.75%) or (335) individuals, (85.50%) or (342) individuals, and (78.25%) or (313) individuals in order, versus the disagreement percentages those were (13.57%) or (55) individuals, (8.75%) or (35) individuals, and (13.75%) or (55) individuals respectively.

This means that the relationship is totally established by all the sample size, partially established by every single one of the sample sections, separately established concerning the three fields contained by the investigated phenomenon and problem, and two-facet established as well; positive in the case of the foreign universities and negative in the case of the Egyptian universities.

In other words it could be collectively said that, "there is a relationship between the efficiency/deficiency of the Egyptian universities concerning the fulfillment of their public mission and the efficiency/deficiency of these universities concerning the alignment of the staffs concerning their particular work-ambitions.

However, this could be comparatively expressed as" compared with, the positive facet, that's represented in the existence of a relationship between; the efficiency of the foreign universities in fulfilling their mission and the efficiency of these universities in aligning their staffs to their work ambitions, alternatively there is a negative facet that's represented in the existence of a relationship between; the deficiency of the Egyptian universities in fulfilling their mission and the deficiency of these universities

in aligning their staffs to their particular work-ambitions.

• Establishing by reality analysis the problem-phenomenon connection:

Building upon the establishment of the statistical relationship between; on the one hand, the answers to first question, that was about confirming the existence of the research phenomenon or the universities' proper/improper fulfillment of the mission, and on the other hand, the answers to the second question, that was about verifying the foundation of the research problem or the universities' proper/improper alignment of the staffs to their particular workambitions. This was separately come about for both the staffs representing the foreign universities as well as the staffs representing the Egyptian universities.

As being shown by the Table (8), from the (200) target respondents or the part of the sample that's representing the population section of the foreign universities, the number of respondents who consider the connection between the research phenomenon and problem, that was indicated by the overall consensus/non-consensus had ranged between (168 and 181) respondents, equal to (84% to 90.5%) respectively. On contrary, the number of respondent who considered no connection was ranged between (19 and 32) individuals, equal to (9.5% and 16%) in order. This descriptively proved the connection between both the research phenomenon and problem.

Testifying the positive/ negative facet of such a connection, in terms of the foreign university sampling units, it was found from the agreement/disagreement consensus that the number of respondents who considered the positive facet or in other words that the efficiency of these universities in properly fulfilling their missions is return to their efficiency in properly aligning their staffs to their particular work-ambitions had ranged between (129 and 141) respondents, equal to (64.5% to 70.5%) respectively. On contrary, the number of respondents who considered the negative facet or in other words that there is a deficiency in the foreign universities concerning the fulfillment of their mission and this return to the deficiency of these universities concerning the alignment of their staffs to their particular work ambitions, had ranged between (5 and 22) individuals, equal to (2.5% and 11%)in order. This means that in the foreign universities the research phenomenon together with the research problem is taking the positive facet. In other words it could be said that, within the context of the descriptive statistic, the foreign universities efficiency in properly fulfilling their mission is due to their efficiency in properly aligning their staffs to particular work-ambitions.

84

+0 9604

0.0

0.960

0.922

Proving descriptively the relationship Proving analytically the relationship The relationship The denotation of relationship Consensus Consensus Non Consensus of all Disagree (1,2,3,4,5 Likelihood Т of all (1,2,3,4,5) Agree Neutral Liner by \mathbb{R}^2 BR Pearson (1,2) liner (3) ratio V.PV.PV.PV.PV.P18 181 19 640.010 447.646 188.671 3616.86 60.1403 +0.9737 0.974 0.948 90.5 64.5 0.0 0.0 0.0 0.0 0.0 170 30 502.983 430.994 183.033 2269.77 47.6421 2 +0 9590 0.959 0.919 0.0 0.0 0.0 0.0 168

Table (8): verifying practically the problem-phenomenon connection in foreign universities through analyzing together the respondents' opinions concerning each.

Source: the field study

11

Table (9): verifying practically the problem-phenomenon connection in Egyptian universities through analyzing together the respondents' opinions concerning each.

		Proving de	escriptively the r	elationship			son Likelihood ratio Liner by liner B F T R R² V.P V.P						
S.	Consensus	Consensus	Consensus	Consensus	Non		The relationship			The denot	ation of relati	onship	
v.	of Agree (1,2)	of Disagree (3,4)	of Neutral (3)	of all (1,2,3,4,5	Consensus of all (1,2,3,4,5)	Chi ² Pearson	Likelihood	Liner by	В	F	T	R	\mathbb{R}^2
	F.%	F.%	F.%	F.%	F.%	V.P	V.P	V.P		V.P	V.P		
1	40	145	2	187	13	523.082	432.004	185.468	.0.0654	2713.85	52.0946	0.065	0.022
1	20	72.5	1	93.5	6.5	0.0	0.0	0.0	+0.9034	0.0	0.0	0.903	0.932
2	27	140	10	177	23	536.718	424.684	186.582	.0.0692	2975.13	54.5448	0.069	0.027
2	13.5	70	5	88.5	11.5	0.0	0.0	0.0	+0.9082	0.0	0.0	0.908	0.937
2	36	141	10	187	13	640.004	461.439	192.009	+0.9822	5438.57	73.7467	0.982	0.964
3	18	70.5	5	93.5	6.5	0.0	0.0	0.0	+0.9822	0.0	0.0	0.982	0.904

Source: the field study

The above cross-tab based relationship, that's descriptively established by the level of consensus around the two investigated variables of the research problem and phenomenon in conjunction, is analytically proved as well. This was through calculating the values of Pearson and likelihood (Chi^2) , which were totally come as significant, since the (P) of the minimum value of each - (487.706) and (430.994) -was (0.0), at (95%) degree of confidence, (5%) level of significance and (16) degrees of freedom. Accordingly it could be said that there is a significant relationship between the efficiency of the foreign universities in properly fulfilling the public mission entrusted by them and the efficiency of these universities in properly aligning their staffs to the particular work ambitions.

Furthermore, the indication of this relationship was proved in different aspects as well. In terms of the type, it was proved through the establishment of the regression model as a causal one, as the lowest values of both (F) and (T) that were (2269.77) and (47.6421) respectively had come highly significant, since the probability of both was (0.0), at (95%) degree of confidence, (5%) level of significance and (1,198) and (199) degrees of freedom in order. Regarding the direction, such a relationship is proved as a proportionally direct one; this was indicated not only by the fitness of the regression model that's previously assured by the significance of all the values of both (F) and (T), but also the positive signals of (β) that was at minimum equal (+0.9590). In relation to the form, it was proved as a linear relationship this was twin-confirmed by considering the lowest percentage

of the overall consensus that was (84%) versus the non-consensus that was (16%), in addition to the lowest value of the linear by linear (Chi²)that was (183.033), which had come greatly significant with a probability or (P) equal (0.0), at (95%) degree of confidence, (5%) level of significance and (16) degrees of freedom. On the subject of the strength of this relationship, the minimum of both (R) and (R^2) values were (0.959) and (0.919), this proved that this relationship is very strong in terms of both the direction and form.

As a consequence it could be analytically said that there is a statistically indicated significant relationship between the efficiency of the foreign universities in properly fulfilling the public mission entrusted by them and the efficiency of these universities in properly aligning their staffs to the particular work ambitions.

On the other side, As being shown by the Table (9), from the (200) target respondents or the part of the sample that's representing the population section of the Egyptian universities, the number of the respondents who considered the connection between the research phenomenon and problem, that was indicated by the overall consensus/ non-consensus had ranged between (177 and 187) respondents, equal to (88.5% to 93.5%) respectively. On contrary, the number of respondents who considered no connection was ranged between (13 and 23) individuals, equal to (6.5% and 11.5%) in order. This descriptively proved the connection between both the research phenomenon and problem.

Testifying the positive/ negative facet of such a connection, in terms of the Egyptian universities' sampling units, it was found agreement/disagreement consensus that the number of respondents who considered the negative facet or in other words that the deficiency of these universities in properly fulfilling their missions is return to their deficiency in properly aligning their staffs to their particular work-ambitions had ranged between (141 and 145) respondents, equal to (70.5.5% to 72.5%) respectively. On contrary, the number of respondents who considered the positive facet or in other words that there is inefficiency in the Egyptian universities concerning the fulfillment of their mission and this return to the efficiency of these universities concerning the alignment of their staffs to their particular work ambitions, had ranged between (27 and 40) individuals, equal to (13.5% and 20%) in order. This means that in the Egyptian universities the research phenomenon together with the research problem is taking the negative facet. In other words it could be said that, within the context of the descriptive statistic, the Egyptian universities deficiency in properly fulfilling their mission is due to their deficiency in properly aligning their staffs to the particular work-ambitions.

The above cross-tab based relationship, that's descriptively established by the level of consensus around the two investigated variables of the research problem and phenomenon in conjunction, is analytically proved as well. This was through calculating the values of Pearson and likelihood (*Chi*²), which were totally come as significant, since the (*P*) of the minimum value of each or (523.082) and (424.684) was (0.0), at (95%) degree of confidence, (5%) level of significance and (16) degrees of freedom.

Accordingly it could be said that there is a significant relationship between the deficiency of the governmental universities in properly fulfilling the public mission entrusted by them and the deficiency of these universities in properly aligning their staffs to the particular work ambitions.

Furthermore, the indication of this relationship was proved in different aspects as well. In terms of the type, it was proved through the establishment of the regression model as a causal one, as the lowest values of both (*F*) and (*T*) that were (2713.85) and (52.0946) respectively had come highly significant, since the probability of both was (0.0), at (95%) degree of confidence, (5%) level of significance and (1,198) and (199) degrees of freedom in order. Regarding the direction, such a relationship is proved as a proportionally direct one; this was indicated not only by the fitness of the regression model that's previously assured by the significance of all the values of both

(F) and (T), but also the positive signals of (β) that was at minimum equal (+0.9654). In relation to the form, it was proved as a linear relationship this was twin-confirmed by considering the lowest percentage of the overall consensus that was (88.5%) versus the highest percentage of non-consensus that was (11.5%), in addition to the lowest value of the linear by linear (Chi^2)that was (185.468), which had come greatly significant with a probability or (P) equal (0.0), at (95%) degree of confidence, (5%) level of significance and (16) degrees of freedom. On the subject of the strength of this relationship the minimum of both (R) and (R^2) values were (0.965) and (0.932), this proved that it was very strong in terms of both the direction and form.

As a consequence it could be analytically said that there is a statistically indicated significant relationship between the deficiency of the Egyptian universities in properly fulfilling the public mission entrusted by them and the deficiency of these universities in properly aligning their staffs to their own work ambitions.

As a consequence, it could be said that the relationship between the research problem and phenomenon is actually two-fold established. On the one hand, the positive facet that was occurred in the **foreign** university, since the efficiency in practicing the mission is return to the efficiency in aligning staffs to their particular work ambitions. On the other hand, the negative facet that was occurred in the Egyptian universities, since the deficiency in practicing the mission is return to the deficiency in aligning staffs to their work ambitions.

Going over to the main point, this research as problem-oriented one is practically focused on tackling an assured reality-based problem that's fairly justifying its conduction.

• Testing the hypothesis (1)

o Testing the hypothesis (1/1)

As being shown by the Table (10), from the (200) target respondents or the part of the sample that's representing the population section of the foreign universities, the number of respondents who considered the connection between on the one hand, the alignment/ non alignment of the teaching staffs to their particular work-ambitions and on the other hand, empowerment/non-empowerment of these staffs to be institutionally able for doing so through the adopted teaching system, was indicated by the overall consensus that was ranged between (144 and 182) respondents, equal to (72% and 91%) respectively. On contrary, the number of respondent who considered no connection in such an investigated relationship was indicated by the overall non-consensus that was ranged between (11 and 61) individuals, equal to (5.5% and 30.5%) in order. This descriptively proved

the connection between both the investigated variables of the hypothesis (1/1).

Testifying the positive/ negative facet of such a connection, in terms of the foreign university sampling units, it was found from the agreement/disagreement consensus that the number of respondents who considered the positive facet, or in other words that the efficiency of these universities in properly aligning their staffs to their particular work-ambitions is return to their efficiency in institutionally empowering the staffs for doing so through the teaching system, was ranged between (117 and 150) respondents, equal to (58.5% and 75%) respectively. On contrary, the number of respondents who considered the negative facet, or in other words, that there is a deficiency in the foreign universities concerning the alignment of their staffs to their particular work ambitions due to the deficiency of these universities in institutionally empowering their staffs via the adopted teaching system for doing so, was ranged between (12 and 33) individuals, equal to (6% and 16.5%) in order.

This means that in the foreign universities, both the investigated variables of hypothesis (1/1) is taking the positive facet. In other words it could be said that, within the context of the descriptive statistic, the foreign universities efficiency in properly aligning their staffs to particular work-ambitions is due to their efficiency in institutionally empowering these staffs for doing so via the adopted teaching system.

The above cross-tab based relationship, that's descriptively established by the level of consensus around the two investigated variables of the hypothesis (1/1) in conjunction, is analytically proved as well. This was through calculating the values of Pearson and likelihood (Chi^2) , which were totally come as significant, since the (P) of the minimum value of each - (408.996) and (326.990) - was (0.0), at (95%) degree of confidence, (5%) level of significance and (16) degrees of freedom.

Accordingly the null hypothesis (1/1) is rejected to accept alternatively that there is a significant relationship between the efficiency of the foreign universities in properly aligning their staffs to the particular work ambitions and the efficiency of these universities in institutionally empowering the staffs for doing so through the adopted teaching system.

Furthermore, the indication of this relationship was proved in different aspects as well. In terms of the type, it was proved through the establishment of the regression model as a causal one, as the lowest values of both (F) and (T) that were (1163.585) and (34.4797) respectively had come highly significant, since the probability of both was (0.0), at (95%) degree of confidence, (5%) level of significance and (1,198) and (199) degrees of freedom in order.

Regarding the direction, such a relationship is proved as a proportionally direct one; this was indicated not only by the fitness of the regression model that's previously assured by the significance of all the values of both (F) and (T), but also the positive signals of (β) that was at minimum equal (+0.9121).

In relation to the form, it was proved as a linear relationship this was twin-confirmed by considering the lowest percentage of the overall consensus that was (72%) versus the non-consensus that was at maximum (30.5%), in addition to the lowest value of the linear by linear (Cht^2) that was (165.585), which had come significant with a probability or (P) equal (0.0), at (95%) degree of confidence, (5%) level of significance and (16) degrees of freedom. On the subject of the strength of this relationship, the minimum of both (R) and (R^2) values were (0.900) and (0.810), this proved that this relationship is very strong in terms of both the direction and form.

As a consequence it could be analytically accept that there is a statistically indicated significant relationship between the efficiency of the foreign universities in properly aligning their teaching staffs to the particular work ambitions and the efficiency of these universities in institutionally empowering the staffs for doing so via the adopted teaching system.

• Testing the hypothesis (1/2)

As being shown by the Table (11), from the (200) target respondents or the part of the sample that's representing the population section of the Egyptian universities, the number of respondents who considered the connection between on the one hand, the alignment/non-alignment of the teaching staffs to their particular work-ambitions and on the other hand, the empowerment/non-empowerment of these staffs to be institutionally able for doing so via the adopted teaching system, was indicated by the overall consensus that was ranged between (147 and 191) respondents, equal to (73.5% and 95.5%) respectively. On contrary, the number of respondent who considered no connection in such an investigated relationship was indicated by the overall nonconsensus that was ranged between (8 and 53) individuals, equal to (4% and 26.5%) in order. This descriptively proved the connection between both the investigated variables of the hypothesis (1/2).

Testifying the positive/ negative facet of such a connection, in terms of the Egyptian universities' sampling units, it was found from the agreement/disagreement consensus that the number of respondents who considered the negative facet or in other words that the deficiency of the Egyptian universities in properly aligning their teaching staffs to their particular work-ambitions that's due to the deficiency of these universities in institutionally empowering their teaching staffs via the adopted

teaching system for doing so, was ranged between (120 and 152) respondents, equal to (60% and 76%) respectively. On contrary, the number of respondents who considered the positive facet or in other words that there is an efficiency in the Egyptian universities concerning the alignment of their staffs to their particular work ambitions is due to the efficiency of these universities in institutionally empowering their teaching staffs for doing so via the adopted teaching system, was ranged between (13 and 37) individuals, equal to (6.5% and 18.5%) in order.

This means that in the Egyptian universities, both the investigated variables of hypothesis (1/2) is taking the negative facet. In other words it could be said that, within the context of the descriptive statistic, the Egyptian universities deficiency in properly aligning their teaching staffs to their particular work-ambitions is due to their deficiency in institutionally empowering these staffs for doing so via the adopted teaching system.

The above cross-tab based relationship, that's descriptively established by the level of consensus around the two investigated variables of the hypothesis (1/2) in conjunction, is analytically proved as well. This was through calculating the values of Pearson and likelihood (Chi^2) , which were totally come as significant, since the (P) of the minimum value of each - (316.177) and (276.350) - was (0.0), at (95%) degree of confidence, (5%) level of significance and (16) degrees of freedom.

Accordingly the null hypothesis (1/2) is rejected to accept alternatively that there is a significant relationship between the deficiency of the Egyptian universities in properly aligning their teaching staffs to the particular work ambitions and the efficiency of these universities in institutionally empowering these staffs for doing so via the adopted teaching system.

Furthermore, the indication of this relationship was proved in different aspects as well. In terms of the type, it was proved through the establishment of the regression model as a causal one, as the lowest values of both (F) and (T) that were (1054.79) and (40.9555) respectively had come highly significant, since the probability of both was (0.0), at (95%) degree of confidence, (5%) level of significance and (1,198) and (199) degrees of freedom in order.

Regarding the direction, such a relationship is proved as a proportionally direct one; this was indicated not only by the fitness of the regression model that's previously assured by the significance of all the values of both (F) and (T), but also the positive signals of (β) that was at minimum equal (+0.8848). In relation to the form, it was proved as a linear relationship this was twin-confirmed by considering the lowest percentage of the overall consensus that was (73.5%) versus the greatest percentage of non-

consensus that was (26.5%), in addition to the lowest value of the linear by linear (Chi^2) that was (154.834), which had come significant with a probability or (P) equal (0.0), at (95%) degree of confidence, (5%) level of significance and (16) degrees of freedom. On the subject of the strength of this relationship, the minimum of both (R) and (R^2) values were (0.882) and (0.778), this proved that this relationship is very strong in terms of both the direction and form.

As a consequence it could be analytically accept that there is a statistically indicated significant relationship between the deficiency of the Egyptian universities in properly aligning their teaching staffs to the particular work ambitions and the deficiency of these universities in institutionally empowering the teaching staffs for doing so via the adopted teaching system.

As a consequence, it could be said that the relationship between both the investigated variables that were considered in the hypothesis (1) is actually two-facet established. In the hypothesis (1/1), the positive facet was established in the foreign university, since there was an efficiency of these universities concerning the alignment of the teaching staffs to their particular work ambitions due to their efficiency in institutionally empowering their teaching staff for doing so via the adopted teaching system. In the hypothesis (1/2), the negative facet was established in the Egyptian universities, since there was a deficiency of these universities concerning the alignment of the teaching staffs to their particular work ambitions due to their deficiency in institutionally empowering their teaching staff for doing so via the adopted teaching system.

- Testing the hypothesis (2)
- o Testing the hypothesis (2/1)

As being shown by the Table (12), from the (200) target respondents or the part of the sample that's representing the population section of the foreign universities, the number of respondents who considered the connection between on the one hand, the alignment/ non alignment of the research staffs to their particular work-ambitions and on the other hand, empowerment/non-empowerment of these staffs to be institutionally able for doing so through the adopted research system, was indicated by the overall consensus that was ranged between (151 and 190) respondents, equal to (75.5% and 95%) respectively. On contrary, the number of respondent who considered no connection in such an investigated relationship was indicated by the overall nonconsensus that was ranged between (10 and 50) individuals, equal to (5% and 25%) in order. This descriptively proved the connection between both the investigated variables of the hypothesis (2/1).

Table (10): the relationship between the efficiency /deficiency of the **foreign** universities in aligning the staffs to their particular work-ambitions and the efficiency/deficiency of these universities in institutionally empowering them for being freely able to do so via the currently adopted education system.

19	edu	cation	system		de		rahı dı	ala4!	hin					Describer:	abela-II "	o volot!!	in.		
Part		Cons	ensus					elations	пір	ı	Non		The relationship		arytically th			onship	
Part	S.	c	of		of		of			Con	sensus	Chi ²	Chi ²	Chi ²					
V. P. W. S. M. S.												Pearson			В	F	Т	R	R ²
1	٧.					F.%								V.P					
19	1	130	65	21	10.5	13	6.5	164	82	36	18				+0.9463			0.946	0.895
1	2	119		25		16		160		40		489.515	391.366	178.363	+0.9467	1711.33	41.3682	0.947	0.896
	-	143	59.5	27	12.5	12	8	182	80	18	20								
1	3		71.5		13.5		6		91		9	0.0	0.0	0.0	+0.9699	0.0	0.0	0.970	0.940
6	4	117	58.5	19	9.5	8	4	144	72	56	28				+0.9324			0.932	0.869
17 19 19 19 19 19 19 19	5	130		18		0		148		52		483.374	343.983	165.860	+0.9129	990.972	34.4797	0.913	0.833
Section Sect		117	65	22	9	9	0	148	74	52	26								
	6		58.5		11		4.5		74		26	0.0	0.0	0.0	+0.9430	0.0	0.0	0.943	0.889
S	7	136	68	24	12	1/	8.5	1//	88.5	23	11.5				+0.9601			0.960	0.921
10	8	121		21		7		149		51		467.657	355.722	172.682	+0.9315	1299.15	36.0437	0.932	0.869
1		120	60.5	25	10.5	14	3.5	159	74.5	41	25.5							0.047	0.000
1	9	100	60		12.5		7	475	79.5	05	20.5			0.0	+0.9466		0.0	0.947	0.896
1	10	130	65	28	14	17	8.5	1/5	87.5	25	12.5				+0.9563			0.956	0.914
138	11	130	C.E.	22	11	13	6.5	165	00 F	35	17 E				+0.9580			0.958	0.917
18	40	136	65	24	- ''	12	0.5	172	62.5	28	17.5			182.103	.0.0500			0.057	0.045
14	12	120	68	22	12	22	6	104	86	16	14				+0.9566			0.957	0.915
1	13	130	69	23	11.5	23	11.5	104	92	16	8				+0.9772			0.977	0.955
15	14	134	67	27	10.5	12	6	173	06 F	27	12 F				+0.9570			0.957	0.915
14 13 14 15 15 15 15 15 15 15	15	135		26		10	0	171		29					10.0507			0.051	0.003
1	15	124	67.5	21	13	12	5	167	85.5	22	14.5				+0.9507			0.951	0.903
The color The	16	134	67	21	10.5	12	6	107	83.5	33	16.5				+0.9627			0.963	0.926
18	17	138	60	27	12.5	9	1.5	174	07	26	12				+0.9549			0.955	0.912
1	10	127	69	12	13.5	0	4.5	139	01	61	13				10.0003			0.000	0.910
9		130	63.5	10	6	11	0	160	69.5	31	30.5				+0.9003				
1	19		69.5		9.5	- ' '	5.5		84.5		15.5	0.0	0.0	0.0	+0.9589	0.0	0.0	0.959	0.919
136	20	134	67	24	12	18	0	176	88	24	12				+0.9646			0.965	0.930
1	21	136		26		14		176		24		560.857	410.406	182.993	±0 9589	2263.63	47.5776	0.959	0.919
The color of the		140	68	23	13	13	7	176	88	24	12								
Total Tota	22		70		11.5		6.5		88		12	0.0	0.0	0.0	+0.9605	0.0	0.0	0.961	0.922
135	23	141	70.5	27	13.5	9	4.5	177	88 5	23	11.5				+0.9607			0.961	0.923
Solution	24	135		21		11		167		33		462.824	389.793	179.221	±0.0400	1794.17	42.3577	0.040	0.900
Color		132	67.5	22	10.5	10	5.5	164	83.5	36	16.5								
The color of the	25		66		11		5		82		18	0.0	0.0	0.0	+0.9473	0.0	0.0	0.947	0.897
133	26	142	71	23	11.5	7	3.5	172	86	28	14				+0.9562			0.956	0.914
28 134 28 18 180 20 623.764 440.673 186.25 +0.9674 2893.61 53.7923 0.967 0.935 29 138 23 9 170 30 479.386 396.432 179.899 +0.9510 0.0	27	133		21		10		164		36		503.873	370.384	175.106	+0.9380	1451.07	48.0930	0.938	0.879
138 23 9 170 30 479.386 396.432 179.989 1874.63 43.2970 0.951 0.904 30		134	66.5	28	10.5	18	5	180	82	20	18								
130 25	28		67		14		9		90		10	0.0	0.0	0.0	+0.9674	0.0	0.0	0.967	0.935
130	29	138	69	23	11.5	9	4.5	1/0	85	30	15				+0.9510			0.951	0.904
137 27 9 173 27 558.712 400.062 180.741 +0.9342 2338.02 56.1265 0.903 0.903 180.741 +0.946 1715.20 41.4150 0.903 180.741 +0.946 1715.20 41.4150 0.903 +0.945 180.741 +0.946 +0.9468 +0.9462 +0.9462 +0.9468 +0.9462	30	130		25		14		169		31		514.796	396.952	180.396	+0.9521	1919.97	43.8175	0.952	0.906
150 33 6 189 11 156 68.5 13.5 6 189 11 156 68.5 60.0 0		137	65	27	12.5	9	7	173	84.5	27	15.5								
32 75 16.5 3 94.5 5.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	31		68.5		13.5		4.5		86.5		13.5	0.0	0.0	0.0	+0.9342	0.0	0.0	0.951	0.903
33 140 21 5 166 34 524.422 396.955 178.196 +0.9462 1695.98 41.1823 0.946 0.895 34 134 25 15 174 26 575.283 403.784 181.342 +0.9546 2033.45 45.0938 0.955 0.911 35 131 24 6 161 39 509.341 358.271 172.612 +0.9546 0.0	32	150	75	33	16.5	б	3	189	94.5	11	5.5				+0.9468			0.947	0.896
34 134 25 15 174 26 575.283 403.784 181.342 +0.9546 2033.45 45.9938 0.955 0.911 35 131 24 6 161 39 509.341 358.271 172.612 +0.9313 1295.22 45.9892 0.913 0.867 36 136 18 1 155 45 508.803 370.351 171.549 +0.9284 1237.38 45.1764 40.9284 139.38 45.1764 494.174 370.121 170.051 +0.9456 1673.82 40.9123 0.946 0.894 38 137 15 0 151 49 494.174 370.121 170.051 +0.944 183.11 44.1044 44.1044 44.1044 49.944 139 27 14 180 20 632.472 432.973 185.605 40.9657 2743.63 52.3797 0.966 0.933 0.966 0.933 0.967 2743.63 52.3797 0.966 0.933 0.967 2743.63 52.3797 0.966 0.933 0.967 2743.63 52.3797 0.966 0.933 0.967 0.943 0.967 2743.63 52.3797 0.966 0.933 0.967 0.943 0.967 0.965 0.943 0.945 0.945 0.945 0.944	33	140		21		5		166		34		524.422	396.955	178.196	+0.9462	1695.98	41.1823	0.946	0.895
34		134	70	25	10.5	15	2.5	174	83	26	17								
36 65.5 12 3 80.5 19.5 0.0 0	34		67		12.5		7.5		87		13	0.0	0.0	0.0	+0.9546	0.0	0.0	0.955	0.911
36 136 18 1 155 45 508.803 370.351 171.549 +0.9284 1237.38 45.1764 0.928 0.862 37 130 22 14 166 34 474.079 378.573 177.949 +0.9456 1673.82 40.9123 0.946 0.894 38 137 15 0 152 48 459.036 348.853 165.855 +0.9121 981.201 41.3241 0.912 0.894 39 138 13 0 151 49 494.174 370.121 170.051 +0.924 +0.9244 +0.9244 +0.9244 +0.9244 +0.9244 +0.9244 +0.9244 +0.9244 -0.924 -0.924 0.864 40 139 27 14 180 20 632.472 432.973 185.605 +0.9657 2743.63 52.3797 0.966 0.933	35	131	65.5	24	12	ь	3	161	80.5	39	19.5				+0.9313			0.931	0.867
37 130 22 14 166 34 474.079 378.573 177.949 +0.9456 1673.82 40.9123 0.946 0.894 38 137 15 0 152 48 459.036 348.853 165.585 +0.9121 0.0 0.0 0.0 0.0 39 138 13 0 151 49 494.174 370.121 170.051 +0.924 1163.11 44.1044 0.924 0.894 40 139 27 14 180 20 632.472 432.973 185.605 +0.9257 2743.63 52.3797 0.966 0.933 0.946 0.933 0.946 0.933 0.946 0.933 0.946 0.945 0.9457	36	136		18		1		155		45		508.803	370.351	171.549	+0.9284	1237.38	45.1764	0.928	0.862
37 65 11 7 83 17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		130	68	22	9	14	0.5	166	77.5	34	22.5								
38	37		65		11		7		83		17	0.0	0.0	0.0	+0.9456	0.0	0.0	0.946	0.894
39 138 13 0 151 49 494.174 370.121 170.051 170	38	137	68.5	15	7.5	U	0	152	76	48	24				+0.9121			0.912	0.832
69 6.5 0 75.5 24.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	39	138		13		0		151		49		494.174	370.121	170.051	+0.9244	1163.11	44.1044	0.924	0.854
		139	69	27	6.5	14	0	180	75.5	20	24.5								
	40	. 50	69.5		13.5		7	. 50	90	Ľ	10				+0.9657			0.966	0.932

Source: the primary data collected through the field study

Table (11): the relationship between the efficiency /deficiency of the **Egyptian** universities in aligning the staffs to their particular work-ambitions and the efficiency/deficiency of these universities in institutionally empowering them for being freely able to do so via the currently adopted education system

	curr	ently ac				ely the re	lationchi	in					Droving	analytically t	ne relationship			
	Cons	sensus		ensus		ensus	iauonsni	iþ	١	Non		The relationship		analytically ti		ation of relatio	nship	
S.		of		of		of		ensus	Cons	sensus	Chi ²	Chi ²	Chi ²					
V.		gree 1,2)		igree ,4)		utral 3)		all 3,4,5)		f all ,3,4,5)	Pearson	Likelihood ratio	Liner by liner	В	F	Т	R	R ²
	F.%			.%	F.%		F.%		F.%		V.P	V.P	V.P		V.P	V.P		
1	35	17.5	135	67.5	9	4.5	179	89.5	21	10.5	609.567 0.0	416.655 0.0	188.127 0.0	+0.9722	3426.09 0.0	58.5328 0.0	0.972	0.945
2	21	17.5	146	67.5	0	4.5	167	09.5	33	10.5	515.296	419.860	183.292	+0.9597	2310.43	48.0669	0.960	0.921
		10.5	100	73	•	0		83.5		16.5	0.0	0.0	0.0	+0.9597	0.0	0.0	0.960	0.921
3	25	12.5	120	60	2	1	147	73.5	53	26.5	455.195 0.0	390.439 0.0	177.989	+0.9457	1677.35 0.0	40.9555 0.0	0.946	0.894
4	22		133		0		155		45		483.574	435.379	174.942	+0.9376	1439.83	42.9451	0.938	0.879
	35	11	148	66.5	8	0	191	77.5	9	22.5	0.0 658.359	0.0 469.811	0.0 193.672		0.0 7197.82	0.0 84.8400		
5		17.5		74	Ü	4		95.5		4.5	0.0	0.0	0.0	+0.9865	0.0	0.0	0.987	0.973
6	28	14	138	69	5	2.5	171	85.5	29	14.5	489.932 0.0	391.828 0.0	184.237 0.0	+0.9621	2471.08	49.7100 0.0	0.962	0.925
7	30	14	129	09	5	2.5	164	00.0	36	14.5	457.352	404.574	182.587	+0.9578	2202.78	46.9338	0.958	0.917
	.,	15	4.40	64.5	•	2.5	151	82	40	18	0.0	0.0	0.0	+0.9576	0.0	0.0	0.956	0.917
8	14	7	140	70	0	0	154	77	46	33	436.966 0.0	362.464 0.0	175.036 0.0	+0.9378	1446.24	48.0294 0.0	0.938	0.879
9	30		145		11		186		14		580.637	470.885	192.298	+0.9830	5681.63	75.3766	0.983	0.966
	33	15	134	72.5	11	5.5	178	93	22	7	0.0 608.204	0.0 416.176	0.0 187.608		0.0 3260.79	0.0 57.1033		
10		16.5		67		5.5		89		11	0.0	0.0	0.0	+0.9709	0.0	0.0	0.971	0.942
11	33	16.5	123	61.5	10	5	166	83	34	17	562.003 0.0	385.666 0.0	182.207 0.0	+0.9568	2148.36 0.0	46.3504 0.0	0.957	0.915
10	23	10.5	124	01.0	0	5	147		53	17	491.882	400.984	179.418	.0.0405	1814.19	42.5934	0.050	0.004
12		11.5		62	40	0		73.5		26.5	0.0	0.0	0.0	+0.9495	0.0 3814.94	0.0	0.950	0.901
13	35	17.5	135	67.5	13	6.5	183	91.5	17	8.5	642.374 0.0	451.615 0.0	189.181 0.0	+0.9750	3814.94	61.7652 0.0	0.975	0.950
14	33		128		2		163		37		522.822	455.046	183.275	+0.9596	2307.78	48.0394	0.960	0.920
	22	16.5	126	64	0	1	148	81.5	52	18.5	0.0 460.582	0.0 409.234	0.0 172.922		0.0 1312.93	0.0 46.2344		
15		11		63		0		74		26	0.0	0.0	0.0	+0.9321	0.0	0.0	0.932	0.868
16	23	11.5	147	73.5	8	4	178	89	22	11	509.493 0.0	435.616 0.0	187.930 0.0	+0.9717	3361.57 0.0	57.9790 0.0	0.972	0.944
47	29	11.5	146	73.5	7	4	182	09	18	- ''	556.566	455.934	190.748	.0.0700	4577.26	67.6555	0.070	0.050
17		14.5		73		3.5		91		9	0.0	0.0	0.0	+0.9790	0.0	0.0	0.979	0.958
18	36	18	144	72	10	5	190	95	10	5	316.177 0.0	276.350 0.0	154.834 0.0	+0.8820	2694.13 0.0	66.3464	0.882	0.778
19	27		134		13		174		26		580.048	417.571	185.539	+0.9655	2729.14	52.2412	0.966	0.932
	14	13.5	139	67	1	6.5	154	87	46	13	0.0 489.138	0.0 387.591	0.0 179.233	10.0000	0.0 1795.41	0.0 42.3723		
20	17	7	100	69.5		0.5	134	77	40	23	0.0	0.0	0.0	+0.9490	0.0	0.0	0.949	0.900
21	31	15.5	142	71	12	6	185	92.5	15	7.5	622.325 0.0	448.411 0.0	190.742 0.0	+0.9790	4573.57 0.0	67.6281 0.0	0.979	0.958
	25	15.5	131	/1	4	0	160	92.5	40	7.5	458.164	359.390	170.841	.0.0005	1201.27	44.6594	0.007	0.050
22		12.5		65.5		2		80		20	0.0	0.0	0.0	+0.9265	0.0	0.0	0.927	0.858
23	37	18.5	138	69	6	3	181	90.5	19	9.5	580.560 0.0	453.248 0.0	188.818	+0.9740	3671.93 0.0	60.5965 0.0	0.974	0.948
24	30		120		4		154		46		447.159	372.440	175.812	+0.9399	1501.30	48.7466	0.940	0.883
-	21	15	124	60	15	2	160	77	40	23	0.0 496.906	0.0 351.714	0.0 172.395		0.0 1283.00	0.0 45.8191		
25		10.5		62		7.5		80		20	0.0	0.0	0.0	+0.9307	0.0	0.0	0.931	0.866
26	18	9	163	81.5	11	5.5	192	96	8	4	466.892 0.0	356.570 0.0	174.771 0.0	+0.9371	1428.24	47.7920 0.0	0.937	0.878
27	13		136	01.5	12	5.5	161	30	39		401.465	320.792	169.145	.0.0240	1121.78	43.4929	0.922	0.849
21	24	6.5	120	68	0	6	160	80.5	22	19.5	0.0 527.742	0.0	0.0	+0.9219	0.0	0.0 47.3773	0.922	0.049
28	31	15.5	129	64.5	8	4	168	84	32	16	0.0	377.146 0.0	182.868	+0.9586	2244.61 0.0	0.0	0.959	0.918
29	18		144		12		174	67	26	- 10	368.614	303.009	160.399	+0.8977	1822.75	48.6836	0.898	0.806
	22	9	147	72	1	6	170	87	30	13	0.0 502.698	0.0 421.767	0.0 184.474		0.0 2514.70	0.0 50.1467		
30		11		73.5		0.5		85		15	0.0	0.0	0.0	+0.9628	0.0	0.0	0.963	0.927
31	29	14.5	136	68	7	3.5	172	86	28	14	480.138 0.0	425.113 0.0	186.613 0.0	+9904	1347.21	49.5831 0.0	0.935	0.874
32	34		136		9		189		11		579.865	334.874	178.851	0.9263	1197.40	44.6036	0.926	0.858
-	28	17	128	68	2	4.5	158	94.5	42	5.5	0.0 455.396	0.0 352.544	0.0 178.710		0.0 1743.99	0.0 41.7611		
33	20	14		64		1		79		21	0.0	0.0	0.0	+0.9476	0.0	0.0	0.948	0.898
34	35	17.5	133	66.5	11	5.5	179	89.5	21	10.5	633.594 0.0	417.437 0.0	187.879 0.0	+0.9716	3345.33 0.0	57.8389 0.0	0.972	0.944
25	28	17.5	136	00.5	7	0.5	161	03.5	39	10.5	505.007	393.229	184.262	.0.0000	2475.62	49.7556	0.000	0.005
35		14		68		3.5		80.5		19.5	0.0	0.0	0.0	+0.9622	0.0	0.0	0.962	0.925
36	31	15,5	124	62	13	6.5	168	84	32	16	545.948 0.0	393.983 0.0	181.559 0.0	+0.9551	2061.16	45.4000 0.0	0.955	0.912
37	23		133		23		179		21		452.693	372.409	178.180	+0.9462	1694.52	41.1646	0.946	0.895
	20	11.5	146	66.5	4	11.5	170	89.5	30	10.5	0.0 449.938	0.0 352.508	0.0 180.201		0.0 1897.97	0.0 43.5657		
38		10		73		2		85		15	0.0	0.0	0.0	+0.9515	0.0	0.0	0.952	0.905
39	22	11	150	75	12	-	184	92	16	8	449.757	325.678	167.548	+0.9175	1054.79	42.4776	0.918	0.841
L_	18	11	152	75	4	6	174	92	26	ď	0.0 340.423	0.0 217.022	0.0 155.803		0.0 1714.15	0.0 46.7236		
40		9		76		2		87		13	0.0	0.0	0.0	+0.8848	0.0	0.0	0.885	0.782

Source: the data collected through the field study

Testifying the positive/ negative facet of such a connection, in terms of the foreign university sampling units, it was found from the agreement/disagreement consensus that the number of respondents who considered the positive facet or in other words that the efficiency of these universities in properly aligning their research staffs to their particular work-ambitions is return to their efficiency in institutionally empowering the research staffs for doing so through the research system, was ranged between (120 and 148) respondents, equal to (60and 74%) respectively. On contrary, the number of respondents who considered the negative facet or in other words that there is a deficiency in the foreign universities concerning the alignment of their research staffs to their particular work ambitions that's return to the deficiency of these universities in institutionally empowering their research staffs via the adopted research system for doing so, was ranged between (13 and 30) individuals, equal to (6.5% and 15%) in order.

This means that in the foreign universities, both the investigated variables of hypothesis (2/1) is taking the positive facet. In other words, it could be said, that within the context of the descriptive statistic, the foreign universities efficiency in properly aligning their research staffs to particular work-ambitions is due to their efficiency in institutionally empowering these research staffs for doing so via the adopted research system.

The above cross-tab based relationship, that's descriptively established by the level of consensus around the two investigated variables of the hypothesis (2/1) in conjunction, is analytically proved as well. This was through calculating the values of Pearson and likelihood (Chi^2) , which were totally come as significant, since the (P) of the minimum value of each - (398.380) and (302.764) - was (0.0), at (95%) degree of confidence, (5%) level of significance and (16) degrees of freedom.

Accordingly the null hypothesis (2/1) is rejected to accept alternatively that there is a significant relationship between the efficiency of the foreign universities in properly aligning their research staffs to the particular work ambitions and the efficiency of these universities in institutionally empowering the research staffs for doing so through the adopted research system.

Furthermore, the indication of this relationship was proved in different aspects as well. In terms of the type, it was proved, through the establishment of the regression model, as a causal one; as the lowest values of both (F) and (T) those were (1172.79) and (40.4704) respectively had come highly significant, since the probability of both was (0.0), at (95%) degree of confidence, (5%) level of significance and (1,198) and (199) degrees of freedom in order.

Regarding the direction, such a relationship is proved as a proportionally direct one; this was indicated not only by the fitness of the regression model that's previously assured by the significance of all the values of both (F) and (T), but also the positive signals of (β) that was at minimum equal (+0.8718).

In relation to the form, it was proved as a linear relationship this was twin-confirmed by considering the lowest percentage of the overall consensus that was (75.5%) versus the non-consensus that was at maximum (25%), in addition to the lowest value of the linear by linear (Chi^2) that was (151.275), which had come greatly significant with a probability or (P) equal (0.0), at (95%) degree of confidence, (5%) level of significance and (16) degrees of freedom. On the subject of the strength of this relationship, the minimum of both (R) and (R^2) values were (0.872) and (0.760), this proved that this relationship is very strong in terms of both the direction and form.

As a consequence it could be analytically accept that there is a statistically indicated significant relationship between the efficiency of the foreign universities in properly aligning their research staffs to the particular work ambitions and the efficiency of these universities in institutionally empowering the research staffs for doing so via the adopted research system.

\circ Testing the hypothesis (2/2)

As being shown by the Table (13), from the (200) target respondents or the part of the sample that's representing the population section of the Egyptian universities, the number of respondents who considered the connection between on the one hand, the alignment/non-alignment of the research staffs to their particular work-ambitions and on the other hand, the empowerment/non-empowerment of these staffs to be institutionally able for doing so via the adopted research system, was indicated by the overall consensus that was ranged between (154 and 190) respondents, equal to (77% and 95%) respectively. On contrary, the number of respondent who considered no connection in such an investigated relationship was indicated by the overall non-consensus that was ranged between (10 and 46) individuals, equal to (5% and 23%) in order. This descriptively proved the connection between both the investigated variables of the hypothesis (2/2).

Testifying the positive/ negative facet of such a connection, in terms of the Egyptian universities' sampling units, it was found from the agreement/disagreement consensus that the number of respondents who considered the negative facet or in other words that the deficiency of the Egyptian universities in properly aligning their research staffs to their particular work-ambitions is return to the deficiency of these universities in institutionally

empowering their research staffs for doing so via the adopted research system, was ranged between (124 and 153) respondents, equal to (62% and 76.5%) respectively. On contrary, the number of respondents who considered the positive facet, or in other words, that there is an efficiency in the Egyptian universities concerning the alignment of their research staffs to their particular work ambitions that's return to the efficiency of these universities in institutionally empowering their research staffs for doing so via the adopted research system, was ranged between (11 and 37) individuals, equal to (5.5% and 18.5%) in order. This means that in the Egyptian universities, both the investigated variables of hypothesis (2/2) is taking the negative facet. In other words it could be said that, within the context of the descriptive statistic, the Egyptian universities deficiency in properly aligning their research staffs to their particular workambitions is due to their deficiency in institutionally empowering these staffs for doing so via adopted research system.

The above cross-tab based relationship, that's descriptively established by the level of consensus around the two investigated variables of the hypothesis (2/2) in conjunction, is analytically proved as well. This was through calculating the values of Pearson and likelihood (Chi^2) , which were totally come as significant, since the (P) of the minimum value of each - (284.692) and (251.867) - was (0.0), at (95%) degree of confidence, (5%) level of significance and (16) degrees of freedom.

Accordingly the null hypothesis (2/2) is rejected to accept alternatively that there is a significant relationship between the deficiency of the Egyptian universities in properly aligning their research staffs to the particular work ambitions and the deficiency of these universities in institutionally empowering the research staffs for doing so via the adopted research system.

Furthermore, the indication of this relationship was proved in different aspects as well. In terms of the type, it was proved, through the establishment of the regression model, as a causal one; as the lowest values of both (F) and (T) that were (1032.62) and (40.6000) respectively had come highly significant, since the probability of both was (0.0), at (95%) degree of confidence, (5%) level of significance and (1,198) and (199) degrees of freedom in order.

Regarding the direction, such a relationship is proved as a proportionally direct one; this was indicated not only by the fitness of the regression model that's previously assured by the significance of all the values of both (F) and (T), but also the positive signals of (β) that was at minimum equal (+0.8269).

In relation to the form, it was proved as a linear relationship this was twin-confirmed by considering

the lowest percentage of the overall consensus that was (77%) versus the non-consensus that was (23%) at maximum, in addition to the lowest value of the linear by linear (Chi^2) that was (136.086), which had come greatly significant with a probability or (P) equal (0.0), at (95%) degree of confidence, (5%) level of significance and (16) degrees of freedom. On the subject of the strength of this relationship, the minimum of both (R) and (R^2) values were (0.827) and (0.683), this proved that this relationship is very strong in terms of both the direction and form.

As a consequence it could be analytically accept that there is a statistically indicated significant relationship between the deficiency of the Egyptian universities in properly aligning their research staffs to the particular work ambitions and the deficiency of these universities in institutionally empowering the research staffs for doing so via the adopted research system.

As a consequence, it could be said that the relationship between both the investigated variables that were considered in the hypothesis (2) is actually two-facet established. In the hypothesis (2/1), the positive facet was established in the foreign university, since there was an efficiency of these universities concerning alignment of the research staffs to their particular work ambitions due to their efficiency in institutionally empowering their research staffs for doing so via the adopted research system. In the hypothesis (2/2), the negative facet was established in the Egyptian universities, since there was a deficiency of these universities concerning the alignment of the research staffs to their particular work ambitions due to their deficiency in institutionally empowering their research staff for doing so via the adopted research system.

• Testing the hypothesis (3)

o Testing the hypothesis (3/1)

As being shown by the Table (14), from the (200) target respondents or the part of the sample that's representing the population section of the foreign universities, the number of respondents who considered the connection between on the one hand, the alignment/ non alignment of the communityserving staffs to their particular work-ambitions and on the other hand, empowerment/non-empowerment of these staffs to be institutionally able for doing so through the community-serving system, was indicated by the overall consensus that was ranged between (151 and 186) respondents, equal to (75.5% to 93%) respectively. On contrary, the number of respondent who considered no connection in such an investigated relationship was indicated by the overall nonconsensus that was ranged between (14 and 49) individuals, equal to (7% and 24.5%) in order. This

descriptively proved the connection between both the investigated variables of the hypothesis (3/1).

Table (12): the relationship between the efficiency /deficiency of the **foreign** universities in aligning the staffs to their particular work-ambitions and the efficiency/deficiency of these universities in institutionally empowering them for being freely able to do so via the currently adopted

rese	arch systen					1					1.0			
	Consensus	Proving Consensus	descriptively t Consensus	he relationship Consensus	NonContract		The relation	onship	Proving ana	ytically the re		ation of relation	nship	
S.	OfAgree (1,2)	OfDisagree (3,4)	OfNeutral (3)	of all(1,2,3,4,5)	NonConsensusof all(1,2,3,4,5)	Chi ² Pearson	Chi ² Likeliho		Chi ² Liner byliner		F	т		
٧.	F.%	F.%	F. %	F.%	F.%	V.P	V.P		V.P	В	V.P	V.P	R	R ²
1	138	14	10	162	38	486.238	368.623		170.256	+0.9249	1172.79	44.2460	0.925	0.855
-	69 125		5 15	81 165	19 35	0.0 453.731	400.700	0.0	0.0 178.513		0.0 1725.32	0.0 41.5370		
2	62.5	12.5	7.5	82.5	17.5	0.0	400.700	0.0	0.0	+0.9471	0.0	0.0	0.947	0.897
3	142	28	20	190	10 5	679.894	503.305	0.0	192.906	+0.9845	6267.88	79.1700	0.985	0.969
—	71 142	20	16	95 178	22	0.0 543.598	465.140	0.0	0.0 188.262		0.0 3471.44	0.0 58.9190		
4	71	10	8	89	11	0.0		0.0	0.0	+0.9726	0.0	0.0	0.973	0.946
5	128 64	19 9.5	14 7	161 80.5	39 19.5	474.335 0.0	415.868	0.0	182.069 0.0	+0.9565	2129.28	46.1441 0.0	0.957	0.914
6	142	27	21	190	10	672.000	479.801	0.0	192.320	+0.9830	5701.04	75.5052	0.983	0.966
-	71	13.5	10.5	95	5	0.0	388.070	0.0	0.0	+0.3030	0.0	0.0 40.4704	0.903	0.300
7	130 65	14 7	8 4	152 76	24	453.960 0.0	300.070	0.0	177.537 0.0	+0.9445	1637.85 0.0	0.0	0.945	0.892
8	135	28	19	182	18	656.733	437.398	0.0	186.715	+0.9686	3009.55	54.8593	0.969	0.938
	67.5 144	14 16	9.5	91 168	32	0.0 469.520	418.033	0.0	0.0 180.971		0.0 1987.53	0.0 44.5818		
9	72	8	3	84	16	0.0	110.000	0.0	0.0	+0.9536	0.0	0.0	0.954	0.909
10	143	19	6 3	168 84	32 16	500.504	413.367	0.0	180.671	+0.9528	1951.76	44.1787	0.953	0.907
44	71.5 139	9.5	21	186	14	628.404	469.852		0.0 190.461	10.0702	0.0 4416.67	0.0 66.4581	0.070	0.057
11	69.5	13	10.5	93	7	0.0		0.0	0.0	+0.9783	0.0	0.0	0.978	0.957
12	137 68.5	22 11	14 7	173 86.5	27 13.5	536.537 0.0	399.911	0.0	181.190 0.0	+0.9542	2014.44	44.8825 0.0	0.954	0.910
13	127	27	18	172	28	615.795	398.102		179.899	+0.9507	1864.90	43.1845	0.951	0.904
	63.5 138	13.5	3	86 158	42	0.0 458.325	372.560	0.0	0.0 174.252		0.0 1394.13	0.0 47.3381		
14	138	8.5	1.5	79	21	0.0	312.300	0.0	0.0	+0.9357	0.0	0.0	0.936	0.875
15	127	16	8	151	49	493.402	430.515	0.0	181.918	+0.9561	2108.72	45.9208	0.956	0.914
	63.5	23	12	75.5	24.5	0.0 512.832	425.608	0.0	0.0 184.436		0.0 2507.54	0.0 50.0753		
16	70.5	11.5	6	88	12	0.0		0.0	0.0	+0.9627	0.0	0.0	0.963	0.926
17	139 69.5	13 6.5	8 4	160 80	40 20	443.126 0.0	380.822	0.0	176.514 0.0	+0.9418	1554.32 0.0	49.4249 0.0	0.942	0.887
18	125	15	10	150	50	665.417	302.764	0.0	151.275	+0.8718	1627.61	45.0522	0.872	0.760
10	62.5	7.5	5	75	25	0.0	200 005	0.0	0.0	+0.0710	0.0	0.0	0.072	0.760
19	128 64	21 10.5	16 8	165 82.5	35 17.5	503.104	366.935	0.0	175.200 0.0	+0.9382	1457.60	48.1785 0.0	0.938	0.880
20	138	26	19	183	17	644.107	439.294		187.421	+0.9704	3204.94	56.6122	0.970	0.941
-	135	13 14	9.5	91.5 160	8.5	0.0 424.989	325.734	0.0	0.0 159.416		0.0 1797.42	0.0 48.2386		
21	67.5	7	5.5	80	20	0.0	020.704	0.0	0.0	+0.8950	0.0	0.0	0.895	0.801
22	128	26	10	164	36	556.480	367.504	0.0	174.321	+0.9359	1398.63	47.3983	0.936	0.875
	132	13 27	5 10	82 169	31	0.0 579.324	386.315	0.0	0.0 177.870	0.0454	0.0 1666.79	0.0 40.8263	0.045	0.000
23	66	13.5	5	84.5	15.5	0.0		0.0	0.0	+0.9454	0.0	0.0	0.945	0.893
24	143 71.5	24 12	17 8.5	184 92	16 8	578.532 0.0	467.915	0.0	189.585 0.0	+0.9760	3987.13 0.0	63.1437 0.0	0.976	0.952
25	125	30	11	166	34	488.446	411.476	0.0	179.489	+0.9497	1821.48	42.6788	0.950	0.901
25	62.5	15	5.5	83	17	0.0	240.045	0.0	0.0	+0.5457	0.0	0.0	0.930	0.901
26	144 72	27 13.5	8 4	179 89.5	10.5	518.762 0.0	348.815	0.0	171.677 0.0	+0.9288	1244.12 0.0	45.2721 0.0	0.929	0.862
27	141	25	12	178	22	603.107	430.636		184.782	+0.9636	2573.31	50.7278	0.964	0.928
-	70.5 131	12.5 28	23	89 182	11	0.0 630.610	451.744	0.0	0.0 187.068		0.0 3104.34	0.0 55.7166		
28	65.5	14	11.5	91	9	0.0		0.0	0.0	+0.9695	0.0	0.0	0.970	0.940
29	137 68.5	21 10.5	13 6.5	171 85.5	29 14.5	522.919 0.0	455.418	0.0	186.588 0.0	+0.9683	2976.75 0.0	54.5596 0.0	0.968	0.937
30	131	27	25	183	17	638.435	452.424	0.0	188.596	10.0725	3589.20	59.9099	0.974	0.047
30	65.5	13.5	12.5	91.5	8.5	0.0	204 127	0.0	0.0	+0.9735	0.0	0.0	0.974	0.947
31	140 70	20 10	7 3.5	167 83.5	33 16.5	492.764 0.0	394.187	0.0	178.887 0.0	+0.9481	1761.12 0.0	41.9657 0.0	0.948	0.898
32	138	19	14	171	29	522.714	456.582		186.701	+0.9686	3005.79	54.8251	0.969	0.938
	122 69	9.5 25	7 16	85.5 163	14.5	0.0 398.380	310.782	0.0	0.0 161.499		0.0 1852.70	0.0 49.2011		
33	61	12.5	8	81.5	18.5	0.0	310.702	0.0	0.0	+0.9008	0.0	0.0	0.901	0.811
34	128	24	3	155	45	515.345	347.108		168.694	+0.9207	1102.15	43.1987	0.921	0.847
	64 120	12 28	1.5	77.5 164	22.5 36	0.0 491.305	387.735	0.0	0.0 175.517		0.0 1479.94	0.0 48.4700		
35	60	14	8	82	18	0.0		0.0	0.0	+0.9391	0.0	0.0	0.939	0.881
36	138	18	10	166	34	481.927	361.861	0.0	168.183	+0.9193	1080.59	42.8724	0.919	0.845
07	69 148	24	5 12	83 184	17	0.0 515.168	395.928	0.0	0.0 180.459	.0.0500	0.0 1927.21	43.9000	0.050	0.000
37	74	12	6	92	8	0.0		0.0	0.0	+0.9522	0.0	0.0	0.952	0.906
38	137 68.5	28 14	16 8	181 90.5	19 9.5	455.596 0.0	402.081	0.0	180.318 0.0	+0.9519	1911.16 0.0	43.7168 0.0	0.952	0.906
39	139	27	18	184	16	632.245	445.959		188.200	+0.9724	3450.58	58.7416	0.972	0.945
39	69.5	13.5	9	92	8	0.0	245 472	0.0	0.0	TU.3124	0.0	0.0		0.540
40	144 72	19 9.5	11 5.5	174 87	26 13	427.018 0.0	315.473	0.0	162.312 0.0	+0.9031	1875.99 0.0	49.5972 0.0	0.903	0.815

Source: primary data collected via the field study

Table (13): the relationship between the efficiency /deficiency of the **Egyptian** universities in aligning the staffs to the particular work-ambitions and the efficiency/deficiency of these universities in institutionally empowering them for being freely able to do so via the currently adopted

rese	arch s	system								-								
S.	Cons	sensus		Proving de sensus		ely the re sensus		ip ensus	N	Non		The relationship		analytically the	ne relationship The denot	ation of relatio	nshin	
-		Agree		sagree		eutral		all	Cons	sensus		Chi ²	Chi ²		The denot	lion or relatio	Попр	
V.	(1	1,2)	(3	3,4)	((3)	(1,2,	3,4,5)		fall	Chi ²	Likelihood	Liner by	В	F	Т	_	R ²
٧.	F.%		F	.%	F.%		F.%		F.%	,3,4,5)	Pearson V.P	ratio V.P	liner V.P	В	V.P	V.P	R	R-
1	11		143	.,,	10		164		36		526.119	395.452	175.661	+0.9395	1490.27	48.6040	0.940	0.882
		5.5	100	71.5		5	470	82	07	18	0.0	0.0	0.0	+0.9393	0.0	0.0	0.940	0.002
2	34	17	128	64	11	5.5	173	86.5	27	13.5	590.082 0.0	403.658	185.666 0.0	+0.9659	2757.00	52.5071 0.0	0.966	0.932
3	17		144	0.	9	0.0	170	00.0	30	10.0	478.412	416.600	185.306	+0.9649	2679.37	51.7626	0.965	0.931
	-00	8.5	123	72	-	4.5	157	85	43	15	0.0 484.777	0.0 359.933	0.0 179.419	+0.3043	0.0 1814.35	0.0 42.5952	0.303	0.331
4	29	14.5	123	61.5	5	2.5	157	78.5	43	21.5	0.0	0.0	0.0	+0.9495	0.0	0.0	0.950	0.901
5	25		125		9		159		41		450.562	357.245	179.616	+0.9500	1834.80	42.8346	0.950	0.902
_	26	12.5	140	62.5	5	4.5	171	79.5	29	20.5	0.0 469.244	0.0 392.814	0.0 184.315		0.0 2485.26	0.0 49.8523		
6		13	140	70	J	2.5	171	85.5	23	14.5	0.0	0.0	0.0	+0.9623	0.0	0.0	0.962	0.926
7	27	40.5	121	20.5	11		159	70.5	41	00.5	485.461	364.058	179.974	+0.9509	1872.98	43.2780	0.951	0.904
	18	13.5	145	60.5	12	5.5	175	79.5	25	20.5	0.0 385.757	0.0 304.176	0.0 169.191		0.0 1123.83	0.0 43.5236		
8		9		72.5		6		87.5		12.5	0.0	0.0	0.0	+0.9220	0.0	0.0	0.922	0.850
9	24	10	139	60 F	8	4	171	0F F	29	115	407.485	338.458	177.027	+0.9433	1595.23	59.9403	0.943	0.889
<u> </u>	14	12	142	69.5	19	4	175	85.5	25	14.5	0.0 388.428	0.0 304.961	0.0 164.826		0.0 955.004	0.0 30.9031		
10		7		71		9.5		87.5		12.5	0.0	0.0	0.0	+0.9100	0.0	0.0	0.910	0.828
11	32	16	122	61	13	6.5	167	83.5	33	16.5	564.116 0.0	385.163 0.0	182.388 0.0	+0.9573	2174.00	46.6262 0.0	0.957	0.916
10	23	10	142	01	4	0.0	169	00.0	31	10.0	464.315	393.345	181.277	.0.0544	2025.27	45.0030	0.054	0.040
12		11.5		71		2	165	84.5	0.5	15.5	0.0	0.0	0.0	+0.9544	0.0	0.0	0.954	0.910
13	25	12.5	140	70	15	7.5	180	90	20	10	441.439 0.0	380.537 0.0	181.681 0.0	+0.9554	2077.16	45.5759 0.0	0.955	0.912
14	18		130		10		158		42		336.786	283.372	156.280	+0.8861	1724.33	46.9134	0.886	0.785
14	17	9	125	65	10	5	154	79	46	21	0.0 420.111	0.0 344.887	0.0 175.679	+0.0001	0.0 1491.60	0.0 48.6213	0.000	0.700
15	17	8.5	125	62.5	12	6	134	77	40	23	0.0	0.0	0.0	+0.9395	0.0	0.0	0.940	0.882
16	37		133		15		185		15		568.258	437.286	186.652	+0.9684	2993.14	54.7096	0.968	0.937
	33	18.5	137	66.5	7	7.5	177	92.5	23	7.5	0.0 535.355	0.0 406.677	0.0 186.921		0.0 3064.06	0.0 55.3540		
17	33	16.5	101	68.5		3.5	177	88.5	25	11.5	0.0	0.0	0.0	+0.9691	0.0	0.0	0.969	0.939
18	31		141		11		183		17		508.300	360.780	180.877	+0.9533	1976.23	44.4548	0.953	0.908
	19	15.5	144	70.5	16	5.5	179	91.5	21	8.5	0.0 356.790	0.0 294.432	0.0 158.240		0.0 1768.68	0.0 47.7252		
19		9.5		72		8		89.5		10.5	0.0	0.0	0.0	+0.8917	0.0	0.0	0.892	0.795
20	20	10	135	67 F	15	7.5	170	85	30	15	434.201	371.552	180.213	+0.9516	1899.36	43.5817	0.952	0.905
	12	10	148	67.5	18	7.5	178	65	22	15	0.0 375.758	0.0 296.640	0.0 165.359	0.0445	0.0 1973.25	0.0 41.1969	0.040	0.000
21		6		74		9		89		11	0.0	0.0	0.0	+0.9115	0.0	0.0	0.912	0.830
22	23	11.5	140	70	19	9.5	182	91	18	9	470.708 0.0	367.117 0.0	177.126 0.0	+0.9434	1603.33 0.0	40.0416 0.0	0.943	0.890
23	18	11.0	147	70	10	0.0	175		25	J	441.271	339.908	170.594	+0.9258	1189.13	44.4837	0.926	0.857
23		9	107	73.5		5	101	87.5	40	12.5	0.0	0.0	0.0	+0.9256	0.0	0.0	0.926	0.657
24	33	16.5	137	68.5	14	7	184	92	16	8	568.319 0.0	404.640 0.0	187.113 0.0	+0.9696	3116.92 0.0	55.8294 0.0	0.970	0.940
25	30		145		15		190		10		466.330	374.150	178.709	+0.9476	1743.90	41.7600	0.948	0.898
25	18	15	137	72.5	18	7.5	173	95	27	5	0.0 406.944	0.0 317.061	0.0 169.542	+0.3470	0.0 1139.60	0.0 43.7579	0.340	0.030
26	10	9	137	68.5	10	9	173	86.5	21	13.5	0.0	0.0	0.0	+0.9230	0.0	0.0	0.923	0.851
27	15		150		20		185		15		461.816	355.458	170.968	+0.9268	1207.62	44.7509	0.927	0.859
	26	7.5	144	75	8	10	178	92.5	22	7.5	0.0 446.418	0.0 358.67	0.0 177.668		0.0 1649.09	0.0 40.6090		
28		13		72		4		89		11	0.0	0.0	0.0	+0.9448	0.0	0.0	0.945	0.892
29	32		126		16		174	67	26		522.137	373.111	182.703	+0.9581	2219.81	47.1148	0.958	0.918
	18	16	151	63	17	8	186	87	14	13	0.0 589.115	0.0 331.027	0.0 174.855		0.0 1433.95	0.0 47.8675		
30		9		75.5		8.5		93		7	0.0	0.0	0.0	+0.9373	0.0	0.0	0.937	0.878
31	15	7.5	148	7/	12	-	175	07 F	25	10.5	437.495	338.276	170.168	+0.9247	1168.64	44.1853	0.925	0.855
	20	7.5	142	74	13	6	175	87.5	25	12.5	0.0 453.071	0.0 334.818	0.0 170.166		0.0 1168.52	0.0 44.1837		
32		10		71		6.5		87.5		12.5	0.0	0.0	0.0	+0.9607	0.0	0.0	0.925	0.855
33	29	14.5	135	67.5	6	3	170	85	30	15	477.538 0.0	366.502 0.0	181.283 0.0	+0.9544	2026.06	45.0117 0.0	0.954	0.910
24	19	1+.0	143	07.0	16	J	178	00	22	10	374.003	311.360	160.137	10.0070	1815.87	42.5634	0.007	0.904
34		8.5		72.5		8		79		11	0.0	0.0	0.0	+0.8970	0.0	0.0	0.897	0.804
35	18	9	152	76	9	4.	179	89.5	21	10.5	442.269 0.0	359.982 0.0	172.952 0.0	+0.9322	1314.72	46.2590 0.0	0.932	0.869
36	34		136		12		182		18		619.079	421.353	186.947	+0.9692	3071.11	55.4176	0.969	0.939
30	24	17	105	66	11	6	170	91	20	9	0.0	0.0	0.0	TU.3032	0.0	0.0	0.303	0.333
37	21	10.5	135	67.5	14	7	170	85	30	15	430.963 0.0	359.850 0.0	179.596 0.0	+0.9499	1832.66 0.0	42.8096 0.0	0.950	0.902
38	14		163		9		186		14		410.601	367.558	180.216	+0.9516	1899.71	43.5857	0.952	0.905
-	30	7	128	81.5	7	4.5	165	93	35	7	0.0 469.630	0.0 352.441	0.0 180.025		0.0 1878.62	0.0 43.3430		
39	30	15	120	64		3.5	100	82.5	- 55	17.5	0.0	0.0	0.0	+0.9511	0.0	0.0	0.951	0.904
40	17		146		13		176		24		498.824	265.222	150.347	+0.8692	1611.86	44.7358	0.869	0.755
~		8.5		73		6.5		88		12	0.0	0.0	0.0		0.0	0.0	5.500	

Source: primary data collected via the field study

Testifying the positive/ negative facet of such a connection, in terms of the foreign university sampling units, it was found from the agreement/disagreement consensus that the number of respondents who considered the positive facet or in other words that the efficiency of these universities in properly aligning their community-serving staffs to their particular work-ambitions is return to their efficiency in institutionally empowering the community-serving staffs for doing so through the community-serving system, was ranged between (122 and 149) respondents, equal to (61% to 74.5%) respectively. On contrary, the number of respondents who considered the negative facet or in other words that there is a deficiency in the foreign universities concerning the alignment of the community-serving staffs to their particular work ambitions that's return to the deficiency of these universities in institutionally empowering their community-serving staffs via the adopted community-serving system for doing so, was ranged between (14 and 38) individuals, equal to (7% and 19%) in order.

This means that in the foreign universities, both the investigated variables of hypothesis (3/1) is taking the positive facet. In other words it could be said that, within the context of the descriptive statistic, the foreign universities efficiency in properly aligning their community-serving staffs to particular work-ambitions is due to their efficiency in institutionally empowering the community-serving staffs for doing so via the adopted community-serving system.

The above cross-tab based relationship, that's descriptively established by the level of consensus around the two investigated variables of the hypothesis (3/1) in conjunction, is analytically proved as well. This was through calculating the values of Pearson and likelihood (Chi²), which were totally come as significant, since the (P) of the minimum value of each - (438.033) and (338.048) - was (0.0), at (95%) degree of confidence, (5%) level of significance and (16) degrees of freedom. Accordingly the null hypothesis (3/1) is rejected to accept alternatively that there is a significant relationship between the efficiency of the foreign universities in properly aligning their community-serving staffs to the particular work ambitions and the efficiency of these universities in institutionally empowering the community-serving staffs for doing so through the adopted community-serving system.

Furthermore, the indication of this relationship was proved in different aspects as well. In terms of the type, it was proved through the establishment of the regression model as a causal one, as the lowest values of both (F) and (T) that were (1112.97) and (39.3277) respectively had come highly significant, since the probability of both was (0.0), at (95%) degree of

confidence, (5%) level of significance and (1,198) and (199) degrees of freedom in order.

Regarding the direction, such a relationship is proved as a proportionally direct one; this was indicated not only by the fitness of the regression model that's previously assured by the significance of all the values of both (F) and (T), but also the positive signals of (β) that was at minimum equal (+0.9221). In relation to the form, it was proved as a linear relationship this was twin-confirmed by considering the lowest percentage of the overall consensus that was (75.5%) versus the non-consensus that was (24.5%) at minimum, in addition to the lowest value of the linear by linear (Chi²) that was (183.033), which had come greatly significant with a probability or (P)equal (0.0), at (95%) degree of confidence, (5%) level of significance and (16) degrees of freedom. On the subject of the strength of this relationship, the minimum of both (R) and (R^2) values were (0.921) and (0.848), this proved that this relationship is very strong in terms of both the direction and form. As a consequence it could be analytically accept that there is a statistically indicated significant relationship between the efficiency of the foreign universities in properly aligning their community-serving staffs to the particular work ambitions and the efficiency of these universities in institutionally empowering community-serving staffs for doing so via the adopted community-serving system.

o Testing the hypothesis (3/2)

As being shown by the Table (15), from the (200) target respondents or the part of the sample that's representing the population section of the Egyptian universities, the number of respondents who considered the connection between on the one hand, the alignment/non-alignment of the communityserving staffs to their particular work-ambitions and the empowerment/nonthe other hand, empowerment of the community-serving staffs to be institutionally able for doing so via the adopted community-serving system, was indicated by the overall consensus that was ranged between (155 and 191) respondents, equal to (77.5% to 95.5%) respectively. On contrary, the number of respondent who considered no connection in such an investigated relationship was indicated by the overall nonconsensus that was ranged between (9 and 45) individuals, equal to (4.5% and 22.5%) in order. This descriptively proved the connection between both the investigated variables of the hypothesis (3/2).

Testifying the positive/ negative facet of such a connection, in terms of the Egyptian universities' sampling units, it was found from the agreement/disagreement consensus that the number of respondents who considered the negative facet, or in other words, that the deficiency of the Egyptian

universities in properly aligning their communityserving staffs to their particular work-ambitions is return to the deficiency of these universities in institutionally empowering the community-serving staffs via the adopted community-serving system for doing so, was ranged between (129 and 141) respondents, equal to (64.5% to 70.5%) respectively. On contrary, the number of respondents who considered the positive facet, or in other words, that there is an efficiency in the Egyptian universities concerning the alignment of their community-serving staffs to their particular work ambitions that's return to the efficiency of these universities in institutionally empowering the community-serving staffs for doing so via the adopted community-serving system, was ranged between (5 and 22) individuals, equal to (2.5% and 11%) in order. This means that in the Egyptian universities, both the investigated variables of hypothesis (3/2 is taking the negative facet. In other words, it could be said that within the context of the descriptive statistic, the Egyptian universities deficiency in properly aligning the community-serving staffs to particular work-ambitions is due to their deficiency in institutionally empowering community-serving staffs for doing so via the adopted community-serving system.

The above cross-tab based relationship, that's descriptively established by the level of consensus around the two investigated variables of the hypothesis (3/2) in conjunction, is analytically proved as well. This was through calculating the values of Pearson and likelihood (Chi^2) , which were totally come as significant, since the (P) of the minimum value of each - (487.706) and (430.994) - was (0.0), at (95%) degree of confidence, (5%) level of significance and (16) degrees of freedom.

Accordingly the hypothesis (3/2) is accepted, to confirm that there is a significant relationship between the deficiency of the Egyptian universities in properly aligning their community-serving staffs to the particular work ambitions and the efficiency of these universities in institutionally empowering the community-serving staffs for doing so via the adopted community-serving system.

Furthermore, the indication of this relationship was proved in different aspects as well. In terms of the type, it was proved, through the establishment of the regression model, as a causal one; as the lowest values of both (F) and (T) that were (2269.77) and (47.6421) respectively had come highly significant, since the probability of both was (0.0), at (95%) degree of confidence, (5%) level of significance and (1,198) and (199) degrees of freedom in order.

Regarding the direction, such a relationship is proved as a proportionally direct one; this was indicated not only by the fitness of the regression model that's previously assured by the significance of all the values of both (F) and (T), but also the positive signals of (β) that was at minimum equal (+0.9590).

In relation to the form, it was proved as a linear relationship this was twin-confirmed by considering the lowest percentage of the overall consensus that was (84%) versus the non-consensus that was (16%), in addition to the lowest value of the linear by linear (Chi^2) that was (183.033), which had come greatly significant with a probability or (P) equal (0.0), at 95%) degree of confidence, (5%) level of significance and (16) degrees of freedom. On the subject of the strength, the minimum of both (R) and (R^2) values were (0.959) and (0.919), this proved that this relationship is very strong in terms of both the direction and form.

As so, it could be analytically accept that there is a statistically indicated significant relationship between the deficiency of the Egyptian universities in properly aligning their community-serving staffs to the particular work ambitions and the deficiency of these universities in institutionally empowering the community-serving staffs for doing so via the adopted community-serving system.

As a consequence, it could be said that the relationship between both the investigated variables that were considered in the hypothesis (3) is actually two-facet established. In the hypothesis (3/1), the positive facet was established in the foreign university, since there was an efficiency of these universities concerning alignment of the community-serving staffs to their particular work ambitions due to their institutionally efficiency in empowering community-serving staff for doing so via the adopted community-serving system. In the hypothesis (3/2), the negative facet was established in the Egyptian universities, since there was a deficiency of these universities concerning the alignment of the community-serving staffs to their particular work ambitions due to their deficiency in institutionally empowering the community-serving staff for doing so via the adopted community-serving system.

Overall discussion Statistically-guided comment:

By verifying statistically the phenomenon existence in the reality of the research applied field, the true problem actually causing it, and the hypothetical reasons that are latent behind such a problem, it could be argued that this research in accordance with the context or ontology, within which it has scholarly and practically been tackled, resulted in some comparative issues concerning both the cases of the foreign and Egyptian universities. This could be interpretively described as well as analytically expressed as shown by the following Exhibition (1).

Table (14): the relationship between the efficiency /deficiency of the **foreign** universities in aligning the staffs to the particular work-ambitions and the efficiency/deficiency of these universities in institutionally empowering them for being freely able to do so via the currently adopted

com	community-serving system																	
	Cons	ensus		Proving de sensus		vely the re sensus		ip ensus		Non		The relationship		analytically the	ne relationship	ation of relatio	nehin	
S.	c	of		of		of	of	all	Cons	sensus	Chi ²	Chi ²	Chi ²				ПЗПР	
V.		ree ,2)	(agree 3,4) F.%		eutral (3)	(1,2,3	3,4,5)		f all ,3,4,5)	Pearson V.P	Likelihood ratio V.P	Liner by liner V.P	В	<i>V.P</i>	T <i>V.P</i>	R	R^2
1	140	70	27	13.5	16	8	183	91.5	17	00	608.394 0.0	454.657 0.0	188.302 0.0	+0.9727	3485.40 0.0	59.0373 0.0	0.973	0.946
2	126		25		9		160		40		464.312	351.719	173.028	+0.9324	1319.13	46.3198	0.932	0.869
3	135	63	25	12.5	13	4.5	173	80	27	20	0.0 535.591	0.0 397.453	0.0 180.983		0.0 1988.99	0.0 44.5981	0.954	0.909
_	138	67.5	20	12.5	6	6.5	164	86.5	36	13.5	0.0 495.471	0.0 382.922	0.0 176.581	+0.9536	0.0 1559.59	0.0 49.4917		
4		69		10		3		82		18	0.0	0.0	0.0	+0.9419	0.0	0.0	0.942	0.887
5	128	64	19	9.5	10	5	157	78.5	43	21.5	441.645 0.0	343.174 0.0	170.360 0.0	+0.9252	1177.81 0.0	44.3192 0.0	0.925	0.856
6	149	74.5	14	7	18	9	181	90.5	19	9.5	478.821 0.0	404.487 0.0	175.687 0.0	+0.9396	1492.16 0.0	48.6285 0.0	0.940	0.882
7	129	64.5	22	11	14	7	155	77.5	45	22.5	470.638 0.0	377.844 0.0	177.755 0.0	+0.9451	1656.65 0.0	40.7020 0.0	0.945	0.893
8	128	64	18	9	10	5	156	78	44	22	477.931 0.0	424.849 0.0	182.114 0.0	+0.9566	2135.43	46.2107 0.0	0.957	0.915
9	123		25		13		161		39		485.696	357.099	174.025	+0.9351	1379.70	47.1443	0.935	0.874
10	139	61.5	27	12.5	16	6.5	182	80.5	18	19.5	0.0 616.422	0.0 436.943	0.0 186.821	+0.968	0.0 3037.38	0.0 55.1124	0.969	0.938
_	140	69.5	19	13.5	12	8	171	91	29	9	0.0 453.054	0.0 395.420	0.0 178.812		0.0 1753.78	0.0 41.8782		
11	135	70	28	9.5	22	6	185	85.5	15	14.5	0.0 674.932	0.0 455.710	0.0 189.025	+0.9479	0.0 3752.37	0.0 61.2566	0.948	0.898
12		67.5		14		11		92.5		7.5	0.0	0.0	0.0	+0.9746	0.0	0.0	0.975	0.949
13	132	66	18	9	6	3	156	78	44	22	480.225 0.0	411.719 0.0	178.409 0.0	+0.9468	1715.63 0.0	41.4202 0.0	0.947	0.896
14	126	63	23	11.5	11	5.5	160	80	40	20	484.534 0.0	371.348 0.0	175.495 0.0	+0.9390	1478.32 0.0	48.4490 0.0	0.939	0.881
15	128	64	26	13	12	6	166	83	34	17	515.896 0.0	370.994 0.0	176.089	+0.9406	1521.82	49.0106 0.0	0.941	0.884
16	125	62.5	38	19	10	5	173	86.5	27		470.850	367.348	172.966	+0.9322	1315.48	46.2695	0.932	0.869
17	137		27		14		178		22	13.5	0.0 583.639	0.0 421.427	0.0 184.155	+0.9619	0.0 2456.25	0.0 49.5606	0.962	0.925
18	136	68.5	17	13.5	8	7	161	89	39	11	0.0 447.604	0.0 368.714	0.0 174.885	+0.9374	0.0 1435.95	0.0 47.8939	0.937	0.878
	130	68	24	8.5	14	4	168	80.5	32	19.5	0.0 466.697	0.0 404.805	0.0 176.322		0.0 1539.52	0.0 49.2367		
19	140	65	27	12	19	7	186	84	14	16	0.0 639.293	0.0 463.452	0.0 189.704	+0.9412	0.0 4040.78	0.0 63.5671	0.941	0.886
20		70		13.5		9.5		93		7	0.0	0.0	0.0	+0.9763	0.0	0.0	0.976	0.953
21	144	72	21	10.5	14	7	179	89.5	31	15.5	534.498 0.0	466.613 0.0	187.786 0.0	+0.9714	3315.68 0.0	57.5820 0.0	0.971	0.943
22	142	71	22	11	18	9	182	91	18	9	541.965 0.0	429.232 0.0	185.335 0.0	+0.9650	2685.59 0.0	51.8227 0.0	0.965	0.931
23	133	66.5	21	10.5	15	7.5	169	84.5	31	15.5	498.194 0.0	413.666 0.0	182.478 0.0	+0.9575	2186.94 0.0	46.7648 0.0	0.958	0.916
24	126		26		9		161		39		482.379	354.667	173.402	+0.9334	1341.26	46.6232	0.933	0.871
25	122	63	20	13	23	4.5	165	80.5	35	19.5	0.0 456.068	0.0 393.261	0.0 178.319	+0.9466	0.0 1707.23	0.0 41.3187	0.947	0.896
_	133	61	20	10	17	11.5	170	82.5	30	17.5	0.0 511.693	0.0 435.511	0.0 183.826		0.0 2398.73	0.0 48.9769		
26	125	66.5	27	10	12	8.5	164	85	36	15	0.0 525.183	0.0 366.491	0.0 175.088	+0.9611	0.0 1449.79	0.0 48.0761	0.961	0.923
27		62.5		13.5		6		82		18	0.0	0.0	0.0	+0.9379	0.0	0.0	0.938	0.879
28	141	70.5	27	13.5	14	7	182	91	18	9	629.701 0.0	441.113 0.0	186.973 0.0	+0.9693	3078.19 0.0	55.4814 0.0	0.969	0.939
29	140	70	17	8.5	10	5	167	83.5	33	16.5	475.530 0.0	386.854 0.0	176.415 0.0	+0.9415	1546.67 0.0	39.3277 0.0	0.942	0.886
30	139	69.5	21	10.5	6	3	166	83	34	17	519.927	392.255 0.0	177.835 0.0	+0.9453	1663.70	40.7885	0.945	0.893
31	125		20		11		156		44		0.0 450.839	338.048	169.232	+0.9221	1125.67	0.0 43.5510	0.922	0.850
32	129	62.5	21	10	17	5.5	167	78	33	22	0.0 491.409	0.0 401.506	180.882	+0.9533	0.0 1976.79	0.0 44.4611	0.953	0.908
-	130	64.5	27	10.5	11	8.5	168	88.5	32	16.5	0.0 578.488	0.0 381.771	0.0 177.047		0.0 1596.85	0.0 49.9606		
33	134	65	16	13.5	2	5.5	152	84	48	16	0.0 438.033	0.0 350.555	0.0	+0.9432	0.0	0.0 44.0530	0943	0.889
34	128	67	20	8	12	1	160	76	40	24	0.0 453.736	0.0 378.977	0.0	+0.9242	0.0	0.0	0.924	0.854
35		64		10		6		80		20	0.0	0.0	0.0	+0.9442	0.0	0.0	0.944	0.891
36	140	70	25	12.5	10	5	175	87.5	25	12.5	522.284	419.523	183.214	+0.9595	2298.09	47.9384	0.960	0.920
37	131	65.5	20	10	14	7	165	82.5	35	17.5	529.958 0.0	442.550 0.0	182.779 0.0	+0.9583	2231.08 0.0	47.2343 0.0	0.958	0.918
38	133	66.5	16	8	2	1	151	75.5	49	24.5	447.732 0.0	348.340 0.0	168.944 0.0	+0.9213	1112.97 0.0	43.3612 0.0	0.921	0.848
39	127	63.5	27	13.5	15	7.5	169	84.5	31	15.5	548.681 0.0	398.962 0.0	180.141	+0.9514	1891.34 0.0	43.4895 0.0	0.951	0.905
40	133		26		11		170		30		522.391	380.300	177.787	+0.9451	1659.45	40.7364	0.945	0.893
		66.5		13		5.5		85		15	0.0	0.0	0.0	. 5.5401	0.0	0.0	0.040	0.000

Source: primary data collected via the field study

Table (15): the relationship between the efficiency /deficiency of the **Egyptian**universities in aligning the staffs to the particular work-ambitions and the efficiency/deficiency of these universities in institutionally empowering them for beingfreely able to do so via the currently adopted community-serving system

	curr	ently a				-servin												
	Consensus			Proving descriptively the Consensus Consensus								Proving analytically the relationship The relationship The denotation of relationship						
S.				sensus of	Consensus of		Consensus of all			von sensus	Chi ²	The relationship Chi ²	Chi ²		rne denota	auon or relatio	папр	
	Αç	gree	Disa	agree	Ne	eutral		3,4,5)	0	f all	Pearson	Likelihood	Liner by	_	F	Т	_	- 0
V.	F.%	1,2)		3,4)	F.%	(3)	F.%		(1,2 F.%	,3,4,5)	V.P	ratio V.P	liner V.P	В	V.P	V.P	R	R ²
	19		124	. 70	12		155		45		367.234	298.163	159.900	0.0000	1809.73	48.4558	0.000	0.000
1		9.5		62		6		77.5		22.5	0.0	0.0	0.0	+0.8963	0.0	0.0	0.896	0.803
2	25	12.5	139	69.5	16	8	180	90	20	10	492.810 0.0	382.175 0.0	178.618 0.0	+0.9474	1735.23 0.0	41.6561 0.0	0.947	0.897
	30	12.5	136	09.5	7	0	173	90	27	10	492.453	373.272	182.747	.0.0500	2226.32	47.1838	0.050	0.040
3		15		68		3.5		86.5		13.5	0.0	0.0	0.0	+0.9582	0.0	0.0	0.958	0.918
4	32	16	135	67.5	9	4.5	176	88	24	12	575.929 0.0	404.630	186.276 0.0	+0.9675	2898.68	53.8394 0.0	0.968	0.936
5	16		139	01.0	14	1.0	179		21		443.392	349.231	175.378	+0.9387	1470.03	48.3410	0.939	0.881
	0.5	8	100	64.5	10	7	107	89.5		10.5	0.0	0.0	0.0	+0.3307	0.0	0.0	0.333	0.001
6	25	12.5	129	64.5	13	6.5	167	83.5	33	16.5	451.307 0.0	358.882 0.0	178.933 0.0	+0.9482	1765.58 0.0	42.0188 0.0	0.948	0.899
7	21		145		14		180		20		469.698	381.118	173.686	+0.9342	1358.57	46.8589	0.934	0.872
	19	10.5	143	72.5	12	7	174	90	31	10	0.0 346.911	0.0 290.960	0.0 157.024	10.0012	0.0 1740.68	0.0 47.2155	0.001	0.072
8	19	9.5	143	71.5	12	6	174	87	31	15.5	0.0	0.0	0.0	+0.8882	0.0	0.0	0.888	0.789
9	12		153		15		180		20		284.692	251.867	136.086	+0.8269	1428.28	40.6951	0.827	0.683
-	21	6	151	76.5	11	7.5	183	90	17	10	0.0 424.766	0.0 323.385	0.0 170.463		0.0 1182.73	0.0 44.3909		
10		10.5		75.5		5.5		91.5		8.5	0.0	0.0	0.0	+0.9255	0.0	0.0	0.926	0.856
11	23	11.5	135	67.5	18		176		24	40	424.907	325.538	169.736	+0.9235	1148.44	43.8887	0.924	0.852
	28	11.5	129	67.5	12	9	169	88	31	12	0.0 513.883	0.0 369.890	0.0 180.614		0.0 1945.05	0.0 44.1027		
12		14		64.5		6		84.5		15.5	0.0	0.0	0.0	+0.9526	0.0	0.0	0.953	0.907
13	16	8	150	75	13	6.5	179	89.5	21	10.5	466.021	356.004	174.805 0.0	+0.9372	1430.55	47.8226 0.0	0.937	0.878
	27	0	136	75	8	6.5	171	09.0	29	10.5	0.0 468.037	0.0 355.220	178.629	+0.9474	1736.29	41.6689	0.947	0.897
14		13.5		68		4		85.5		19.5	0.0	0.0	0.0	+0.9474	0.0	0.0	0.947	0.897
15	33	16.5	131	65.5	9	4.5	173	86.5	27	13.5	556.163 0.0	377.654 0.0	182.866 0.0	+0.9586	2244.20	47.3730 0.0	0.959	0.918
16	37		136	00.0	13		186		14	10.0	697.899	460.898	191.145	+0.9800	4818.74	59.4172	0.980	0.960
-10	40	18.5	4.40	68	40	6.5	470	93	20	7	0.0	0.0	0.0	+0.9600	0.0	0.0	0.900	0.900
17	18	9	140	70	12	6	170	85	30	15	454.923 0.0	377.095 0.0	179.501 0.0	+0.9497	1822.77 0.0	42.6939 0.0	0.950	0.902
18	17		141		10		168		32		351.399	294.691	158.429	+0.8922	1773.20	47.8066	0.892	0.796
	19	8.5	133	70.5	12	5	164	84	36	16	0.0 427.196	0.0 329.230	0.0 166.982	10.0022	0.0 1032.62	0.0 42.1345	0.002	0.750
19	19	9.5	133	66.5	12	6	104	82	30	18	0.0	0.0	0.0	+0.9160	0.0	0.0	0.916	0.839
20	30		148		13		191	05.5	9		585.739	415.879	185.541	+0.9655	2729.63	52.2459	0966	0.932
	16	15	139	74	15	6.5	170	95.5	30	4.5	0.0 348.035	0.0 319.763	0.0 152.964		0.0 1657.90	0.0 45.6496		
21		8		69.5		7.5		85		15	0.0	0.0	0.0	+0.8767	0.0	0.0	0.877	0.768
22	31	15.5	150	75	10	5	191	95.5	9	4.5	435.002	347.566	178.342 0.0	+0.9466	1709.35 0.0	41.3443 0.0	0.947	0.896
	25	15.5	130	75	11	5	166	95.5	34	4.5	0.0 418.187	0.0 343.094	177.659		1648.36	40.6000		
23		12.5		65		5.5		83		17	0.0	0.0	0.0	+0.9448	0.0	0.0	0.945	0.892
24	14	7	136	68	8	4	158	79	42	21	350.992 0.0	296.900	160.248 0.0	+0.8973	1818.79 0.0	48.6145 0.0	0.897	0.805
-05	11		129	00	16	-	156	13	44	21	289.721	251.967	137.758	.0.0000	1445.38	41.1041	0.000	0.000
25		5.5		64.5		8		78		22	0.0	0.0	0.0	+0.8320	0.0	0.0	0.832	0.692
26	14	7	142	71	15	7.5	171	85.5	29	14.5	306.115 0.0	281.645 0.0	149.365 0.0	+0.8663	1595.83	44.4097 0.0	0.866	0.750
27	30		149		12		191		9		583.169	461.216	190.275	+0.9778	4318.17	55.7128	0.978	0.956
-21	22	15	120	74.5	30	6	100	95.5	10	4.5	0.0	0.0	0.0	TU.3110	0.0	0.0	0.810	0.500
28	22	11	138	69	30	15	190	95	10	5	530.230 0.0	394.641 0.0	178.460 0.0	+0.9469	1720.32 0.0	41.4767 0.0	0.947	0.896
29	25		146		17		188		22		492.894	421.331	184.279	+0.9623	2478.66	49.7861	0.962	0.926
	26	12.5	130	73	27	8.5	183	94	17	11	0.0 396.429	0.0 333.731	0.0 174.654	. 3.0020	0.0 1420.45	0.0 47.6888	002	5.020
30	20	13	130	65	21	13.5	103	91.5	17	8.5	0.0	0.0	0.0	+0.9368	0.0	0.0	0.937	0.877
31	16		135		14		165		35		305.513	275.441	148.310	+0.8632	579.320	44.0690	0.863	0.745
	13	8	139	67.5	19	7	171	82.5	29	17.5	0.0 318.592	0.0 294.465	0.0 150.774		0.0 619.036	0.0 44.880		
32	.,	6.5	.50	69.5	.,	9.5		85.5		14.5	0.0	0.0	0.0	+0.8704	0.0	0.0	0.870	0.757
33	24		145		14		181		19	2.5	556.032	435.736	190.200	+0.9776	4279.80	55.4201	0.978	0.955
	20	12	140	72.5	13	7	173	9.5	17	9.5	0.0 433.357	0.0 322.586	0.0 166.684		0.0 1021.29	0.0 41.9576		
34		10		70		6.5		86.5		8.5	0.0	0.0	0.0	+0.9152	0.0	0.0	0.915	0.837
35	17	0 =	129	64 5	18	9	164	84	36	10	426.066	336.816 0.0	167.620	+0.9177	1057.68	42.5219	0.918	0.842
	20	8.5	131	64.5	22	Э	173	04	27	18	0.0 595.316	405.619	0.0 184.006	.0.0015	0.0 2429.89	0.0 49.2940	0.000	0.004
36		10		65.5		11		86.5		13.5	0.0	0.0	0.0	+0.9615	0.0	0.0	0.962	0.924
37	19	9.5	135	67.5	8	4	162	81	38	19	403.723 0.0	317.821 0.0	167.806 0.0	+0.9182	1065.14 0.0	42.6365 0.0	0.918	0.843
38	37	3.0	134		11		182	ΟI	18	13	630.889	448.367	189.319	+0.9753	3872.05	62.2258	0.975	0.951
30	10	18.5	100	67	10	5.5	160	91	20	9	0.0	0.0	0.0	TU.3/33	0.0	0.0	0.975	0.301
39	16	8	133	66.5	19	9.5	168	84	32	16	323.358 0.0	284.132 0.0	154.995 0.0	+0.8825	697.410	46.408 0.0	0.883	0.778
40	29		132		10		171		29		479.529	367.669	180.375	+0.9520	1917.60	43.7904	0.952	0.906
40		14.5		61		5		85.5		14.5	0.0	0.0	0.0	+0.3320	0.0	0.0	0.332	0.300

Source: primary data collected via the field study

Exhibition (1) A discussion to show an ontology-based comparison between both the sections of the research field-study

Exhibition (1)	A discussi		ology-based comparison between both the sections of the research	h field-study I				
Methodological Axes		Level of discussion	In foreign universities	In Egyptian universities				
Research		By research Interpretived escription	It is proved as true, the efficiency of the foreign universities concerning the proper fulfillment of their public mission.	It is proved as true, the deficiency of the Egyptian universities concerning the proper fulfillment of their public mission.				
Phenomenon		By researcherAn alytical View	These universities are sufficiently aware of considering this as an urgent reason for being competitively existed, succeeded, developed and long stayed.	These universities are insufficiently aware of considering this as an urgent reason for being competitively existed succeeded, developed and long stayed.				
Research Problem		By researchInter pretivedescri ption	It is proved as true that the academic staffs supported by the other staffs in these universities are efficiently aligned to their particular work ambitions and/or objectives.	It is proved as true that the academic staffs supported by the other staffs in these universities are deficiently aligned to their particular work ambitions and/or objectives.				
House		Byresearcher Analytical view	These universities are sufficiently believed that the particular work ambitions of the staffs are normally come in the interest of the universities' ambitions, particularly concerning their public mission. They consider that the goals of staffs are representing a conditional phase of attaining the organization goals. This is due to the awareness concerning the identical nature of the individual-organization activity.	These universities are insufficiently believed that the particular work ambitions of the staffs are no way come in the interest of the universities ambitions concerning their public mission. They consider that the goals of staffs are not necessarily a conditional phase of attaining the organization goals. This is due to the unawareness of identical nature of the individual-organization activity.				
Research		By researchInter pretivedescri ption	It is proved as true that these universities efficiency in institutionally empowering the teaching staffs via the currently adopted teaching system is a reason for their efficiently in getting the teaching staffs properly aligned to their particular teaching ambitions that serve the whole university sub-mission of teaching.	It is proved as true that these universities deficiency in institutionally empowering the teaching staffs via the currently adopted teaching system is a reason for the deficiency in getting teaching staffs properly aligned to their particular teaching ambitions that serve the interest of whole sub-mission of teaching.				
Hypotheses	Нуро. (1)	By researcherAn alytical view	These universities are greatly considering that when their teaching staffs are automatically and freely allowed via a permanently established teaching system to get and/or prove their particular teaching ambitions, they definitely providing an increasing positive development and support to the teaching role of the whole university. They consider no development but through having a tolerant system. In their view, the one who personally could prove himself as a good teaching staffs is an additional share in the organization deposit of teaching.	These universities considered that their teaching staffs shouldn't be left for freely getting attained their particular teaching ambition through a permanently established teaching system. They believe that teaching staffs have to wait for having an authorized permission from the top management before being able to make any development in the regular teaching aspects. In their view, the one who personally could prove himself as a good teaching-staff does not conditionally support the organization sub-mission of teaching.				
		By researchInter pretivedescri ption	It is proved as true that these universities efficiency in institutionally empowering staffs via the currently adopted research system is a reason for their efficiency in properly getting the staff aligned to their particular research ambitions that serve the whole university sub-mission of research.	It is proved as true that these universities deficiency in institutionally empowering staffs via the currently adopted research system is a reason for deficiency in properly getting the staff aligned to their particular research ambitions that serve the whole university sub-mission of research.				
	Нуро. (2)	By researcherAn alytical view	These universities are effectively considering that their reputation as research entities is a tautology of their reputable research-staffs. That's why it was important to encourage having a very open research system that's allowing all the staffs in the different fields of research interest to move easily through the research ideas, proposals, prescriptions, full conducted peace of research work, and research links in and out, to enrich the benefit and value of research. Research and inter disciplinary research is no way an international issue to be considered by the university all the time; they have to be original research generators, or at least research up to date.	These universities are ineffectively considering that their reputation as research entities is a tautology of their reputable research-staffs. That's why they do not sufficiently encourage having a very open research system that allows all the staffs in the different fields of research interest to move easily through research both in and out. They are mostly involved in the task of research followers rather than research originators. They consider that it is fair enough to be readers instead of authors of the important research. Too many constrains are faced by the researchers, coming in the front of these sanctions are the funding and/or sponsoring and international cooperation.				
		By researchInter pretivedescri ption	It is proved as true that these universities efficiency in institutionally empowering staffs via the currently adopted community-serving system is a reason for their efficiency in properly getting the staff aligned to their particular community-serving ambitions that serve the whole university sub-mission of community-serving.	It is proved as true that these universities deficiency in institutionally empowering staffs via the currently adopted community-serving system is a reason for the deficiency in properly getting the staff aligned to particular community-serving ambitions that serve the whole university submission of community-serving.				
	Hypo. (3)	By researcherAn alytical view	These universities are -to the largest extent - organizations that are established to be originally oriented by the environment. They completely believe in urbanization and enlightening role that they have to play for getting the diversified and sustaining objective of development properly occurred. Not only at the local or surrounding environment level but also within the bigger context that nationally, regionally, internationally and globally extended everywhere all over the world. These universities have considered that gaining self as well as others accreditation is attained via the effect that they could environmentally achieve. Consistent with this view the university is an effective instrument for the whole global community benefit rather than being just trapped in the education and research roles.	These universities, despite of the community-serving role that's clearly included in its announced missions, are actually confined within the education role. They have formally considered representing the environmental role in their organizational structure, but they did not actually give such a role a satisfactory amount of interest. They are more directed by the very restricted role of just educating students, even though the education role is not fulfilled according to the environment needs, or in other words according to a policy that makes the graduates in terms of the qualifications and skills fitting to the in and out labor markets. They are insufficiently aware by the community-serving role that they can perform via the free hand of its staffs in fulfilling such a sub-mission				
Source: firstly		1	ı	<u> </u>				

Source: firstly prepared for the purpose of this research.

A suggested model:

Further to what has initially been gone to when theoretically founding the basis of this research hypotheses, and within the context of what is actually concluded as a result of conducting both the research exploratory and then detailed field studies, for statistically examining the correctness of these hypotheses, an overall discussion that's based upon utilizing the examined interrelationships between the research axial-variables was to be provided. In this, it was preferable to make the comment via originating an evolutionary-conceptual model, so as to understand the conclusions and apply the recommendations of this research, rather than using marginally just some torn words, so as to provide sort of an easily understood guide to the research issue.

For deeming the easier, this model was graphically articulated by the Figure (1). The focal variables were backward organized from the dependent variable or phenomenon, that's return to intermediate variable or research problem, and the independent that's in turn represented the hypothetical reasons of the problem.

The phenomenon was around the universities' efficiency/deficiency in properly fulfilling the mission as publically required by them. The problem behind this was around the universities' efficiency/deficiency in properly aligning people to their particular work ambitions. The hypotheses were about the universities' efficiency/deficiency in properly empowering the staffs through the established systems to be able to do so.

In terms of the staffs' alignment we considered two types. The first is relevant to the staffs' alignment to their particular or private work-ambitions. This contains three different situations. (1) The case in which the ambitions of the staffs come against or on the account of the benefit of the organization. And this is called the case of interest non-consensus. Herein the organization is asked for not aligning its people to such a type of ambitions, it is alternatively asked to prevent the staff from looking forward or reaching to the fulfillment of these ambitions. (2) The case in which the ambitions of the staffs is coming for the benefit of the staffs but it is not against the benefit of the organization, it could be considered as just useless, irrelevant or neutral for the latter, herein organizations are optionally allowed to align or do not align the organization staffs to such a kind of personal ambitions. Rationally, it is not recommended for the organizations to work for useless or nothing. Whether it is seen to move toward fulfilling these ambitions, just for indirectly getting the probable reflection of the staffs being comfort, everything should be precisely well estimated. Otherwise organizations are still keeping the big no in dealing with these ambitions.

(3) The case in which the ambitions of the staffs come simultaneously for the benefit of both the staffs and the organization. This most likely occurred due to the nature of the organization's activity, that's making the personal ambitions of people concerning the performance of their work tasks is directly comes in the interest of the organizations public ambitions concerning the fulfillment of their mission. Herein the organizations have to have a very big yes for this case of interest consensus. This is the case we are embark upon in this research, the university ambitions in properly fulfilling its triple-fold mission is conditionally come as a tautology of the staffs ambitions in properly fulfilling their work-tasks.In other words, when staffs are getting empowered to properly their teaching, research, community-serving tasks as it should hopefully done, university will be naturally able to fulfill its mission as positively required.

The second is relevant to directly aligning the staffs to the organizations' ambitions, and this type of alignment is classically fallen into the organizations' interest.It used to be clearly reflected by the different phases or steps of the organization strategic planning. Those are; the philosophy, vision, mission, strategy, policy, programs, procedures, tactics, and techniques. Although this research is basically interested in the first type of aligning staffs, it does consider the third form of this type that's representing a positive area of integration between aligning people to their personal ambitions and the organizations ambition as well. It is going to highlight this area as a point of ambitionintegration instead of being left as staff-toorganization buffer zone or an area of ambition conflict.

On the subject of the empowerment, this research is generally considering that getting people aligned to their particular work-ambitions is resulted from being empowered for doing properly their detailed tasks. It argues that the empowerment of people may occur in the organization at three levels.

First, is the level of empowerment which is occurred when organizations get involved only in searching for and employing those who are innately empowered; either physically, intellectually or both. Sometimes they consider, for some reason, those staffs who are not only physically or intellectually qualified but also those who are physically and intellectually talent. When doing so, organizations are just partially allowing the lowest level of empowerment.

This sort of minimum empowerment is gotten by the people internal or self-sourced capabilities. The other part of minimum empowerment could be noninnately occurred or externally-sourced. It is happened when organizations' management work on getting the staffs technically prepared. Through education to give people specialized information or general knowledge or even through training to make people gain the skills and experience that are necessarily required for properly preforming the work.

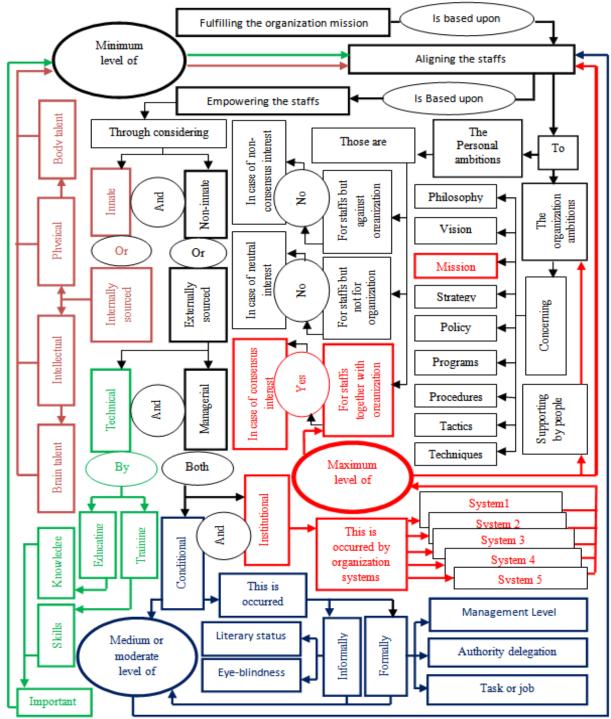


Figure (1): aligning people to their particular work-ambitions for aligning organizationstotheir public mission-ambitions Source: it is originally prepared for the purpose of this research

Seeking the foundation of the physical and intellectual staffs further to the work on qualifying them through education and training is just

representing together the minimum level of empowering the organization staff. The green and brown outlined areas in the right hand side of the Figure (1) that's ended by the black outlined circle is graphically showing an articulation of this level of empowerment.

Second, is the level of empowerment, which is established or sourced by the organization management, it used to be appear in two forms; The formal and informal empowerment of staff, that's hanged of the condition of the management desire and The donation. formal management-based empowerment is gradually given to individuals by (1) the nature and importance of the task or job entrusted by them, (2) the authority given or delegated to some people, (3) the position or managerial level within the organization structure. The informal managementbased empowerment is traditionally represented on the one hand, in the literal status that's being given to some people within the organization regardless of their formal position, and on the other hand on, the management eye-blindness concerning the decisions, behaviors, actions, and reactions that are free hand made by some peoples inside the organization out of the normal formalities that are normally used to govern the work performance. Both the formal and informal management-based forms of people empowerment are allowing together just a moderate or medium level of empowerment. Since management as a running-board, by the end of the day, cannot empower someone out of what is originally allowed to them.

Accordingly this kind of empowering people is border-lined by the capability of management as an administratively responsible authority. But, there is a query to suggest, in case of considering the foundation of a bigger authority that is governing both the management-board as well as the organization staffs; herein we have to look forward to a higher level of empowering staffs for being aligned to their ambitions and the organization ambitions as well. That's why this type of empowerment is just located in the moderate or medium level, in terms of aligning people to their work-related ambitions, worth mentioning that this type of empowerment is highlighted by the bottom part of the Figure (1) that's blue color outlined.

Third, is the level of empowerment, which is established or sourced by what could be strategically called the overall, constitutional or institutional management of the organization? It could be allowed to the management staffs and the non-managerial staffs by the effect of the organization workable systems. Such as the education system, the research system, and the community-serving system, in the case of the universities; as the organizations which are consisting the components of the field study in this research.

Empowering the staff could be highly occurred at the maximum by the organization whole systems.

Following the permanently established systems means that there is no conditional reason to use the management running-board as a reference to the staffs' decisions and behaviors. It is a case that's shaped-like the citizen constitutional powers or rights that are empowering people even in the face of the ruling government. By systems staffs are going to be empowered without waiting for any permission or having an approval from the organization management-board.

This maximum level of staffs' empowerment is effectively utilized when it feeds the alignment of staffs in the case of both the staffs and organization ambition-agreement or the area of interest-consensus. Herein it could be argued that aligning people to their private task-ambitions is going to be in the interest of aligning the whole organizations to their ambitions concerning their public missions. It is the type of systems-based or constitution-based or even what we prefer to call it, the institutional empowerment.

In universities, whereas people or staffs together with their organizations are having a crossing or consensus interest in teaching and qualifying the students, in conducting the good research, and in properly serving the community, the best they can do concerning the fulfillment of their own ambitions in these areas, the best the universities' capability to fulfill their ambitions concerning the missions they have. That's why the university staffs should institutionally top-empowered by the systems for being aligned to their own work-ambitions.

Accordingly, it could be argued that the development of the universities' organizational performance, that's basically directed to its environment, is highly recommended to start with fitting properly the main systems; as the big vessels they have for containing the whole work they do, and then fitting properly the people level of empowerment by these systems for being aligned to their work tasks. This type of institutional empowerment was tinted in red color in the focal area that extended to cover in part the left-hand side of the Figure (1).

In short, the argumentative suggestion that's provided by this research evolutionary academic conceptual framework and practically examined hypothetical model, could be summarized in the say that "as long as we consider that there is an area of interest-consensus between the staffs and the organizations in which they work, due to the organizations' nature of activity, the capability of organizations in properly fulfilling the public mission entrusted by them is going to be a function in getting the staffs properly aligned, not only to the organization strategic ambitions but also to their particular workambitions; as the latter in this case is coming in the interest of the former. However, the alignment of

people to their ambitions is going to be in turn a function as well in empowering these people at three levels; 1) basically or at minimum, by considering the physical, intellectual characteristics of people supported by the education and training, 2) moderately or at medium level by allowing them to have the conditionally formal and informal givens of management, 3) highly or at maximum, by institutionally utilizing the power of the organizations' systems'.

Conclusions

Within the context of the conducted comparative study, that's methodologically interested in assuring the real foundation of the research phenomenon and problem, and investigating the correction of the hypothetical reasons behind the problem, in both the Egyptian and foreign universities, it could be concluded that comparison has resulted in two contradicting situation:

Conclusion (1)

- According to the academic staffs' views the foreign universities are properly fulfilling their missions.
- According to the academic staffs views the efficiency of the foreign universities in fulfilling their mission is return to the efficiency in aligning properly the staffs to their particular work-ambitions, which are coming in the interest of the different aspects of that mission, in other words in the interest of the three roles included in such a mission; the education, the research and the community-serving.
- According to the academic staffs views the efficiency of the foreign universities in aligning properly the staffs to their particular work-ambitions that are coming in the interest of the three main aspects of their mission is return to their efficiency in empowering people institutionally by the established systems for doing so.

Conclusion (2)

- According to the academic staffs' views the Egyptian universities are improperly fulfilling their missions.
- According to the academic staffs views the deficiency of the Egyptian universities in fulfilling their mission is return to the deficiency in aligning properly the staffs to their particular work-ambitions, which are coming in the interest of the different aspects of that mission; the education, the research and the community-serving.
- According to the academic staffs views the deficiency of the Egyptian universities in aligning properly the staffs to their particular work-ambitions that are coming in the interest of the three main aspects of their mission is return to their deficiency in

institutionally empowering staffs by the established systems for doing so.

Recommendations

In the form of broad lines to an action plan, the recommendation of this research could be step-by-step shown as follows:

Recommendation (1)

- The Egyptian universities have to consider the importance of specifying three areas for interest:
- For staff but against the organization area of interest; this is against the organization mission.
- o For staff but not for the organization area of interest; this is useless for the organization mission.
- o For staff and for the organization area of interest; this is for the benefit of organization mission.

Recommendation (2)

- The Egyptian universities have to consider adopting different actions for the different situations they face:
- o Rejecting completely getting people aligned to their ambitions in the first case.
- o Behaving optionally to accept or reject getting people aligned to their ambitions in the second case.
- O Supporting completely getting people aligned to their ambitions in the third case, whenever there is a benefit to organization.

Recommendation (3)

- The Egyptian universities have to consider that the fulfillment of aligning staffs to their ambitions in the third case should be gradually occurred at three levels:
- o Aligning people to their work-ambitions at the lowest level of empowerment that's based upon the intellectual and physical competencies and talents of people, those are technically supported by the education and training.
- o Aligning people to their work-ambitions at the medium level of empowerment that's conditionally based upon the management formal and informal allowances, permissions, and donations.
- O Aligning people to their work-ambitions at the highest level of empowerment that's institutionally-based upon the properly established systems.

Recommendation (4)

- The Egyptian universities have to consider that the university fulfillment to the highest level of empowering people for being aligned to their ambitions, should be gradually occurred at three levels:
- o Getting the main systems properly established based upon the extended understanding that's previously provided by the suggested model.

- o Getting the staff properly utilized these systems for being institutionally top aligned to their ambitions. This may include sort of creating awareness of, training on, and motivating people to utilizing these systems.
- O Showing to what extent the people's alignment to their particular work ambitions through institutionally empowering them, is coming in the interest of the organization alignment to its whole public mission.

Reference:

- Alas, R. (2009). The Impact of Work-Related Values on the Readiness to Change in Estonian Organizations. Journal of Business Ethics, 86, 113–124.
- Andersson, T., Bider, L. and Svensson R. (2015).
 Aligning people to business processes experience report.
 Software Process: Improvement&Practice 10:4, 403–413.
- Andrews, K. (1971). The Concept of Corporate Strategy. Homewood: Dow-Jones Irwin.
- Andrews, K. (1980). The Concept of Corporate Strategy, 2nd Edition. Dow-Jones Irwin.
- Argandona, A. (2003). Fostering Values in Organizations, Journal of Business Ethics, 45:1, 15-45.
- Argyris, C. (2001). Empowerment: The Emperor's New Clothes. Creative Management, 195.
- Armstrong, M. (2006). Performance management: key strategies and practical guidelines. 3rd ed., Kogan Page Limited.
- 8. Armstrong, M. (2006). Strategic human resource management: A guide to action. 3rd Ed., Thomson-Shore, Inc.
- Audebrand, L. (2010). Sustainability in Strategic Management Education: The Quest for New Root Metaphors Academy Management Learning&Education, September, 9:3, 413-428.
- Barnett, W. P.&Burgelman, R. A.(1996). Evolutionary Perspectives on Strategy. Strategic Management Journal, 17, 7–16.
- Bechet, T. and Walker. J. (1993). Aligning Staffing with Business Strategy. Human Resources Planning, 1-16.
- Beehr, T. A., Glazer, S., Fischer, R., Linton, L. L.,&Hansen, C. P. (2009). Antecedents for achievement of alignment in organizations. Journal of Occupational and Organizational Psychology, 1-20.
- Benbya, H.,&McKelvey, B. (2006). Using coevolutionary and complexity theories to improve IS alignment: a multi-level approach. Journal of Information Technology, 284-298.
- Bookman, A., & Morgen, S. (2004). Women and the politics of empowerment. Philadelphia: Temple University Press.
- Boswell, W. (2006). Aligning employees with the organization's strategic objectives: out of 'line of sight', out of mind. The International Journal of Human Resource Management, 1489-1511.
- Bowen, D. E. and Lawler, E. E. (1995), Empowering Service Employees, Sloan Management Review, 36: 4, 73-82
- Bowman, E.H., Singh, H. and Thomas, H. (2002). The domain of strategic management: history and evolution. In Pettigrew, A., Thomas, H. and Whittington, R. (Eds), Handbook of Strategy and Management. London: Sage.

- Boxall, P.&Purcell, J. (2003). Strategy and Human Resource Management. Basingstoke and New York: Palgrave Macmillan.
- Boxall, P., Purcell, J.&Wright, P. (2007). The Oxford handbook of Human resource management. In Purcell, J. and Kinnie, N., HRM and Business Performance, 533-551, Oxford University press.
- 20. Branson, C.M. (2008). Achieving organizational change through values alignment. Journal of Educational Administration. 46:3, 376 –395.
- 21. Brewster et al. (2000). Contemporary Issues in Human Resource Management: Gaining a Competitive Advantage. Oxford University Press, Cape Town.
- Bryson, J. M. 1995. Strategic Planning for Public and Nonprofit Organizations. Jossey-Bass.
- 23. Burke, R. J. and Cooper, C.L. (2006). Inspiring Leaders. London, Routledge.
- Burn, J. M., & Szeto, C. (2000). A comparison of the views of business and IT management on success factors for strategic alignment. Information of Management, 197-216
- Cable, D. M.&Judge, T. A. (1996). Person-organization fit, Job choice decisions and organizational entry. Organizational Behavior and Human Decision Processes, 67, 294-311.
- Cacioppe, R. (1998). Structured empowerment: an awardwinning program at the Burswood Resort Hotel. Leadership&Organization Development Journal, 19:5, 264-274.
- Camarinha-Matos, L., Macedo, P., Abreu, A. (2008).
 Analysis of Core-values Alignment in Collaborative Networks. In: Camarinha-Matos, L.M., Picard, W. (eds.) Pervasive Collaborative Networks, 52–64.
- Chakraborty, S. K. (1991). Management by Values: Towards Cultural Congruence. Oxford University Press, New Delhi
- Chan, Y. E., & Reich, B. H. (2007). IT alignment: what have we learned? Journal of Information Technology, 297-315.
- Chatham, R and Sutton, B. (2012). 30 Key Questions That Unlock Management. IT Governance Ltd.
- Chen, L. (2010). Business-IT alignment maturity of companies in China. Information& Management, 9-16.
- 32. Chong, A., Ooi, K., Chan, F.&Darmawan, N. (2010). Does employee alignment affect business IT alignment? An Empirical Analysis. Journal of Computer Information Systems, 3, 53-70.
- Chorn, N. H. (1991). The "alignment" theory: Creating strategic fit. Management Decision, 29:1, 20-26.
- Conger J. A.&Kanungo R. N. (1988). The empowerment process: Integrating theory and practice. Acad. Manage. Rev., 13:3, 471-482.
- 35. Conner, K. R.,&Prahalad, C. K. (1996). A Resource-Based Theory of the Firm: Knowledge Versus Opportunism. Organization Science, 7:5, 479–499.
- Cool, K.,&Schendel, D. E. (1987). Strategic group formation and performance: The case of the U.S. pharmaceutical industry, 1963–1982. Management Science, 33, 1102–1124.
- Dess, G.G. 1987. Consensus of strategy formulation and organizational performance: Competitors in a fragmented industry. Strategic Management Journal, 8, 259-277.
- Dulek, R. E. and Campbel, K. S.2015.On the Dark Side of Strategic Communication. *International Journal of Business Communication*, 52:1, 122-142.

- Dyer, L.,&Reeves, T., (1995). Human resource strategies and firm performance: What do we know and where do we need to go? Paper presented at the 10th World Congress of the International Industrial Relations Association, Washington, DC.
- Elenkov D., Judge W., and Wright P. (2005). Strategic Leadership and Executive Innovation Influence: An International Multi-Cluster Comparative Study. Strategic Management Journal, July, 666-680.
- Field, A. P. (2009). Discovering statistics using SPSS (3rd edition). London, England: Sage.
- 42. Florin, P.,&Wandersman, A. (1990). An introduction to citizen participation, voluntary organizations, and community development: insights for empowerment through research. American Journal of Community Psychology, 18(1), 41-54.
- 43. Ford, R. C., & Fottler, M. D. (1995). Empowerment: A matter of degree. The Academy of Management Executive, 9:3, 21-29.
- Gagnon, M. A., & Michael, J. H. (2003). Employee strategic alignment at a wood manufacturer: An exploratory analysis using lean manufacturing. Forest Products Journal, 2, 24-29.
- Gagnon, M. A., Jansen, K. J., & Michael, J. H. (2008).
 Employee Alignment with Strategic Change: A Study of Strategy-supportive Behavior among Blue-collar Employees. Journal of Managerial Issues, 3, 425-443.
- 46. Geroy, G.D., Wright, P.C and Anderson, J. (2015). Strategic performance empowerment model, Empowerment in Organizations, 6:2, 57-63.
- Guest, D. E. (2011). Human resource management and performance: still searching for some answers. Human Resource Management Journal, 21 (1), 3-13.
- Gutierrez A. S. (2009). Alignment of IT projects with business strategy. Brunel University, West London: School of Information Systems, Computing and Mathematics.
- Gutierrez, A.,&Serrano, A. (2008). Assessing strategic, tactical and operational alignment factors for SMEs: alignment across the organization's value chain, Center of Information Systems and Computing.
- Gutierrez, A., Nawazish, A., Orozco, J., Serrano, A.,&Yazdouni, H. (2007). Comparing alignment factors in SMEs and large organizations: A planning integration perspective, Center of Information Systems and Computing.
- Herrenkohl, R., Judson, G and Heffner, J. (1999).
 Defining and measuring employee empowerment, Journal of Applied Behavioral Science, 35, 373-385.
- 52. Herrmann, P. (2005). Evolution of strategic management: the need for new dominant designs. International Journal of Management Reviews, 7(2), 111–130.
- 53. Holbeche, L. (2004). How to make work more meaningful. Personnel Today, 26.
- Honold, L. (1997). A review of the literature on employee empowerment. Empowerment in organizations, 5:4, 202-212.
- Hoskisson, R.E., Hitt, M.A., Wan, W.P. and Yiu, D. (1999). Theory and research in strategic management: swings of a pendulum. Journal of Management, 25, 417–456.
- 56. Huff, A. S. (1990). Mapping Strategic Thought. Chichester, Eds., UK: John Wiley&Sons.
- Janssens, M., & Steyaert, C. (2009). HRM and Performance: A Plea for Reflexivity in HRM Studies. Journal of Management Studies, 46 (1), 143-155.

- 58. Johnson G., Scholes K. and Whittington R. (2008). Exploring Corporate Strategy. 8th ed., Prentice Hall.
- Johnson, G., Scholes, K. and Whittington, R. (2004).
 Exploring Corporate Strategy, Harlow: Prentice Hall Europe.
- Judge, W. and Zeithaml, C. (1992). Institutional and Strategic Choice Perspectives on Board Involvement in the Strategic Decision Process. Academy of Management Journal, 35: 786–792.
- Kaufman, R., Oakley-Browne, H., Watkins, R. and Leigh,
 D. (2013). Strategic Planning for Success: Aligning People, Performance, and Payoffs. Jossey-Bass.
- 62. Kaymakcı, K.&Barbican, S. (2014). Employee empowerment in new public management approach and a research. European Journal of Research on Education, 2, 62-70.
- Kearns, K. and Scarpino, G. (1996). Strategic planning research knowledge and gaps. Jossey-Bass Publishers.
- 64. Keller T, D. (1995). Leadership and empowerment: A social exchange perspective. Hum. Relat. 48: 127-146.
- 65. Khadem, R.,&Khaddar, L. (2008). Total alignment: Integrating vision, strategy, and execution for organizational success. Atlanta, GA: Infotrac.
- King, B. G and Walker, E.T. 2014. Winning hearts and minds: Field theory and the three dimensions of strategy. Strategic Organization, 12:2, 134-141.
- 67. Klagge, J. (1998). The empowerment squeeze-views from the middle management position. J. Manage. Rev., 17:8, 548-558.
- McGee, J., Thomas, H. and Wilson, D. (2005). Strategy: Analysis&Practice. London: McGraw-Hill.
- Meglino, B. M., & Korsgaard, M. A. (2007). The role of other orientation in reactions to job characteristics. Journal of Management, 33, 57–83.
- Mehrabani, S. E.&, Shajari, M. (2013). Relationship between Employee Empowerment and Employee Effectiveness. Service Science and Management Research (SSMR), 2:4, 60-68.
- 71. Michael, J., and College, W.(1997). A Conceptual Framework for Aligning Managerial Behaviors with Cultural Work Values, International Journal of Commerce and Management, 7:3/4, 81-10.
- 72. Miles, R. E.2017.Designing strategic human resources systems. Organizational Dynamics, 46:1, 1-64.
- 73. Mintzberg, H. 1994. The Rise and Fall of Strategic Planning. Basic Books.
- 74. Mintzberg, H. and Waters, J.A. (1978). Patterns in strategy formation. Management Science, 24, 934–948.
- Mintzberg, H.1994. Rethinking strategic planning part II: New roles for planners, Long Range Planning, June, 27:3, 3-158.
- Noe, R., Hollenbeck, J., Gerhart, B., and Wright, P. (2007). Fundamentals of human resource management, 2nd ed., Boston MA, McGraw Hill.
- Oliver, C. (1991). Strategic responses to institutional processes. Academy of Management Review, 16, 145-179
- Ostroff, C., Shin, Y.,&Kinicki, A. J. (2005). Multiple perspectives of congruence: Relationships between value congruence and employee attitudes. Journal of Organizational Behavior, 26, 591–623.
- Paborikar, N. (2013). Strategic Approach to Talent Management. *JIDNYASA* Research Journal, 7:1, 21-25.
- Paborikar, N. (2014a). Strategic Management Overview and SME in Globalized World. In K. Todorov and D. Smallbone (Eds), Handbook of Research on Strategic

- Management in Small and Medium Enterprises, 24-36, Hershey, PA: Business Science Reference.
- 81. Pardo Del Val, M. and Lloyd, B. (2003). Measuring Empowerment, Leadership&Organization Development Journal, 3, 102-103.
- 82. Pasion-Caiani, T. S. (2015). Examination of Employee Alignment as a Predictor of Work Engagement, unpublished Master thesis, San Jose State University.
- Pelit E., Öztürk Y. and Arslanturk Y. (2011). The Effects of Employee Empowerment on Employee Job Satisfaction: A Study on Hotels in Turkey. International Journal of Contemporary Hospitality Management. 23:6, 784–802
- Pelit, E. (2011). Comparison of the perceptions of the managers and employees on empowerment. Social Sciences Institute Journal, 25, 209-225.
- Posner, B. Z. (2010). Another Look at the Impact of Personal and Organizational Values Congruency. Journal of Business Ethics, 97, 535–541.
- 86. Purcell, J. (1999). High commitment management and the link with contingent workers: implications for strategic human resource management. Research in Personnel and Human Resources Management.
- 87. Quinn, R. E., & Spreitzer, G. M. (1997). The road to empowerment: Seven questions every leader should consider. Organizational Dynamics, 26:2, 37-49.
- Ramos-Rodriguez, A.-R.&Ruiz-Navarro, J. (2004). Changes in the intellectual structure of strategic management research. Strategic Management Journal, 25, 981–1004.
- 89. Rapport, J. (1984). Studies in empowerment: Introduction to the issue. Prevention in Human Services, 3, 1-7.
- Ring, P. S. and Perry J. L. 1985. Strategic Management in Public and Private Organizations: Implications of Distinctive Contexts and Constraints. Academy Management Review, April 1,10:2,276-286.
- Robbins S., Coulter M. (2012). Management. 11th ed., Prentice Hall.
- Robinson, D. G. and Robinson, J.C. (2008). Strategic Business Partner: Aligning People Strategies with Business Goals. Berrett –Koehler Publishers, Inc. California
- Rogers, E. W., & Wright, P. M. (1998). Measuring organizational performance in strategic human resource management: Problems, prospects, and performance information markets. Human Resource Management Review, 8 (3), 311.
- Rubino, J. A. (1998). Aligning personal values and corporate values: A personal and strategic necessity. Employment Relations Today, 25:3, 23-35.
- Saeman, R. (1992). The environment and the need for new technology: Empowerment and ethical values. The Columbia J. World Bus., 17, 186-193.
- Schuler, R. S. (1992). Strategic human resources management: Linking the people with the strategic needs of the business. Organizational Dynamics, 21:1, 18-32.
- 97. Seibert S., Silver S. and Randolph W. (2004). Taking Empowerment to the Next Level: A Multiple-Level

- Model of Empowerment, Performance, and Satisfaction. Academy of Management Journal. 47, 332-350.
- 98. Shulagna S. (2009). Employee Empowerment in the Banking Sectorl, IUP Journal of Management Research. Hyderabad, 8: 9, 48-67.
- Spender, J.C. (1996). Making knowledge the basis of a dynamic theory of the firm. Strategic Management Journal, 17, 45–62.
- Spreitzer G. (1995). Psychological Empowerment in the Workplace: Dimensions, Measurement and Validation. Academy of Management Journal. 38, 1442-56.
- 101. Spreitzer G., Kizilos M. and Nason S. (1997). A Dimensional Analysis of the Relationship between Psychological Empowerment and Effectiveness, Satisfaction, and Strain. Journal of Management Development. 23, 679-704.
- Spreitzer, G. M. (1995). Psychological empowerment in the workplace: Dimensions, measurement, and validation. Academy of management Journal, 38:5, 1442-1465.
- 103. Steiner, G. 1979. Strategic Planning. Free Press.
- Suchman, M.C. (1995). Managing legitimacy: strategic and institutional approaches. Academy of Management Review, 20, 571–610.
- Sullivan, W., Sullivan, R. &Buffton, B. (2010). Aligning individual and organizational values to support change. Journal of Change Management, 2:3, 247-254.
- 106. Teece, D.J., Pisano, G. and Shuen, A. (1997). Dynamic capabilities and strategic management. Strategic Management Journal, 18, 509–533.
- Thomas, K. W. and Velthouse, B.A. (1990). Cognitive elements of empowerment: An "Interpretive" model of intrinsic task motivation. Acad. Manage. Rev., 5(4): 666-681.
- 108. Uhl-Bien, M. and Arena, M. (2017). Complexity leadership: Enabling people and organizations for adaptability. Organizational Dynamics, 46:1, 1-64.
- Valadares, K. J. (2004). The practicality of employee empowerment: supporting a psychologically safe culture. The Health Care Manager, 23:3, 220-224.
- Van Riel, C. B. (2008). Creating a Strategically Aligned Workforce. Corporate Reputation Review, 11: 4, 351-359.
- Wang, G.&Lee, P. (2009). Psychological empowerment and job satisfaction an analysis of interactive effects. Group&Organization Management, 34:3, 271-296.
- Westerman, J. W., & Cyr, L. A. (2004). An integrative analysis of person-organization fit theories. International Journal of Selection and Assessment, 12, 252–261.
- 113. Wilkinson, A. (1988). Empowerment: theory and practice, Personnel Review, 27:1, 40-56.
- Wooddell, V. (2009). Employee Empowerment, Action Research and Organizational Change: A Case Study, Organization Management Journal, 6, 15-18.
- 115. Zimmerman, M.A. (1984). Taking aim on empowerment research: On the distinction between individual and psychological conceptions. American Journal of Community Psychology, 18:1, 169-177.

7/5/2017